
A product of SEGGER Microcontroller Systeme GmbH

embOS

Document revision 2
Date: March 14, 2008

CPU & Compiler specif-
ics for

H8/H8S/H8SX cores
using

Renesas Tools for H8

Real Time Operating
System

www.segger.com

2

embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER MICROCONTROLLER SYSTEME GmbH (the manufacturer) assumes
no responsibility for any errors or omissions. The manufacturer makes and you
receive no warranties or conditions, express, implied, statutory or in any communica-
tion with you. The manufacturer specifically disclaims any implied warranty of mer-
chantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2008 SEGGER Microcontroller Systeme GmbH, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller Systeme GmbH

Heinrich-Hertz-Str. 5
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
Email: support@segger.com
Internet: http://www.segger.com

Manual versions

This manual describes the latest software version. If any error occurs, please inform
us and we will try to assist you as soon as possible.

For further information on topics or routines not yet specified, please contact us.

Software versions

Refers to Release.html for information about the changes of the software versions.

Manual version Date By Explanation

1.00 070823 TS First version
2.00 080312 TS Add cpu specifics for H8S 2600 cpu�s

3

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on the
display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

4

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources. The profiling
PC tool embOSView is included.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-
mum memory consumption in RAM and
ROM while maintaining high speed.
Various Device drivers, e.g. for NAND
and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

USB-Stack
USB device stack
A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for microcon-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller Systeme GmbH develops
and distributes software development tools and ANSI
C software components (middleware) for embedded
systems in several industries such as telecom, medi-
cal technology, consumer electronics, automotive
industry and industrial automation.

SEGGER�s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficent real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER developes and produces program-
ming tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in devel-
opment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

5

Table of Contents
1 About this document ..7

2 Using embOS with HEW workbench ...9

2.1 Installation ...10
2.2 First steps ..11
2.3 The sample application Start_LEDBlink.c...12
2.4 Using debugging tools to debug the application..13
2.5 Common debugging hints ...18
2.6 Build your own application ..18
2.7 Required files for an embOS application..18
2.8 Add your own code ..18
2.9 Change library mode..19

3 H8 specifics..21

3.1 CPU modes ...22
3.2 Available libraries ..22
3.3 Distributed project files ..23
3.4 H8 CPU specifics..23
3.5 Clock settings for embOS timer interrupt ..23
3.6 Clock settings for UART used for embOSView ...23
3.7 Conclusion about clock settings ...23
3.8 embOS hardware timer selection ...24
3.9 UART for embOSView...24

4 Stacks ..25

4.1 Task stack for H8 CPUs...26
4.2 System stack for H8 CPUs...26
4.3 Interrupt stack for H8 CPUs ..26
4.4 Reducing the stack size ..26

5 Interrupts..27

5.1 Interrupts with H8 CPUs ...28
5.2 Interrupt processing with H8 CPUs ...28
5.3 Fast interrupts with H8 CPUs...28
5.4 Interrupt priorities with embOS for H8 CPUs..28
5.5 Defining interrupt handlers for H8 CPUs in "C" ...29
5.6 OS_SetFastIntPriorityLimit(): Setting the interrupt priority limit for fast interrupts
30
5.7 Interrupt vector table...30

6 Stop / Wait mode ...31

6.1 Saving power ..32

7 Technical Data ...33

7.1 Memory requirements ..34

8 Files shipped with embOS ...35

8.1 Files included in embOS..36
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

6

embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

7

Chapter 1

About this document
This guide describes how to use embOS for H8 Real Time Operating System for the
RENESAS H8 series of microcontroller using Renesas HEW4 and the RENESAS h8
compiler.

