embOS

Real-Time Operating System

CPU & Compiler specifics for
Renesas RX using Renesas
CCRX compiler and e2Studio

Document: UM01018
Software Version: 5.20.0.0
Revision: 0
Date: April 8, 2025

Vi
SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2025 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger . conm®

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: April 8, 2025

Software | Revision | Date By Description
5.20.0.0 0 250408 MC New software version.
5.18.0.0 0 230327 MC New software version.
5.16.1.0 0 220310 MM New software version.
5.14.0.0 0 210805 MM New software version.
5.12.0.0 0 201014 MM New software version.
5.10.2.0 0 200921 MM New software version.
5.06 0 190918 TS New software version.
5.02a 0 180719 TS New software version.
4.24 0 160808 RH Chapter "SEGGER RTT and SystemView"” added.
4.16 0 160226 RH General manual update.
4.12 0 150826 TS New software version.
4.10a 0 150519 TS New software version.
4.06b 0 150326 SC New software version.
4.02a 0 141103 TS New software version.
4.00 0 140702 TS New software version and RXv2 library description added.
3.88 0 130320 AW Description of e2studio project added.

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The target processor.
DOS command line.

How to use this manual

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for Renesas RX and CCRX

© 2010-2025 SEGGER Microcontroller GmbH

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

Table of contents

1 USING €MDOS oo e 9
1.1 INStallation v e 10

1.2 Using ReNESAs €2 STUIO .iiuviiiiiiiiiiiii i st eee s e s e e s e e e eanesneaneans 11

G T 1 =1 o) =T 01 Y 13

1.4 The example application OS_StartLEDBIINK.C ..ccvvviiiiiiiiiiii e 14

1.5 Stepping through the sample applicationc.oooiiiiiiii e 15

2 Build your oWn @ppliCAtIONceeeiiiiiiiiiiiieie i 19
2% NN 1 g o Ta [ol u o o PP PPRPIN 20
2.2 Required files for an embOS ... s 20

2.3 Change library MO . ..o e e 20
2.4 Select another CPU ... s e e e 20

G T | o] > V=SSR 21
3.1 Naming conventions for prebuilt librari@sc.cooiiiiiiiiiiiiii 22

4 CPU and compiler SPECITICSouuiiiiiieiiiiiii ittt 23
o R =10 o o] VA o (o T L= =T PP 24

IS] = od 1€ TSRS 25
T] - Yol o o1 01 1= ol 26
T A - 1] =] - Tl P 26
ST R V= (=T 0 [= ol S 26
5.4 INEerrUPl SEaCK .o e 26

LI |01 =T ¢ U] £ OO P PP PPPPPTRTRTR 27
6.1 What happens when an interrupt OCCUIS?civviiiiiiiiiiii i e e e 28
6.2 Defining interrupt handlers in C ... 28
6.3 INterrUPt PrioritiES oottt e e 29
6.4 Interrupt handling ..o 29
6.4.1 API fUNCHIONS 1ttt e e e e e e a e e an e areeeanans 29

6.4.1.1 OS_INT_SetPriorityThreshold()cocoviiiiiiiiiiiii e 30

6.4.2 Zero latency INterrUPES vviiiiiii i s 30

6.4.3 embOS INLEITUPES .ottt e e e 30

6.5 INterrupt NESEING ..ooiviiiiiii s 32
6.6 Interrupt-stack sWitChing ..o 32
6.7 Fast interrupt, RX SPeCIfiC tiviiriiiiiii i i e e e 32
6.8 Non maskable interrupt, NMI ..o s e aea s 32

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

6.9 Using Register Bank Save Function with RXv3 corecooiiiiiiiiiiiies 32
A =V (o B (=T 4 AV = SRS 34
7.1 SEGGER Real Time Transfer .ottt e e e eanes 35
7.2 SEGGER Sy S emMVIEW ottt ettt 35
S TN I =Tl] Tor= e - - PSR 36
S T R S U=t] U1 ol U F7- o 1= 37

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

Chapter 1
Using embQOS

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation

This chapter describes how to get started with embOS. You should follow these steps to
become familiar with embOS.

embQOS is shipped as a zip-file in electronic form. To install it, you should extract the zip-file
to any folder of your choice while preserving its directory structure (i.e. keep all files in their
respective sub directories). Ensure the files are not read-only after extraction. Assuming
that you are using an IDE to develop your application, no further installation steps are
required.

Note

The projects at / St art/ Boar dSupport / <Devi ceManuf act ur er >/ <Boar d> assume a
relative location for the / Start/Li b and/ Start/ | nc folders. If you copy a BSP folder
to another location, you will need to adjust the include paths of the project accordingly.

At/ St art/ Boar dSupport/ <Devi ceManuf act ur er >/ <Boar d> you should find several exam-
ple start projects, which you may adapt to write your application. To do so, follow the in-
structions of section First Steps on page 13.

In order to become familiar with embOS, consider using the example projects (even if you
will not use the IDE for application development).

