embOS

Real-Time Operating System

CPU & Compiler specifics for
Renesas RX using GNURX

Document: UM01019
Software Version: 5.16.1.0
Revision: 0
Date: March 10, 2022

\\—
/ SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2022 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger . conm®

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: March 10, 2022

Software | Revision | Date By Description
5.16.1.0 0 220310 MM New software version.
4.24 0 160824 RH Chapter "SEGGER RTT and SystemView” added.
3.88 0 130319 AW New generic embOS sources V3.88.

New generic embOS sources V3.86n.
Chapter “Stacks” updated.

3.86d 0 120515 TS First version.

3.86n 0 121213 TS

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The target processor.
DOS command line.

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for Renesas RX and GNURX

© 2010-2022 SEGGER Microcontroller GmbH

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

Table of contents

1 USING €MDOS oo e 9
1.1 INStallation v e 10

A =3 A = o 1= 11

1.3 The example application OS_StartLEDBIINK.Cociviiiiiiiiiiiii e 12

1.4 Stepping through the sample application ... 13

2 Build your oWn @ppliCAtIONoeeiiiiiiiiiiiie i 17
2% NN 1 g o Ta [ol u o o PP PPRPIN 18
2.2 Required files for an embOS ... s 18
2.3 Change library MO . ..o e e 18
2.4 Select another CPU ... e e e 18

3 CPU and compiler SPECIFICS ...cuuuuiiiiiiiiiie et e e e e aaaaas 19
20 A 1= o T Y2 o 2 o T 1= = 20

G T o (=TT o T =1 0 Lo Y/ 20

I 1 10T 4 U] o) T PP 21
4.1 What happens when an interrupt OCCUIS?iiiiiiiiiiiiii i e e s 22
4.2 Defining interrupt handlers in C ... 22
4.2.1 Interrupt vector table ...cciviiiiiii e 22

L T N o) =T o (B o o o e o =P 23
4.3.1 Zero latency iNterrupls ..oovviiiiii i e 23

4.3.2 embOS INEITUPES 1viiiiiii i e e e 23

4.3.3 OS_INT_SetPriority Threshold() ...cocvvriiiiiiii i e aeas 24

4.4 INterrupl NESHING ..uoiiiiii i e 25
4.5 Interrupt-stack sWIitChing ... e 25
4.6 Fast interrupt, RX SPECIFIC wivriiriiiiii i i e e ea 25
4.7 Non Maskable Interrupt, NMI ... e e e 25

LI | o] = =P 26
5.1 Naming conventions for prebuilt librariescooviiiiiiiii 27

6 RTT And SYSIEMVIBW ...ttt e e e e e e e e e e e e aaaaeeas 28
6.1 SEGGER Real Time Transfer .uiiiiiiiiiii i s it e s e e e e e aeanes 29
6.2 SEGGER SYStemMVIiEW ittt e e e s ar e e 29

A1 - 1) TSRS 30
2] = o Sl o o1 01 = R 31

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

2 N -1 Q) 1= [o1 31
7.3 SYStEM SEACK ettt e 31
7.4 Interrupt StacK ovviiiiii i e 31
= TS L = o == ot o oY PP 31
8 TECNNICAl dALAoevviiiiiiiiii et a e e e e e e a e ————— 33
S 0 R S U=t~ 1 U1 ol U F=7 [1= P 34

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

Chapter 1
Using embQOS

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation

This chapter describes how to start with embQOS. You should follow these steps to become
familiar with embOS.

embOS is shipped as a zip-file in electronic form.
To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find many prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 11.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embQOsS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

11 CHAPTER 1 First Steps

1.2 First Steps

After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder Start . It is a good idea to use one of them as a starting point for
all of your applications. The subfolder Boar dSuppor t contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from Boar dSupport subfolder.