How to use this manual

This manual describes all CPU and compiler specifics for embOS using H8 CPUs with
 Renesas HEW4 workbench and h8 compiler. Before actually using embOS, you should
read or at least glance through this manual in order to become familiar with the soft-
ware. Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using Renesas compiler and HEW. If you have no experience using embOS, you
should follow this introduction, even if you do not plan to use HEW workbench,
because it is the easiest way to learn how to use embOS in your application.Most of
the other chapters in this document are intended to provide you with detailed infor-
mation about functionality and fine-tuning of embOS for the H8 CPUs and Renesas
compiler.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

8 CHAPTER 1 About this document
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 2

Using embOS with HEW work-
bench
The following chapter describes how to install and work with embOS for H8 CPUs and
HEW Embedded Workbench
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 2 Using embOS with HEW workbench
2.1 Installation
embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder of
your choice. When copying, please keep all files in their respective sub directories.
Make sure the files are not read only after copying.

If you received a zip-file, please extract it to any folder of your choice, preserving the
directory structure of the zip-file.

Assuming that you are using Renesas HEW workbench to develop your application, no
further installation steps are required. You will find a prepared sample workspace and
a start project for different H8 CPUs, which you should use and modify to write your
application. So follow the instructions of the next chapter �First steps�.

You should do this even if you do not intend to use HEW Embedded Workbench for
your application development in order to become familiar with embOS.

embOS does in no way rely on the HEW Embedded Workbench, it may be used with-
out the workbench using batch files or a make utility without any problem.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

11
2.2 First steps
After installation of embOS (See "Installation" in chapter 2.1) you are able to create
your first multitasking application. You received several ready to go sample start
workspace for Renesas H8 CPUs which might be used as a starting point for your
applications.Your embOS distribution contains one folder �Start� which contains the
sample start workspaces and different subfolders containing the project and all CPU
specific files required for the projects.Every additional files used to build your embOS
application are located in the Start folder and its subfolders.

To get your application running, you should proceed as follows:

� Create a work directory for your application, for example c:\work
� Copy all files and subdirectories from the embOS distribution disk into your work

directory.
� Clear the read only attribute of all files in the new �Start�-folder in your working

directory.
� Open the folder �Start� in your work directory.·Open e.g. the start workspace

�Start_H8S2378.hws�. (e.g. by double clicking it)·You may select the Configura-
tion �Debug� and session �Debug_E10A� which allows downloading and debug-
ging of the the sample application into target FLASH using the E10A debugger.

� Build the start project. After building the start project, your screen should look
like follows
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 2 Using embOS with HEW workbench
2.3 The sample application Start_LEDBlink.c
The following is a printout of the sample application Start_LEDBlink.c. It is a good
starting-point for your application.

What happens is easy to see:

After initialization of embOS; two tasks are created and started.

The two tasks are activated and execute until they run into the delay, then sus-pend
for the specified time and continue execution.
/***
* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
**
* *
* (c) 1995 - 2007 SEGGER Microcontroller Systeme GmbH *
* *
* www.segger.com Support: support@segger.com *
* *
**

--
File : Start_LEDBlink.c
Purpose : Sample program for OS running on EVAL-boards with LEDs
--------- END-OF-HEADER --*/

#include "RTOS.h"
#include "BSP.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_Delay (50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_Delay (200);
 }
}

/***
*
* main
*
***/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* initialize OS */
 OS_InitHW(); /* initialize Hardware for OS */
 BSP_Init(); /* initialize LED ports */
 /* You need to create at least one task before calling OS_Start() */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

/****** End of file ***/
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

13
2.4 Using debugging tools to debug the application
The embOS start project contains a configuration which may be used to download
and debug the sample application into the target FLASH using the E10A emulator.
You should use this one to run the sample start application and become familiar with
embOS. You may alternatively generate a session for the H8 simulator to run the
sample application using the simulator.
The following description shows a sample session with the E10A debugger. A simula-
tor session should look similar

2.4.1 Using Renesas E10A emulator and HEW workbench
After building the application, connect to the target, download the generated output
file, and perform a reset command. The debug window will show the startup code:

You may single-step through the startup code to reach main(), or you may open the
�Start_LEDBlink.c� file and set a breakpoint at main:
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 2 Using embOS with HEW workbench
When you then issue a �Go� command, you will reach at main().
OS_IncDI() disables interrupts and tells embOS, that interrupts should not be
enabled during OS_InitKern().
OS_InitKern()initializes embOS variables. If OS_incDI() was not called before, inter-
rupts will be enabled. As this function is part of the embOS library, you may step into
it in disassembly mode only.
OS_InitHW() is part of RTOSINIT.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the timer-tick-interrupt for
embOS. Step through it to see what is done.
OS_Start() is the last line executed in main, since it starts multitasking and does not
return.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

15
Before you step into OS_Start(), you should set two break points in the two
tasks as shown below

As OS_Start() is part of the embOS library, you can step through it in disassembly
mode only. You may press GO, step over OS_Start(), or step into OS_Start() in disas-
sembly mode until you reach the highest priority task.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 2 Using embOS with HEW workbench
If you continue stepping, you will arrive in the task with the lower priority:

Continuing to step through the program, there is no other task ready for execu-tion.
embOS will suspend LPTask and switch to the idle-loop, which is always executed if
there is nothing else to do:
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

17
If you set a breakpoint in both of our tasks, you will see that they continue exe-
cution after the given delay.

Coming from OS_Idle(), you should execute to �Go� command:

i

As can be seen by the value of embOS timer variable OS_Time, shown in the watch
window, Task0 continues operation after expiration of the 10 ms delay.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 2 Using embOS with HEW workbench
2.5 Common debugging hints
For debugging your application, you should use a debug build, e.g. use the debug
build libraries in your projects if possible. The debug build contains additional error
check functions during runtime. When an error is detected, the debug libraries call
OS_Error().
Using an debugger or simulator you should set a breakpoint there. The actual error
code is assigned to the global variable OS_Status. The program then waits for this
variable to be reset. This allows to get back to the programcode that caused the
problem easily: Simply reset this variable to 0 using your in circuit-emulator or sim-
ulator, and you can step back to the program sequence causing the problem. Most of
the time, a look at this part of the program will make the problem clear.
How to select an other library with debug code for your projects is described later on
in this manual.

2.6 Build your own application
To build your own application, you may start with the sample start project. This has
the advantage, that all necessary files are included and all settings for the project
are already done.
You may also add all necessary files for embOS into your own project as described
below.

2.7 Required files for an embOS application
To build an application using embOS, the following files from your embOS distribution
are required and have to be included in your project:

� RTOS.h from sub folder Start\Inc\
This header file declares all embOS API functions and data types and has to be
included in any source file using embOS functions.

� OS_Config.h from the Start\Inc\ subfolder. This file may be used to define differ-
ent options for different project configurations. Normally, this file is used to
define the library types used for debug and release builds. You may add other
options to this file.

� RTOSInit_*.c from one CPU subfolder.
It contains hardware dependent initialization code for embOS timer and optional
UART for embOSView.

� One embOS library from the Start\Lib\ subfolder. Please set the appropriate
OS_LIBMODE define according to the chosen library. This is normally done in the
file OS_Config.h

� OS_Error.c from subfolder Setup\ of the CPU specific subfolder, if any library
other than Release build library is used in your project.

When you decide to write your own startup code, please ensure that non initialized
variables are initialized with zero, according to �C� standard. This is required for
some embOS internal variables.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_IncDI() are called.

2.8 Add your own code
For your own code, you may add your files to the project.
You should then modify or replace the main.c source file in the subfolder Applica-
tion\.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

19
2.9 Change library mode
For your application you may wish to use a different embOS library. For debugging
and program development you should use an embOS debug library. For your final
application you may wish to use an embOS release library.
Therefore you may have to replace the embOS library in your project or target:

� Add the appropriate library from the Lib-subdirectory to your project.
� Remove the previous library from your project or exclude it from build.
� Set the appropriate OS_LIBMODE_* define as tool chain compiler option. Nor-

mally done in the OS_Config.h file.