If you do not or do not want to work with an IDE, you may copy either all library files or only
the library that is used with your project into your work directory. embQOS does in not rely on
an IDE, but may be used without an IDE just as well, e.g. using batch files or a make utility.

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

11

CHAPTER 1

1.2 Using Renesas e2 studio

The start projects are based on e2 studio and include the necessary project files for Renesas

e?2 studio.

Using Renesas e2 studio

To get your new application running, you should proceed as follows:

Create a work directory for your application, for example C. \ enbOS
Copy the whole folder St art which is part of your embQOS distribution into your work

Start Renesas e2 studio and select and create a workspace.
Import the sample start project into the workspace.

Build the start project
Run the application using e2 studio HardwareDebug configuration using the E1 emulator
for downloading and debugging.

Start Renesas e2 studio and in the Workspace Launcher click Browse...to select the work-
space. If the Workspace Launcher is not shown on startup, select it by menu File ->
Swi tch Wor kspace.

Select the workspace directory c: \ wor kspace or any other folder of your choice:

Workspace Launcher

Select a workspace

e2 studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.
Workspace: C\Users\Michael\workspace\e2studio - Browse...
Use this as the default and do not ask again
[OK l | Cancel

The workspace will then be created in the selected folder.

Now import the sample start project from one board support folder. Choose menu File ->
I mport and in the I mport dialog select General -> Exi sting Projects into Wrkspace.

Import
Select

Select an import source:

type filter text

Create new projects from an archive file or directory.

= ===
=]

4 (= General
_LE Archive File
[«) CMSIS Pack
1 Convert CCRX to GNURX Project

[Existing Prajects into Workspace
() File System
fé} HEW Project

[C] Preferences

e Renesas CATBKOR Project
1= Renesas Common Project File
. = C/C++

= Carde Generator

T D5-5 KPIT GNUARM-RZ/MOME Project

T Import KPIT GMUARM Project to GCC ARM Embedded

=2 Rename & Import Existing C/C++ Project into Workspace

m

T
)
[==]
o
=
W

Finish Cancel

embOS for Renesas RX and CCRX

© 2010-2025 SEGGER Microcontroller GmbH

12

CHAPTER 1 Using Renesas e2 studio

Press Next , the I mport Proj ects dialog shows up.
Press Br owse...and select St art\ Boar dSuppor t\ or any project subfolder as the root direc-
tory for the project to import:

Import

Import Projects

= -5 =]

-

Select a directory to search for existing Eclipse projects.

@ Select root directory: C\tmphembOS_RX_CCRX_Obj_V424\5tart\BoardSupport\Renesas\RE =

) Select archive file: Browse...

Projects:

Start_RX610 (C:\tmph\embOS_RX_CCRX_Obj_V424\Start\BoardSupport\Renesas\RSKRXG10) Select All

Deselect All

Options
[] Search for nested projects
[] Copy projects into workspace
[7] Hide projects that already exist in the workspace
Working sets
[Add project to working sets

Select...

Cancel

® B |

Enish | |

Do not select the Copy projects into workspace option.
Refresh the project and build it:

C/C++ - €2 studio ===
File Edit Source Refactor MNavigate Search Project Renesas Views Run Window Help
Ami [B-Q - T HF Q- - EF- -0 Q- NEE T

- - - - Quick Access i=ig |

C:\Tocl\C\Renesas\E2_STU~2\DEBUGC~1\RENESA~1.EXE Start_RX61@.abs Start_RX618.x
Loading input file Start_RX61@.abs

Parsing the ELF input file.....

29 segments required LMA fixes

Converting the DWARF information....

Constructing the ocutput ELF image....

Saving the ELF ocutput file Start_RX618.x

'Build complete.’

11:1@:55 Build Finished. @ errors, @ warnings. (tock 18s.689ms)

L5 Project Explorer &2 = O & Console 52 LU | = Y| Ex| B~ =0 E
= <)==D = CDT Build Clonsole[StaLr’t_RXGlO] o
a 5 Start_RXG10 'Finished building:’ a
[
> B
» Ilnlar‘ljes 'Invoking: Converter’
> [l Includes rlink "C:\tmp\emb0O5_RX_CCRX_Obj_Vv424\Start\BoardSupport\Renesas\RSKRX618\Debug\Start_RX61
> [Application
> [z Debug Renesas Optimizing Linker V2.84.80@ [28 Aug 2015]
. (= Setup Copyright (C) 2811, 2815 Renesas Electronics Corporation
> Start_RX5610
t:b ak;ﬂ . Renesas Optimizing Linker Completed
=| makefile.init 'Finished building target:'
[El ReadMe.bt
) Start_RX610.hws make --no-print-directory post-build
=| Start_RX610.tws

m

For latest information you may read the ReadMe. t xt file which is part of every start project.

embOS for Renesas RX and CCRX

© 2010-2025 SEGGER Microcontroller GmbH

13 CHAPTER 1 First Steps

1.3 First Steps

After installation of embQS, you can create your first multitasking application. You received
several ready-to-go sample workspaces and projects as well as all required embOS files
inside the subfolder Start. The subfolder St art/ Boar dSupport contains the workspaces
and projects, sorted into manufacturer- and board-specific subfolders. It is a good idea to
use one of the projects as a starting point for any application development.