To get your new application running, you should proceed as follows:

Create a work directory for your application, for example c: \ wor k.
Copy the whole folder St art which is part of your embQOS distribution into your work
directory.
Clear the read-only attribute of all files in the new St art folder.
Open one sample workspace/project in
St ar t \ Boar dSuppor t\ <Devi ceManuf act ur er >\ <CPU> with your IDE (for example, by
double clicking it).
e Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

& 2021077 - & studio

File Edit 5Socurce Refactor MNavigate Search Project Renesas Views Run Window Help
5. Debug 7 Start_RXT1M Release - | S~ R -miw @ R Q-
- W H S GG ® 1R - F (o v v |
Q E | B C/Ce+ 3 Debug
Bia Project Explorer X = 8 = 8
BES Y 3
~ 15 Start_RX71M (in RX71M_RSKRX71M) [#l Problems | B Console 5% | @ Smart Browser [} Smart Manual = 8
¥ Binaries R " =
%5 Inchudes X ¢S HEE-&E O
o - CDT Build Conscle [Start_RX71M]
= Application e L = e e e e e e ST CmmRGTT T SCC IO G 5 BE e pasT AT
(= Debug 'rx-elf-gcc -08 -ffunction-sections -fdata-sections -frno-common -fsection-anchors -g2 -mcpu=rx71 "
(= SEGGER 'rx-elf-gcc -08 -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
'rx-elf-gcc -0@ -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
(= Setup 'rx-elf-gcc -08 -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
= ReadMe.tut 'rx-elf-gcc -08 -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
'rx-elf-gcc -080 -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
'rx-elf-gcc -080 -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
'rx-elf-gcc -080 -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
'rx-elf-gcc -0@ -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
'rx-elf-gcc -080 -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
'rx-elf-gcc -080 -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
'rx-elf-gcc -080 -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
'rx-elf-gcc -080 -ffunction-sections -fdata-sections -fno-common -fsection-anchors -g2 -mcpu=rx71
rx-elf-gcc @"Start_RX71M.elf.in”
rx-elf-objcopy "Start_RX71M.elf" -0 srec -I elf32-rx-be-ns "Start_RX71M.mot"
15:34:59 Build Finished. @ errors, @ warnings. (took 632ms)
v
£ >l € >
15 Start_RX71M

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

12 CHAPTER 1 The example application OS_StartLEDBIink.c

1.3 The example application OS_StartLEDBIink.c

The following is a printout of the example application CS_St art LEDBI i nk. c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***

* SEGGER M crocontrol |l er GrbH *
* The Enbedded Experts *

Rk S b Sk S SRk S S kR R O R I

-------------------------- END- OF- HEADER -------------mmmmmmmmm oo

File . OS_StartLEDBI i nk.c

Pur pose : enbOS sanpl e program running two sinple tasks, each toggling
a LED of the target hardware (as configured in BSP.c).

*/

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; // Task control bl ocks

static void HPTask(void) {
while (1) {
BSP_Toggl eLED(0) ;
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
BSP_Toggl eLED(1) ;
OS_TASK_Del ay(200);
}
}

/***

*

* mai n()
*/
int main(void) {
oS Init(); /1 Initialize enbOS

CS InitHW); // Initialize required hardware

BSP I nit(); /1 Initialize LED ports
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS Start(); /1 Start embOS

return O;

}

/*************************** End Of flle ****************************/

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application

When starting the debugger, you will see the nai n() function (see example screenshot
below). The mai n() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS I nit() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

CS InitHW) is part of RTOSI nit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

0S_Start () should be the last line in mai n() , because it starts multitasking and does not
return.