Refer to chapter 5 about the library naming conventions to select the correct library.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 Using embOS with HEW workbench
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 3

H8 specifics
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 3 H8 specifics
3.1 CPU modes
embOS for H8 for HEW and Renesas H8 compiler is delivered with libraries for the
default options and compiler settings.

3.2 Available libraries
embOS is shipped with 26 different libraries for H8 CPUs.

os<CPU><LibMode>.lib

This results in 28 different libraries delivered with embOS.
For the different library versions, the following defines have to be set:

When using HEW workbench, please check the following points:·

� One embOS library is part of your project (included in one group of your target).
� The appropriate define according to embOS library mode is set as compiler pre-

processor option for your project. May be defined in OS_Config.h.

Parameter Meaning Valzue

CPU CPU Variant
H8: H8/300 CPUs
H8S2000: H8S/2000 CPUs
H8S2600: H8S/2600 CPUs

LIBMODE Library mode

XR: Extreme Release
R: Release
S: Stack check
SP: Stack check + profiling
D: Debug
DP: Debug + profiling
DT: Debug + profiling + Trace

Table 3.1:

Library mode Meaning Define

XR Extreme release OS_LIBMODE_XR
R Release OS_LIBMODE_R
S Stack check OS_LIBMODE_S
SP Stack check + profiling OS_LIBMODE_SP
D Debug OS_LIBMODE_D
DP Debug + profiling OS_LIBMODE_DP
DT Debug + profiling + Trace OS_LIBMODE_DT

Table 3.2:
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

23
3.3 Distributed project files
The distribution of embOS for H8 and HEW compiler contains severail start project for
Renesas H8 CPUs.The start project contains an embOS debug and profiling library
which should be used during program development.

3.4 H8 CPU specifics
All hardware specific functions required for embOS are located in the CPU specific
RTOSInit_*.c files. Settings for CPU clock speed and UART settings for embOSView
are defined with most common defaults. According to your specific hardware, these
settings may have to be changed to ensure proper timer tick and UART communica-
tion with embOSView. As far as possible, you should not modify RTOSInit_*.c, as this
has the disadvantage, that this modifications have to be tracked when you update to
a newer version of embOS. Various CPU derivates may be equipped with different
peripherals. It may be necessary to write your own initialization code for your specific
CPU derivate.You may therefore copy one RTOSInit_*.c file which is closest to your
CPU variant and modify this new created file to handle your CPU.

3.5 Clock settings for embOS timer interrupt
OS_InitHW() routine in RTOSInit.c derives timer init values from the constant define
OS_PCLK_TIMER. Per default, the value of OS_PCLK_TIMER equals OS_FSYS, which
defines the CPU clock of the target system. Wrong settings would result embOS timer
ticks unequal to 1 ms. To adapt the embOS timer tick frequency to your CPU, you
may:

� Define OS_FSYS as project option. OS_FSYS should equal your CPU clock fre-
quency in Hertz. Note that modification of OS_FSYS may also affect the UART ini-
tialization for embOSView.

� You may alternatively define OS_PCLK_TIMER as project option (compiler prepro-
cessor option). This value is used to calculate the timer compare value used for
embOS timer.

3.6 Clock settings for UART used for embOSView
OS_COM_Init() routine in RTOSInit.c derives baudrate generator init values from the
constant define OS_PCLK_UART. Per default, the value of OS_PCLK_UART equals
OS_FSYS, which defines the CPU clock of the target system.

To ensure correct time base clock for baudrate generator used for embOSView, you
may:

� Define OS_FSYS as project option. OS_FSYS should equal your CPU clock fre-
quency in Hertz. Note that modification of OS_FSYS may also affect the timer ini-
tialization for embOS tick timer.·

� You may alternatively define OS_PCLK_UART as project option (compiler prepro-
cessor option). This value is used to calculate values used to initialize UART used
for communication with embOSView.