To get your new application running, you should:

Create a directory for your development.

Copy the whole St art folder from your embOS shipment into the directory.

Clear the read-only attribute of all files in the copied St art folder.

Open one sample workspace/project in

St ar t / Boar dSuppor t / <Devi ceManuf act ur er >/ <Boar d> with your IDE (for example, by
double clicking it).

e Build the project. It should be built without any error or warning messages.

After building the project of your choice, the screen should look like this:

C/C++ - €2 studio =N Eoh(

File Edit Source Refactor MNavigate Search Project Renesas Views Run Window Help

i Br{R-AREAIZ OIS [0 QiNiEES g
. - . . Quick Access 11 | -E C/C++
I Project Explorer &2 = 08 & Console 52 dLo4F | B &H = | B~ =0 E
= <)==D = CDT Build Clonsole[StaLr’t_RXGlO] i o
a 5 Start_RXG10 'Finished building:’ a
[
3 B
*% IIHTTTS 'Invoking: Converter’
* [l Includes rlink "C:\tmp\emb0O5_RX_CCRX_Obj_Vv424\Start\BoardSupport\Renesas\RSKRX618\Debug\Start_RX61
» = Application
» = Debug Renesas Optimizing Linker V2.84.80@ [28 Aug 2015]
. = Setup Copyright (C) 2@11, 2815 Renesas Electronics Corporation
. (&= Start_RX610
Z? ak;w . Renesas Optimizing Linker Completed
=| makefile.init 'Finished building target:'
= ReadMetxt
) Start_RX610.hws make --no-print-directory post-build
=| Start_RX610.tws

C:\Tocl\C\Renesas\E2_STU~2\DEBUGC~1\RENESA~1.EXE Start_RX61@.abs Start_RX618.x
Loading input file Start_RX61@.abs

Parsing the ELF input file.....

29 segments required LMA fixes

Converting the DWARF information....

Constructing the ocutput ELF image....

Saving the ELF ocutput file Start_RX618.x

'Build complete.’

m

11:1@:55 Build Finished. @ errors, @ warnings. (tock 18s.689ms)

For additional information, you should open the ReadMe.txt file that is part of every BSP.
It describes the different configurations of the project and, if required, gives additional
information about specific hardware settings of the supported evaluation board(s).

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

14 CHAPTER 1 The example application OS_StartLEDBIink.c

1.4 The example application OS_StartLEDBIink.c

The following is a printout of the example application CS_St art LEDBI i nk. c. It is a good
starting point for your application (the actual file shipped with your port of embOS may
differ slightly).

What happens is easy to see:

After initialization of embQS, two tasks are created and started. The two tasks get activated
and execute until they run into a delay, thereby suspending themselves for the specified
time, and eventually continue execution.

/***

* SEGGER M crocontrol |l er GrbH *
* The Enbedded Experts *

Rk S b Sk S SRk S S kR R O R I

-------------------------- END- OF- HEADER -------------mmmmmmmmm oo

File . OS_StartLEDBI i nk.c

Pur pose : enbOS sanpl e program running two sinple tasks, each toggling
an LED of the target hardware (as configured in BSP.c).

*/

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; // Task control bl ocks

static void HPTask(void) {
while (1) {
BSP_Toggl eLED(0) ;
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
BSP_Toggl eLED(1) ;
OS_TASK_Del ay(200);
}
}

/***

*

* mai n()
*/
int main(void) {
oS Init(); /1 Initialize enbOS

CS InitHW); // Initialize required hardware

BSP I nit(); /1 Initialize LED ports
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS Start(); /1 Start embOS

return O;

}

/*************************** End Of flle ****************************/

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

15

CHAPTER 1

Stepping through the sample application

1.5 Stepping through the sample application

When starting the debugger, you will see the nai n() function (see example screenshot
below). The mai n() function appears as long as project option Run to nmi n is selected,
which it is enabled by default. Now you can step through the program.

OS I nit() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

CS InitHW) is part of RTOSI nit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for

embOS. Step through it to see what is done.

0S_Start () should be the last line in mai n() , because it starts multitasking and does not

return.