e' 2021_07_7 - Start_RX71M/Application/05_StartLEDBlink.c - & studio

File Edit Socurce Refactor Mavigate Search Project Renesas Views Run Window Help
5. Debug || 7 Start_RXTIM_Debug - - | S~ &] - &
I EMNER RS BRI B o B H Lo ®™y-i| 4
BB e Q| B/ 45 Debug
B OS StartLEDBlink.c X = 0 |& Expressions % | 3§ Debug = O
) R
48 = static void HPTask(void) { ~ i E|| o & {1 &' il
41 = while (1) { Expression Type Value
42 BSP_ToggleLED(@); ~ .
43 05_TASK_Delay(5@); ()= 05_Global.Time volatilelong 0
44 3 gr Add new expression
45 1
46
47 = static void LPTask(void) {
48 = while (1) {
49 B5P_ToggleLED(1);
58 05_TASK_Delay(20@);
51 1
52 1
53
56 @ * main()[]
58 = int main(void) {
59 05_Init(); // Initialize embOS
60 0S_InitHW(); // Initialize required hardware
51 BSP_Init{); // Initialize LED ports
52 05_TASK_CREATE(&TCBHP, "HP Task", 18@, HPTask, StackHP);
53 05_TASK_CREATE(&TCBLP, “LP Task", 5@, LPTask, StackLP);
64 05_Start(); /{ Start embOs
65 return @;
66 1 v
- £ > £ >
Oxffc035¢1 € 214000.0 us (@) System Time
Writable Smart Insert 50:1: 2620

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

14 CHAPTER 1

Stepping through the sample application

Before you step into GS_St art (), you should set two breakpoints in the two tasks as shown

below.
'Application/05_StartLEDBlink.c - € studio
File Edit Socurce Refactor Mavigate Search Project Renesas Views Run Window Help
[& |[4| ® | |4 pebug v || € start_Rx71M_Debug v ifn-EHE - B
wu | NI PSR H R H+ - A - RS S HH IS4
oo~ Q F | EC/C+ 45 Debug
B OS StartLEDBlink.c X = 0 |& Expressions % | 3§ Debug = O
- 4 o
48 = static void HPTask(void) { ~ i i E|| * X% Q &' il
41 = while (1) { Expression Type Value
o2 I BSP_TogglelED(8);))
43 05_TASK_Delay(5@); ()= 05_Global.Time volatilelong 0
44 3 gr Add new expression
45 1
46 =
47 = static void LPTask(void) {
48 = while (1) {
el | BSP_ToggleLED(1);
58 05_TASK_Delay(20@);
51 1
52 i =
53
56 & * main()[]
58 = int main(void) {
5o | os_tnit(); // Initialize embOS
60 05_InitHW(); // Initialize required hardware
61 BSP_Init(); // Initialize LED ports
652 0S_TASK_CREATE(&TCBHP, "HP Task”, 18@, HPTask, StackHP);
63 0S_TASK_CREATE(&TCBLP, "LP Task”, 5@, LPTask, StackLP);
64 05_Start(); // Start emb05
65 return @;
56 1 v
o < > < >
Oxffc035¢1 € 214000.0 us (@) System Time
| Witable | Smart Insert | 59:1:2620

As OS _Start () is part of the embQOS library, you can step through it in disassembly mode

only.

Click GO, step over OS_Start (), or step into OS_Start () in disassembly mode until you
reach the highest priority task.

- Start_RXT1M/Application/Q5_StartLEDBlink.c - &° studio

File Edit Source Refactor Mavigate Search Project Renesas Views Run Window

Help

v | | & Start_RXT1M_Debug v

[&] [[m] [oo

Bl ®-& &

B[00 BN RPECER]kOe0D
Erfl-orero-

FRSS S FIem s
Q B | B C/c (45 Debug

B OS StartLEDBlink.c X = B |&4 Expressions 57 Debu = O
P]
= static void HPTask(void) { ~ i E|| K S& !1 &' il §
= while (1) { Expression Type Value
_ BSP_ToggleLED(@); .
05_TASK_Delay(50); ()= 05_Global. Time volatilelong 0
3 gr Add new expression
}
= static void LPTask(void) {
= while (1) {
[] BSP_ToggleLED(1);
05_TASK_Delay(2ea);
} =
}
& * main()[]
= int main(void) {
05_Init(); // Initialize embOS
05_InitHW(); // Initialize required hardware
BSP_Init(); // Initialize LED ports
05_TASK_CREATE(&TCBHP, "HP Task", 18@, HPTask, StackHP);
05_TASK_CREATE(&TCBLP, “LP Task", 5@, LPTask, StackLP);
05 _Start(); // Start emb0S
return @;
56 1 v
< > < >
OxFfc03599 ¢ 128000.0 us (@) System Time
Writable | Smart Insert | 42:22: 2310