Debug - Start_RX610/Application/05_StartLEDBlink.c - €2 studio
File Edit Source Refactor MNavigate Search Project Renesas Views
i S~ R]R - B @i @M
- =

- -

|| 05 StartLEDBlink.c i3

1 static void HPTask(void) {
42 while (1) {
3

43 fffeacos BSP_TogglelLED(®);

44 fffeacof 05_Delay(5@);

45 3

45 3

43 static void LPTask(void) {
49 while (1) {

58 fffedca? BSP_ToggleLED(1);

1 fffedcae 05_Delay(200);
¥

}
@* main()[]

int main(void) {
05_IncDI();
05_InitKern();
05_TnitHW();
BSP_Init();

9 fffedchs
fffedchs
1 fffedce?
Tffedceb
fffedcef

Ini

Run

i

* Initially disable interrupts */
ze 05

/* Initialize LED ports
'* You need to create at least one task before calling 05_Start() */

5 fffeacfs 0S_CREATETASK(&TCBHP, "HP Task", HPTask, 1@@, StackHP);
fffedd2z 0S_CREATETASK(&TCBLP, "LP Task", LPTask, 5@, StackLP);
fffeddad 05_start(); /* Start multitasking
2 fffeddsa return 8;
9 fffedadsf } -
4 [4 M 3
fer
et

=N Nl)

Window Help

B0 Q@i®

8 B 0 0 0 & %F | Quick Access %\| BE C/C++
= B | & Expressions = O
i EE| % XK1t
-
Expression Type Valu

()= O5_Global. Time volatile long 0
o0 Add new express

I

Hardware for 05

embOS for Renesas RX and CCRX

© 2010-2025 SEGGER Microcontroller GmbH

16

CHAPTER 1

Stepping through the sample application

Before you step into GS_St art (), you should set two breakpoints in the two tasks as shown

below.
Debug - Start_RX610/Application/0S_StartLEDBlink.c - €2 studio =n =R
File Edit Source Refactor MNavigate Search Project RenesasViews Run Window Help
T Gle- Q- AP IBNLD B3 OB EI0 608 ®5-03
e =1 - 8 B 0 0 0 & %F | Quick Access @|%CIC++
[£€] OS_StartLEDBlink.c 5% | [c] resetprg.c = O & Expressions i1 = g
2 @* SEGGER Microcontroller GmbH & Co. KG * a = | d= "*' i =,4>| 6@
34 i |
35 #include “RTOS.h" =
?"E fffed4cos #include "BSP.h" Expression Type Valu
af
38 static 05_STACKPTR int StackHP[128], StackLP[128]; /* Task stack ()= 05_Global.Time volatilelong 0
39 static 05_TASK TCBHP, TCBLP; /* Task-control-blocks o= Add new express
41 — static void HPTask(void) {
42 = while (1) {
@43 fffedcos BSP_TogglelLED(®); £
44 fffeacof 05_Delay(5@);
45 3
45 3
43 — static void LPTask(void) {
49 = while (1) {
4050 fffedca7 BSP_ToggleLED(1);
51 fffedcae 05_Delay(200);
52 } L
53 }
@ * main()[]
9 fffeach4 = int main(void) {
Tffedcbs 05_IncDI(); Initially disable interrupts */
1 fffedce? 05_InitKern(); * Initialize 05 */
fffedceb 0S_InitHW(); Initialize Hardware for 05 i
. RS i e = e on — R o . -) .
0 || Writable Smart Insert 60:9

As OGS _Start () is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS _Start(), or step into GS_Start () in disassembly mode until you

reach the highest priority task.

Debug - Start_RX610/Application/0S_StartLEDBlink.c - €2 studio =n =R
File Edit Source Refactor MNavigate Search Project RenesasViews Run Window Help
e Gl R - | @NLD .S @O0 ® 50
§§Iv§.v oo - 2 B 0 0 ;& 3 Quick Access @|%Q’C++
[£€] OS_StartLEDBlink.c 5% | [c] resetprg.c = O & Expressions i1 = g

,f @* SEGGER Migrecontroller GmbH & Co. KG =-=[: t E|| & '6*|] i*| &

34

35 #include "RTOS.h" =

?"E fffed4cos #include “"BSP.h Expression Type Valu

af

38 static 05_STACKPTR int StackHP[128], StackLP[128]; /* Task stack ()= 05_Global.Time volatilelong 0

39 static 05_TASK TCBHP, TCBLP; /* Task-control-blocks */ o0 Add new express

— static void HPTask(void) {
= while (1) {
fffedcos BSP_ToggleLED(®); £
fffedcof 05_Delay(5@);
}
}

43 — static void LPTask(void) {

49 = while (1) {
4050 fffedca7 BSP_ToggleLED(1);

51 fffedcae 05_Delay(200);

52 } 4

53 }

54

57 @* main()[]

59 fffed4cha - int main(void) {

658 fffeacbs 05_IncDI(); * Initially disable interrupts

651 fffedce? 05_InitKern(); /* Initialize 05

62 fffedceb 0S_InitHW(); /* Initialize Hardware for 05 i

 rre . - RS i e = e on — - ! . - .

ﬁ@g Writable Smart Insert 43:1

embOS for Renesas RX and CCRX

© 2010-2025 SEGGER Microcontroller GmbH

17 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

Debug - Start_RX610/Application/0S_StartLEDBlink.c - €2 studio =n =R
File Edit Source Refactor MNavigate Search Project RenesasViews Run Window Help
m OS> R -V iNG EN DR B2 Oi%-0-i® -
E?IVé.' - A 8 B 0 0 0 & %F | Quick Access E%‘|%CIC++
[€] OS_StartLEDBlink.c 5% | [c] resetprg.c = O & Expressions i1 = g
2 @* SEGGER Microcontroller GmbH & Co. KG * a = | ok 0*| i =,4>| q*_%)
34 -
35 #include “RTOS.h" =
?"E fffed4cos #include "BSP.h" Expression Type Valu
af
38 static 05_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */ 9= 05_Global.Time volatilelong 1
39 static 05_TASK TCBHP, TCBLP; /* Task-control-blocks */ o0 Add new express
41 — static void HPTask(void) {
42 = while (1) {
w43 fffedcos BSP_ToggleLED(®@); £
44 fffeacof 05_Delay(50);
45 }
}
— static void LPTask(void) {
g = while (1) {
fffedca7 BSP_ToggleLED(1);
1 fffedcae 05_Delay(200);
} | 4
}
57 @=* main()[]
59 fffed4cha - int main(void) {
fffedchs 05_IncDI(); /* Initially disable interrupts */
1 fffedce? 05_InitKern(); /* Initialize 05 */
fffedceb 0S_InitHW(); /* Initialize Hardware for 05 = _
. RS i e = e on — R o . - .
0 || Writable Smart Insert 50:1

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the 08 TASK Del ay() function in disassembly
mode. GS I dl e() is part of RTOSI ni t. c. You may also set a breakpoint there before step-
ping over the delay in LPTask() .

Debug - Start_RX610/Setup/RTOSInit_RXG10.c - €2 studio =n =R
File Edit Source Refactor MNavigate Search Project RenesasViews Run Window Help
m OS> R -V iNG EN DR B2 Oi%-0-i® -
§§Iv§_v fe=1n 4 - 2 B 0 0 ;& 3 Quick Access E%\|%CIC++
€] O5_StartLEDBlink.c [RTOSInit_RX610.c 52 = O & Expressions i1 = g
17 Y) . = o | @
/{ Configure and initialize SEGGER SystemView. 5 E" r o*' e | @
/{ Continuous recording requires J-Link support. =
- #if 0S_PROFILE 82 (!defined CSPY_SIMULATOR) Baesion Type al
19 fffeddld SEGGER_SYSVIEW Conf(); ()= 05_Global.Time wvolatile long 2
#endif o0 Add new express
” Initialize the optional UART for 05 viewer
54 Fffeed2l 05_COM_INIT();
5 fffeed24 05_DecRI();
56 fffeadsa ¥
El
EE 05_Tdle()[]
—wvoid 0S_Idle(wvoid) { // Idle loop: No task is ready to execu
fffeedse =| for (3;) { // Nothing to do ... wait for interrupt
= #if ((0S_USE_JLINKRX == @) &R (05_DEBUG == 8)) /{ Enter CPU hi
WAIT_FOR_INTERRUPT(); // Switch CPU intoc sleep mode
#endif
}
}
380 @* 05S_GetTime_Cycles()[]
386 fffeedsd - 05_U32 05_GetTime Cycles(void) {
387 05_U32 Time;
388 05_U32 Cnt; i
ot 4 | i b 4 i b
0 || Writable Smart Insert 371

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

18

CHAPTER 1 Stepping through the sample application

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_d obal . Ti me, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

Debug - Start_RX610/Application/0S_StartLEDBlink.c - €2 studio =n =R
File Edit Source Refactor MNavigate Search Project RenesasViews Run Window Help
i OB -|R-VWEING @8R BRI i -0-rim -3
E?IVé.' - A 8 B 0 0 0 & %F | Quick Access E@|%CIC++
[OS_StartLEDBlink.c 5% | [c] RTOSInit_RX610.c = O & Expressions i1 = g
2 @* SEGGER Microcontroller GmbH & Co. KG * a = | d= "*' i =,4>| 6@
34 o
35 #include "RTOS.h" =
?"E fffed4cos #include "BSP.h" Expression Type Valu
af . -
38 static 05_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */ J= 05_Global.Time volatilelong 51
39 static 05_TASK TCBHP, TCBLP; /* Task-control-blocks */ o0 Add new express
— static void HPTask(void) {
= while (1) {
5 fffedcos BSP_ToggleLED(®); £
44 fffedcof 05_Delay(5@);
5 }
}
— static void LPTask(void) {
= while (1) {
o fffedca7 BSP_TogglelED(1);
1 fffedcae 05_Delay(200);
52 } L
53 }
54
57 @* main()[]
59 fffed4cha - int main(void) {
658 fffeacbs 05_IncDI(); * Initially disable interrupts
651 fffedce? 05_InitKern(); nitialize 05
52 fffedceb 0S_InitHW(); /* Initialize Hardware for 05
 rre . - RS i e = e on — R o . - .
Qg Writable Smart Insert 43:22

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

20

2.1

2.2

2.3

2.4

CHAPTER 2 Introduction

Introduction

This chapter provides all information to set up your own embQOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 13 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

Required files for an embOS

To build an application using embOS, the following files from your embQS distribution are
required and have to be included in your project:

e RTGCS. h from the directory .\Start\Inc. This header file declares all embOS API
functions and data types and has to be included in any source file using embQOS
functions.

e RTOSInit*. c from one target specific .\ St art\ Boar dSuppor t \ <Manuf act ur er >\ <MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

e OS Error.c from one target specific subfolder .\Start\BoardSupport
\ <Manuf act ur er >\ <MCU>. The error handler is used only if a debug library is used in
your project.

e One embOS library from the subfolder .\ Start\Li b.

e Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level i ni t () function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embQOS internal variables. Your mai n() function has to initialize embQOS by
calling GS I nit() and GS_ I nit HWN) prior to any other embQOS functions that are called.