embOS for Renesas RX and GNURX

© 2010-2022 SEGGER Microcontroller GmbH

15 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

e' 2021_07_7 - Start_RX71M/Application/05_StartLEDBlink.c - & studio

File Edit Socurce Refactor Mavigate Search Project Renesas Views Run Window Help

|7§$ Debug W | | [E7] Start_RXT1M_Debug w | I | SR Q - &

R PIENIRRNPITEH R - A - RS D HH LSS S

B~ ooy v|m Q E"%C!C++ %5 Debug
= 0 |& Expressions % | 3§ Debug = g
= static void HPTask(void) { ~ i i E|| w X S& {1 &' il
= while (1) { Expression Type Value
BSP_T leLED(@); .
os ?A;ESD:layES%) . 9= 05_Global. Time volatile long 1
o N gr Add new expression
b
= static void LPTask(void) { =
= while (1) {

BSP_ToggleLED(1);:
05_TASK_Delay(2ea);

b
b
& * main()[]
= int main(void) {
05_Init(); // Initialize embOS
0S_InitHW(); // Initialize required hardware
BSP_Init{); // Initialize LED ports

05_TASK_CREATE(&TCBHP, "HP Task", 18@, HPTask, StackHP);
05_TASK_CREATE(&TCBLP, “LP Task", 5@, LPTask, StackLP);

05_Start(); // Start emb05
return @;
} v
£ > £ >
OxffcD35ac ©) 144000.0 us (@) System Time
| Witable | Smart Insert | 49:22: 2470

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS TASK Del ay() function in disassembly
mode. OS I dl e() is part of RTGSI nit. c. You may also set a breakpoint there before step-
ping over the delay in LPTask() .

7 - Start_RX71M/Setup/RTOSInit_RX71M.c - & studio
File Edit Source Refactor Mavigate Search Project Renesas Views Run Window Help

|7§$ Debug W | | [E7] Start_RXT1M_Debug w | I | SR Q - &

Rl ENERR|BPE LG R|F-R-- RO RS HRH IS4

oo~ Q F | EC/C+ 45 Debug
(8 start.5 [©5_StartLEDBlink.c B RTOSInit_RX71M.c X = 0 |& Expressions % | 3§ Debug = 8
338 - #elif (05_VIEW_IFSELECT == 05_VIEW_IF_ETHERNET) - S E k1 el
339 UDP_Process_Init(); i
348 #endif Expression Type Value
341 PRCR = BxA508u; /{ Protec ()= 05_Global.Time volatilelong 2
342 05_INT DecRI(); 4k Add new expression
343 1
344
347 @ * 05_Idle()[]
8 = void 05_Idle(void) { // Idle loop: No task is ready to execute
o - while (1) { // Nothing to do ... wait for interrupt
) = #if ((05_VIEW IFSELECT != 05 VIEW IF_JLINK) && (05_DEBUG == @))
1 = #ifdef _ ICCRX__
2 _ wait_for_interrupt();
3 #endif
4 = #ifdef _ RX
5 wait();
6 #endif
7 = #ifdef _ GNUC__
3 _ builtin_rx_wait();
9 #endif
@ #endif
1 }
2 }
373
376 @ * Optional communication with embOSView(] v
< > < >
Oxffc0Dd36 ¢ 142000.0 us (@) System Time
Writable | Smart Insert | 359:62: 14034

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

16

CHAPTER 1 Stepping through the sample application

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_d obal . Ti me, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

e' 2021_07_7 - Start_RX71M/Application/05_StartLEDBlink.c - & studio

File Edit Socurce Refactor Mavigate Search Project Renesas Views Run Window Help
|7§$Debug v|||?:j|5tart_Rx71M_Debug - | - | S~ &] - &

wu | HIFR PR HRH+ - A - RS S HH I @S- 4

F - fFltocr g '|m Q @‘%Q’C++ % Debug
(8 start.5 B 05 StartLEDBlinkc x JERUsSLTEeal ¥R = 0 |& Expressions % | 3§ Debug = 8