Change library mode

For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embQOS library in your project or target:

o If your selected library is already available in your project, just select the appropriate
project configuration.

e To add a library, you may add the library to the existing Lib group. Exclude all other
libraries from your build, delete unused libraries or remove them from the configuration.

e Check and set the appropriate OS_LI BMODE_* define as preprocessor option and/or
modify the OS_Confi g. h file accordingly.

Select another CPU

embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\ St ar t \ Boar dSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTCSI ni t. ¢ files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_| ni t H
W), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

22 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries

embOS is shipped with different pre-built libraries with different combinations of features.
The libraries are named as follows:

Rt os<Ar chi t ect ur e>_<Endi anness><Li bMode>. li b

Parameter Meaning Values

Rx : RXvl core
Archi tecture | Specifies the RX core. Rxv2: RXv2 core
Rxv3: RXv3 core

B : Big endian

Endi B
ndi anness yte order L . Little endian

XR : Extreme Release

: Release

S : Stack check

SP : Stack check + profiling

)

Li bMbde Specifies the library mode

D : Debug

DP : Debug + profiling + stack check

DT : Debug + profiling + stack check

+ trace

Example
Rt osRX_LDP. | i b is the library for an RX CPU, little endian mode with debug and profiling
support.

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

24 CHAPTER 4 Memory models

4.1 Memory models

The Renesas CCRX compiler provides only one memory model.

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

26 CHAPTER 5 Stack pointers

5.1 Stack pointers

RX CPUs have two stack pointers, the user stack pointer (USP) and the interrupt stack
pointer (ISP). The U-flag in the PSW regitser selects which stack pointer is used. During
execution of tasks, software timers or the embOS scheduler, the U-flag is set and the USP
is used. When an interrupt occurs, the U-flag is cleared and the ISP is used. On interrupt
exit, the stack pointer is switched to the previous stack pointer.

5.2 Task stack

Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack size required for a task is the sum of the used stack
of all routines and the basic stack size.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS routines. For the Renesas RX CPUs, the minimum
basic task stack size is about 44 bytes. Because any function call uses some amount of
stack, the task stack size has to be large enough to handle these calls. We recommend at
least 128 bytes stack as a start.

5.3 System stack

The system stack is the stack that is used by embOQOS for the scheduler and software timers.
When OS_Init () is called, embOS switches to the user stack pointer and uses its stack
as the system stack. The minimum system stack size required by embOQOS is about 128
bytes (stack check & profiling build). However, since the system stack is also used by
the application before the start of multitasking, and because software timers also use the
system stack, the actual stack requirements depend on the application.

The size of the system stack can be configured with the #pragma st acksi ze su statement
in the st acksct . h file in the BSP specific Set up\ folder. We recommend a minimum stack
size of 256 bytes for the system stack.

5.4 Interrupt stack

Additional software stack switching in interrupts as for other CPUs is not necessary for the
RX. If an interrupt occurs, the RX clears the U-flag and switches automatically to the ISP.
The ISP is active during the entire ISR (interrupt service routine). This way, the interrupt
does not use the stack of the task and the size of the task stack does not have to be
increased for interrupt routines.

The size of the interrupt stack can be configured with the #pr agma st acksi ze si statement
in the st acksct . h file in the CPU specific Set up\ folder. We recommend at least a minimum
of 256 bytes the interrupt stack.

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

28 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?

e The CPU receives an interrupt request.

As soon as interrupts are enabled and the interrupt priority level (IPL) of the CPU is
lower than the IPL of the interrupt, the interrupt is accepted.

The CPU switches to the Interrupt stack.

The CPU saves the PC and flag register on the interrupt stack.

The CPU disables all further interrupts.

The CPU sets its IPL to the IPL of the accepted interrupt.

The CPU jumps to the address specified in the vector table for the interrupt service
routine (ISR).

ISR: Saves registers.

ISR: User-defined functionality is executed.

ISR: Restores registers.

ISR: Executes RTE command, restoring PC, Flag register and switching back to the user
stack.

For details, refer to the Renesas hard- and software manuals.

6.2 Defining interrupt handlersin C

Interrupt handlers for Renesas RX cores are written as normal C-functions which do not
take parameters and do not return any value. Routines defined with the keyword #pr agna
| NTERRUPT automatically save & restore the registers they modify and return with RTE.

For a detailed description on how to define an interrupt routine in “C”, refer to the Renesas
CCRX C-Compiler User’s manual.