- 4 o
= static void HPTask(void) { ~ i i E|| w X S& {1 &' il
= while (1) { Expression Type Value
|] BSP_ToggleLED(@); .
05_TASK_Delay(5@); ()= 05_Global.Time volatilelong 31
3 gr Add new expression
}

46

47 = static void LPTask(void) {

48 = while (1) {
el | BSP_ToggleLED(1);

58 05_TASK_Delay(20@);

51 1

52 i =

53

56 & * main()[]

58 = int main(void) {

59 05_Init(); // Initialize embOS

68 0S_InitHW(); // Initialize required hardware

61 BSP_Init{); // Initialize LED ports

62 05_TASK_CREATE(&TCBHP, "HP Task", 18@, HPTask, StackHP);

53 05_TASK_CREATE(&TCBLP, “LP Task", 5@, LPTask, StackLP);

54 0s_start(); // Start emb0s

B5 return @;

66 1 v

o £ > £ >

OxFfc03599 ¢) 130000.0 us (@) System Time
Writable | Smart Insert | 22:1:2340

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

18

2.1

2.2

2.3

2.4

CHAPTER 2 Introduction

Introduction

This chapter provides all information to set up your own embQOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 11 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

Required files for an embOS

To build an application using embOS, the following files from your embQS distribution are
required and have to be included in your project:

e RTGCS. h from the directory .\Start\Inc. This header file declares all embOS API
functions and data types and has to be included in any source file using embQOS
functions.

e RTOSInit*. c from one target specific .\ St art\ Boar dSuppor t \ <Manuf act ur er >\ <MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

e OS Error.c from one target specific subfolder .\Start\BoardSupport
\ <Manuf act ur er >\ <MCU>. The error handler is used only if a debug library is used in
your project.

e One embOS library from the subfolder .\ Start\Li b.

e Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level i ni t () function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embQOS internal variables. Your mai n() function has to initialize embQOS by
calling GS I nit() and GS_ I nit HWN) prior to any other embQOS functions that are called.

Change library mode

For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embQOS library in your project or target:

o If your selected library is already available in your project, just select the appropriate
project configuration.

e To add a library, you may add the library to the existing Lib group. Exclude all other
libraries from your build, delete unused libraries or remove them from the configuration.

e Check and set the appropriate OS_LI BMODE_* define as preprocessor option and/or
modify the OS_Confi g. h file accordingly.

Select another CPU

embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\ St ar t \ Boar dSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTCSI ni t. ¢ files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_| ni t H
W), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

Chapter 3

CPU and compiler specifics

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

20 CHAPTER 3 Memory models

3.1 Memory models

The GNURX compiler provides only one memory model.

3.2 Heap memory

embOS for Renesas RX and GNU provides an own implementation of the function sbr k().
This function is required if the standard library Newlib is used without default libraries, i.e.
linked with - nostdlib”.

sbrk() is implemented in the file sbrk. c which is located in the Set up directory of each
BSP. This implementation requires specific linker symbols in order to link properly.

Symbol Description
__heap_start Contains the start address (lower address) of the heap
__heap_end Contains the end address (higher address) of the heap

The heap section, its size, location and the linker symbols are defined in the linker script.
The heap can be defined like this in the linker script file:

. heap _end (NOLQAD) :

{
__heap_start = .;
= ORI G N(RAM + LENGTH(RAM ;
__heap_end = .;
} > RAM

The _end symbol contains the end address of the RAM’s content, so that the remaining
memory, from _end to the end of the RAM memory block, can be used for the heap. The
heap section has to be placed after the linker symbol _end has been defined.

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

Chapter 4

Interrupts

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

22 CHAPTER 4 What happens when an interrupt occurs?

4.1 What happens when an interrupt occurs?

e The CPU receives an interrupt request.

As soon as interrupts are enabled and the interrupt priority level (IPL) of the CPU is
lower than the IPL of the interrupt, the interrupt is accepted.

The CPU switches to the Interrupt stack.

The CPU saves the PC and flag register on the interrupt stack.

The CPU disables all further interrupts.

The CPU sets its IPL to the IPL of the accepted interrupt.

The CPU jumps to the address specified in the vector table for the interrupt service
routine (ISR).

ISR: Saves registers.

ISR: User-defined functionality is executed.

ISR: Restores registers.

ISR: Executes RTE command, restoring PC, Flag register and switching back to the user
stack.

For details, refer to the Renesas hard- and software manuals.

4.2 Defining interrupt handlers in C

Interrupt handlers for Renesas RX cores are written as normal C-functions which do not
take parameters and do not return any value. Routines defined with the function attribute
__attribute__ ((interrupt)) automatically save & restore the registers they modify and
return with RTE.

For a detailed description on how to define an interrupt routine in “C”, refer to the GNURX
documentation.

For details how to write interrupt handlers using embOS functions, refer to the embQOS
generic manual.

For details about interrupt priorities, refer to chapter Interrupt priorities on page 23.

Example

Simple interrupt routines:

I

/'l Interrupt handl er NOT using enbCS functions

I

void __attribute__ ((interrupt)) IntHandl erTi mer(void){
I nt Cnt ++;

}

I

/1 Interrupt function using enbGS functions

I

void __attribute__ ((interrupt)) OS_ ISR Tick(void) {
OS_| NT_Ent er Nest abl e() ;
CS_TI CK_Handl e();
OS_| NT_LeaveNest abl e() ;

}

4.2.1 Interrupt vector table

The vector table is written in “C". It is located in the file vect s. ¢ which is part of the BSPs.
Please make sure that the vector tables has an entry for each of your interrupt handlers.

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

23 CHAPTER 4 Interrupt priorities

4.3 Interrupt priorities

RX CPUs can have up to 16 IPLs (interrupt priority levels) reaching from 0 to 15. While
most RX CPUs have 16 priority levels implemented, the RX610 CPUs only support 8 priority
levels from 0 to 7.

4.3.1 Zero latency interrupts

Instead of disabling interrupts when embQOS enters a critical section, the processor’s IPL is
increased. This prevents the execution of interrupts with an IPL lower or equal to the current
IPL of the processor. All interrupts with IPL higher than the IPL threshold that embOS uses
to disable interrupt are called zero | atency interrupts.

Zero latency interrupts are never disabled by embOS.

The IPL of the processor can be increased by calling GS_I NT_Di sabl e(), which sets the
current IPL to the IPL threshold. Initially, the IPL threshold is set to 4, but may be modified
during system initialization by a call of the function OS_I NT_Set Pri orityThreshol d().
Therefore, by default all interrupts with IPL 5 and greater are zero latency interrupts and
can still be processed. You must not execute any embQOS function from within an interrupt
running on high priority.

4.3.2 embOS interrupts

Any interrupt handler using embOS API functions has to run with IPLs from 1 to the current
IPL threshold. These embQS interrupt handlers have to start with a call of OS_| NT_Ent er ()
or OS_| NT_Ent er Nest abl e() and must end with a call of OS_| NT_Leave() or OS_I NT_Leav-
eNest abl e() . Interrupt handlers running at low priorities, i.e. with priorities from 1 to the
current IPL threshold, which are not calling any embOS API function are allowed, but must
not re-enable interrupts!

Note

The IPL threshold between embOS interrupts and zero latency interrupts is initially set
to 4, but can be changed at runtime by a call to OS_I NT_Set Pri ori t yThr eshol d() .

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

24

CHAPTER 4 Interrupt priorities

4.3.3 OS_INT_SetPriorityThreshold()

Description

OS INT_SetPriorityThreshol d() is used to set the IPL threshold between zero latency
interrupts and lower priority embQOS interrupts.

Prototype
void OS_INT_SetPriorityThreshol d(unsigned int Priority);
Parameters
Parameter Description
The highest value useable as priority for embOS interrupts. All inter-
Priorit rupts with higher priority are never disabled by embOS. Valid range:
y 1 < Priority < 7 for RX CPUs with 8 priority levels.
1 <Priority < 15 for RX CPUs with 16 priority levels.