For details how to write interrupt handlers using embOS functions, refer to the embQOS
generic manual.

For details about interrupt priorities, refer to chapter Interrupt priorities on page 29.

Note

Interrupts that use embOS API must not specify enabl e, as this might lead to severe
problems. If nestable interrupts are desired, then OS | NT_Ent er Nest abl e() can be
used. This embOS API function ensures that interrupts are nestable. For zero latency
interrupts enabl e can be used.

Example

Simple interrupt routine:

I
[l Interrupt handl er NOT using enbOCS functions
I
#pragma | NTERRUPT | nt Handl er Ti ner (vect =104) ;
voi d | nt Handl er Ti mer (voi d) {
| nt Cnt ++;
}
I
/1 Interrupt function using enbGOS functions
I
#pragma interrupt (OS_I SR Tick(vect=0S_TI MER VECT))
void OS_|I SR Tick(void) {
OS_|I NT_Ent er Nest abl e() ;
OS_TI CK_Handl e() ;
OS_I NT_LeaveNest abl e();
}

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

29 CHAPTER 6 Interrupt priorities

6.3 Interrupt priorities

RX CPUs can have up to 16 IPLs (interrupt priority levels) reaching from 0 to 15. While
most RX CPUs have 16 priority levels implemented, the RX610 CPUs only support 8 priority

levels from O to 7.

6.4 Interrupt handling

For the Renesas RX CPU embOS delivers following functions to handle interrupts.

6.4.1 APIfunctions

Routine Description

urew

Nsel

dS|
lBwl] MS

Sets the interrupt priority limit for ze-

OS_INT_SetPriorityThreshol d() ro latency interrupts

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

30

CHAPTER 6 Interrupt handling

6.4.1.1 OS_INT_SetPriorityThreshold()

Description

Sets the interrupt priority limit for zero latency interrupts.

Prototype
void OS_INT_SetPriorityThreshol d(OS_UINT Priority);
Parameters
Parameter Description
The highest value usable as priority for embOS interrupts. All
interrupts with higher priority are never disabled by embOS.
Priority Valid range:
1 <Priority <7 for RX610 CPUs.
1 <Priority < 15 for other RX CPUs.

Additional information

The interrupt priority limit for zero latency interrupts is set to 4 by default. This means, all
interrupts with higher priority than 4 (i.e. from 5 up to the maximum CPU specific priority)
will never be disabled by embQOS. To disable zero latency interrupts at all, the priority limit
may be set to the highest interrupt priority supported by the CPU, which is 7 for the RX610
series and 15 for other RX CPUs.

To modify the default priority limit,0S I NT_Set Pri orityThreshol d() should be called be-
fore embOS was started. In the sample start projects, OS | NT_Set Pri orityThreshol d()
is not called. The start projects use the default zero latency interrupt priority limit.

Any interrupts running above the zero latency interrupt priority limit must not call any
embOS function.

Note that the maximum allowed parameter is device dependent. The function will not check
whether the device specific limit is exceeded. It is the users responsibility not to use a value
above 7 for CPUs which do not support more than 8 priority levels.

6.4.2 Zero latency interrupts

Instead of disabling interrupts when embQOS enters a critical section, the processor’s IPL is
increased. This prevents the execution of interrupts with an IPL lower or equal to the current
IPL of the processor. All interrupts with IPL higher than the IPL threshold that embOS uses
to disable interrupt are called zero | atency interrupts.

Zero latency interrupts are never disabled by embOS.

The IPL of the processor can be increased by calling GS_I NT_Di sabl e(), which sets the
current IPL to the IPL threshold. Initially, the IPL threshold is set to 4, but may be modified
during system initialization by a call of the function OS_I NT_Set Pri orityThreshol d().
Therefore, by default all interrupts with IPL 5 and greater are zero latency interrupts and
can still be processed. You must not execute any embQOS function from within an interrupt
running on high priority.

6.4.3 embOS interrupts

Any interrupt handler using embOS API functions has to run with IPLs from 1 to the current
IPL threshold. These embOS interrupt handlers have to start with a call of GS_| NT_Ent er ()
or OS_| NT_Ent er Nest abl e() and must end with a call of OS_| NT_Leave() or OS_I NT_Leav-
eNest abl e() . Interrupt handlers running at low priorities, i.e. with priorities from 1 to the
current IPL threshold, which are not calling any embOS API function are allowed, but must
not re-enable interrupts!

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

31 CHAPTER 6 Interrupt handling

Note

The IPL threshold between embOS interrupts and zero latency interrupts is initially set
to 4, but can be changed at runtime by a call to OS | NT_Set Pri orityThreshol d() .

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

32 CHAPTER 6 Interrupt nesting

6.5 Interrupt nesting

The Renesas RX CPU uses a priority controlled interrupt scheduling which allows preemption
and nesting of interrupts. Interrupts and exceptions with a higher priority may preempt an
interrupt handler with lower priority when interrupts are enabled during execution of the
interrupt service routine.