Additional information

The IPL threshold for zero latency interrupts is set to 4 by default. This means, all interrupts
with IPLs from 5 up to the maximum CPU specific IPL will never be disabled by embQOS. To
modify the default priority limit, OGS I NT_Set Pri orityThreshol d() should be called before
embOS was started. In the sample start projects, OS | NT_Set Pri ori t yThreshol d() is not
called. The start projects use the default IPL threshold.

Interrupts running above the IPL threshold must not call any embQOS function.

To disable zero latency interrupts at all, the IPL threshold may be set to the highest interrupt
priority level supported by the CPU. Note that the maximum allowed parameter is device
dependent. The function will not check whether the device specific limit is exceeded. It is
the user’s responsibility not to use a value above 7 for CPUs which do not support more

than 8 priority levels.

embOS for Renesas RX and GNURX

© 2010-2022 SEGGER Microcontroller GmbH

25 CHAPTER 4 Interrupt nesting

4.4 Interrupt nesting

The Renesas RX CPU uses a priority controlled interrupt scheduling which allows preemption
and nesting of interrupts. Interrupts and exceptions with a higher priority may preempt an
interrupt handler with lower priority when interrupts are enabled during execution of the
interrupt service routine.

An interrupt handler calling embOS functions has to start with a call of OS_I NT_Ent er ()
or OS_| NT_Ent er Nest abl e() to informs embQOS that an interrupt handler is running. Us-
ing CS_|I NT_Ent er Nest abl e() enables interrupts in the interrupt handler and thus allows
nesting of interrupts.

4.5 Interrupt-stack switching

Since the RX CPUs have a separate stack pointer for interrupts, there is no need for explicit
software stack-switching in an interrupt routine. The routines OS_|I NT_Ent er I nt St ack()
and OS_| NT_Leavel nt St ack() are supplied for source code compatibility to other proces-
sors only and have no functionality.

4.6 Fast interrupt, RX specific

The RX CPU supports a “Fast interrupt” mode which is described in the hardware manual.
The fast interrupt may be used for special purposes, but must not call any embQOS function.

4.7 Non Maskable Interrupt, NMI

The RX CPU supports a non maskable interrupt which is described in the hardware manual.
The NMI may be used for special purposes, but must not call any embOS function.

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

Chapter 5

Libraries

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

27

CHAPTER 5

Naming conventions for prebuilt libraries

5.1 Naming conventions for prebuilt libraries

embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:

| i bos<CpuMbde><Endi anness><Li bMbde>. a

Parameter Meaning Values
. RXv2:RXv2 core
CpuMode Specifies the RX core) RXv1 core otherwise
_ B: Big endian
Endi anness Byte order L. Little endian
XR: Extreme Release
R: Release
S: Stack check
Li bMbde Specifies the library mode SP: Stack check + profiling
D: Debug
DP: Debug + profiling
DT: Debug + profiling + trace
Example

| i bosLDP. a is the library for a project using little endian mode with debug and profiling

support.

embOS for Renesas RX and GNURX

© 2010-2022 SEGGER Microcontroller GmbH

Chapter 6
RTT and SystemView

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

29 CHAPTER 6 SEGGER Real Time Transfer

6.1 SEGGER Real Time Transfer

With SEGGER'’s Real Time Transfer (RTT) it is possible to output information from the target
microcontroller as well as sending input to the application at a very high speed without
affecting the target’s real time behavior. SEGGER RTT can be used with any J-Link model
and any supported target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application’s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

6.2 SEGGER SystemView

SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemView, is not shipped with embOS. Instead, the most recent version of that applica-
tion is available for download from our website.

SystemView is initialized by calling SEGGER_SYSVI EW Conf () on the target microcontroller.
This call is performed within OS_| ni t H\{) of the respective RTCSI nit *. ¢ file. As soon as
this function was called, the connection of the SystemView desktop application to the target
can be started. In order to remove SystemView from the target application, remove the
SEGCGER_SYSVI EW Conf () call, the SEGGER_SYSVI EW h include directive as well as any other
reference to SEGGER_SYSVI EW * like SEGGER_SYSVI EW Ti ckCnt .

For more information on SEGGER SystemView and the download of the SystemView desktop
application, refer to segger.com/systemview.