An interrupt handler calling embOS functions has to start with a call of OS_I NT_Ent er ()
or OS_| NT_Ent er Nest abl e() to informs embQOS that an interrupt handler is running. Us-
ing CS_|I NT_Ent er Nest abl e() enables interrupts in the interrupt handler and thus allows
nesting of interrupts.

6.6 Interrupt-stack switching

Since the RX CPUs have a separate stack pointer for interrupts, there is no need for explicit
software stack-switching in an interrupt routine. The routines OS_|I NT_Ent er I nt St ack()
and OS_| NT_Leavel nt St ack() are supplied for source code compatibility to other proces-
sors only and have no functionality.

6.7 Fast interrupt, RX specific

The RX CPU supports a “Fast interrupt” mode which is described in the hardware manual.
The fast interrupt may be used for special purposes, but must not call any embQOS function.

6.8 Non maskable interrupt, NMI

The RX CPU supports a non maskable interrupt which is described in the hardware manual.
The NMI may be used for special purposes, but must not call any embOS function.

6.9 Using Register Bank Save Function with RXv3
core

Except in some products, the RXv3 CPU provides collective saving and restoring of CPU
registers. In order to perform fast collective saving and restoring of CPU registers, the RXv3
CPU provides dedicated save register banks and instructions for using these banks. Using
these save register banks, it is possible to perform fast register saving at the beginning of
interrupt handlers, and high-speed register restoring at the end of interrupt handlers.

The save register banks can only be accessed with the SAVE instruction and RSTR instruc-
tion. Each of these banks is used to save and restore the values of the following CPU reg-
isters: all general purpose registers (R1 to R15) except for RO, the USP, the FPSW, and the
accumulators (ACCO, ACC1).

The pragma directive bank= can be used with an interrupt function to save the values of
registers to the specified register bank at the start of the interrupt, and restore them again
afterward. The SAVE and RSTR instructions will be used.

The bank= interrupt specification can be used with any embOS or zero latency interrupt.

Example

11

/1 Interrupt function using bank pragna directive

11

#pragnma interrupt (OS_|I SR Tick(vect =28, bank=1))

static void OS_ ISR Tick(void) {
OS INT_EnterNestable(); // InformenbGS that interrupt code is running
CS _Tick_Handl e();

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

33 CHAPTER 6 Using Register Bank Save Function with RXv3
core

CS_|I NT_LeaveNest abl e() ;
}

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

Chapter 7
RTT and SystemView

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

35 CHAPTER 7 SEGGER Real Time Transfer

7.1 SEGGER Real Time Transfer

With SEGGER'’s Real Time Transfer (RTT) it is possible to output information from the target
microcontroller as well as sending input to the application at a very high speed without
affecting the target’s real time behavior. SEGGER RTT can be used with any J-Link model
and any supported target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application’s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

7.2 SEGGER SystemView

SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemView, is not shipped with embOS. Instead, the most recent version of that applica-
tion is available for download from our website.

SystemView is initialized by calling SEGGER_SYSVI EW Conf () on the target microcontroller.
This call is performed within OS_| ni t H\{) of the respective RTCSI nit *. ¢ file. As soon as
this function was called, the connection of the SystemView desktop application to the target
can be started. In order to remove SystemView from the target application, remove the
SEGCGER_SYSVI EW Conf () call, the SEGGER_SYSVI EW h include directive as well as any other
reference to SEGGER_SYSVI EW * like SEGGER_SYSVI EW Ti ckCnt .

For more information on SEGGER SystemView and the download of the SystemView desktop
application, refer to segger.com/systemview.

Note

SystemView uses embOS timing API to get at start the current system time. This re-
quires that GS_TI ME_Confi gSysTi mer () was called before SEGGER SYSVI EW St art ()
is called or the SystemView PC application is started.

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt
https://www.segger.com/systemview

Chapter 8

Technical data

embOS for Renesas RX and CCRX © 2010-2025 SEGGER Microcontroller GmbH

37

8.1 Resource Usage

CHAPTER 8

Resource Usage

The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS

library mode OS_LI BMODE_XR.

Module Memory type Memory requirements
embOS kernel ROM ~1700 bytes
embOS kernel RAM ~140 bytes
Task control block RAM 36 bytes
Software timer RAM 20 bytes
Task event RAM 0 bytes
Event object RAM 16 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLock RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 12 bytes
Fixed Block Size Memory Pool RAM 32 bytes

embOS for Renesas RX and CCRX

© 2010-2025 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	Using Renesas e2 studio
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	Memory models

	Stacks
	Stack pointers
	Task stack
	System stack
	Interrupt stack

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt priorities
	Interrupt handling
	API functions
	OS_INT_SetPriorityThreshold()

	Zero latency interrupts
	embOS interrupts

	Interrupt nesting
	Interrupt-stack switching
	Fast interrupt, RX specific
	Non maskable interrupt, NMI
	Using Register Bank Save Function with RXv3 core

	RTT and SystemView
	SEGGER Real Time Transfer
	SEGGER SystemView

	Technical data
	Resource Usage