Note

SystemView uses embOS timing API to get at start the current system time. This re-
quires that GS_TI ME_Confi gSysTi mer () was called before SEGGER SYSVI EW St art ()
is called or the SystemView PC application is started.

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt
https://www.segger.com/systemview

Chapter 7

Stacks

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

31 CHAPTER 7 Stack pointers

7.1 Stack pointers

RX CPUs have two stack pointers, the user stack pointer (USP) and the interrupt stack
pointer (ISP). The U-flag in the PSW regitser selects which stack pointer is used. During
execution of tasks, software timers or the embOS scheduler, the U-flag is set and the USP
is used. When an interrupt occurs, the U-flag is cleared and the ISP is used. On interrupt
exit, the stack pointer is switched to the previous stack pointer.

7.2 Task stack

Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack size required for a task is the sum of the used stack
of all routines and the basic stack size.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS routines. For the Renesas RX CPUs, the minimum
basic task stack size is about 44 bytes. Because any function call uses some amount of
stack, the task stack size has to be large enough to handle these calls. We recommend at
least 128 bytes stack as a start.

7.3 System stack

The system stack is the stack that is used by embOQOS for the scheduler and software timers.
When OS_Init () is called, embOS switches to the user stack pointer and uses its stack
as the system stack. The minimum system stack size required by embOQOS is about 128
bytes (stack check & profiling build). However, since the system stack is also used by
the application before the start of multitasking, and because software timers also use the
system stack, the actual stack requirements depend on the application.

The size of the system stack can be changed by modifying the linker file. We recommend
a minimum stack size of 256 bytes for the system stack.

7.4 Interrupt stack

Additional software stack switching in interrupts as for other CPUs is not necessary for the
RX. If an interrupt occurs, the RX clears the U-flag and switches automatically to the ISP.
The ISP is active during the entire ISR (interrupt service routine). This way, the interrupt
does not use the stack of the task and the size of the task stack does not have to be
increased for interrupt routines.

7.5 Stack section

The user and interrupt stacks and their size are defined by the linker script file. In order
for embOS to link properly, the linker file needs to provide specific symbols that mark the
start and the end of the user and interrupt stacks.

Symbol Description
_ustack_start Contains the start address (lower address) of the user stack
_ustack Contains the end address (higher address) of the user stack

Contains the start address (lower address) of the interrupt

_istack_start stack

Contains the end address (higher address) of the interrupt

_istack stack

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

32 CHAPTER 7 Stack section

An example implementation of the user and interrupt stacks in the linker script file could
look like this:

.ustack :
= ALI G\(8);
_ustack_start

= . + 0x200;
_ustack =

} > RAM
.istack :

= ALI G\(8);
_istack_start
= . + 0x200;
_istack =
} > RAM

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

Chapter 8

Technical data

embOS for Renesas RX and GNURX © 2010-2022 SEGGER Microcontroller GmbH

34

8.1 Resource Usage

CHAPTER 8

Resource Usage

The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS

library mode OS_LI BMODE_XR.

Module Memory type Memory requirements
embOS kernel ROM ~1700 bytes
embOS kernel RAM ~110 bytes
Task control block RAM 36 bytes
Software timer RAM 20 bytes
Task event RAM 0 bytes
Event object RAM 16 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLocks RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 12 bytes
Fixed Block Size Memory Pool RAM 32 bytes

embOS for Renesas RX and GNURX

© 2010-2022 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	CPU and compiler specifics
	Memory models
	Heap memory

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt vector table

	Interrupt priorities
	Zero latency interrupts
	embOS interrupts
	OS_INT_SetPriorityThreshold()

	Interrupt nesting
	Interrupt-stack switching
	Fast interrupt, RX specific
	Non Maskable Interrupt, NMI

	Libraries
	Naming conventions for prebuilt libraries

	RTT and SystemView
	SEGGER Real Time Transfer
	SEGGER SystemView

	Stacks
	Stack pointers
	Task stack
	System stack
	Interrupt stack
	Stack section

	Technical data
	Resource Usage