3.7 Conclusion about clock settings
� OS_FSYS has to be defined according to your CPU clock frequency. This should be

defined as compiler preprocessor option in your project.
� OS_PCLK_TIMER has to be defined to fit the frequency used as peripheral clock

for the embOS timer. The value defaults to OS_FSYS. It should be modified and
defined as compiler preprocessor option if modification is required.

� OS_PCLK_UART has to be defined to fit the frequency used as peripheral clock for
the UART used for communication with embOSView. The value defaults to
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 3 H8 specifics
OS_FSYS. It should be modified and defined as compiler preprocessor option if
modification is required.

3.8 embOS hardware timer selection
embOS for H8 CPUs is prepared to use one Timer (TPU) channel as time base timer.
The initialization code and interrupt handler are delivered in source code and are
located in RTOSInit_*.c. If another timer has to be used, the interrupt vector table
entries in �intprg.c� have to be modified accordingly.

3.9 UART for embOSView
Any UART of the H8 CPU may be used as communication channel for embOS-View
which enables profiling analysis during runtime.The initialization code and interrupt
handler are delivered in source code and are located in RTOSInit_*.c.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

25
Chapter 4

Stacks
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 4 Stacks
4.1 Task stack for H8 CPUs
Every embOS task has to have its own stack. Task stacks can be located in any RAM
memory location that can be used as stack by the CPU. As H8 CPUs have a 32 bit
stack pointer, the whole memory area can be used as task stack.
Please note, that the task stacks have to be aligned at EVEN addresses. To
ensure proper alignment, implement the task stack as array of int.
The stack-size required for tasks is the sum of the stack-size of all routines plus basic
stack size.
The basic stack size is the size of memory required to store the registers of the CPU
plus the stack size required by embOS routines. For the H8 CPU, the stack size for
the CPU registers is 38 bytes.
As the H8 CPUs do not support a separate interrupt stack, all interrupts may run on
the task stacks as well. Therefore we recommend at least a minimum of 256 bytes
for task stacks.

4.2 System stack for H8 CPUs
The system stack size required by embOS is about 40 bytes (65 bytes in profiling
builds). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because softwaretimers also use
the system-stack, the actual stack requirements depend on the application.
Because the H8 CPU does not support a separate interrupt stack, all interrupts may
also run on the system stack.
The stack used as system stack is the one defined as STACK in the �S� section in
linker command description. The stack size is defined in the �stackct.h� header file.
We recommend at least a minimum of 256 bytes.

4.3 Interrupt stack for H8 CPUs
The H8 CPUs do not support a hardware interrupt stack. All interrupts run on the cur-
rent stack.
Therefore the size of task stacks and the system stack have to be large enough to
handle all nested interrupts and subroutine calls.

4.4 Reducing the stack size
The stack check libraries check the used stack of every task and the system stack
also. Using embOSView the total size and used size of any stack can be examined.
This may be used to reduce the stack sizes, if RAM space is a problem in your appli-
cation.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

27
Chapter 5

Interrupts
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 5 Interrupts
5.1 Interrupts with H8 CPUs
The following chapter describes interrupt specifics of H8 CPUs and the interrupt
modes used with embOS.

5.2 Interrupt processing with H8 CPUs
H8/2000 and H8SX CPUs support a priority controlled interrupt mode. This mode
supports the following features:

� Interrupt priority registers to assign 7 priority levels to peripheral interrupts.
� Priority level controlled masking.
� Interrupts with higher priority are never disabled by entering an interrupt ser-

vice routine with lower priority

Interrupt processing is as follows:

� The CPU-core receives an interrupt request from the interrupt controller.
� If interrupts are enabled for the priority of the interrupting device, the inter-rupt

is executed.
� The CPU stores PC, the CCR register and the EXR register onto the current stack.
� The interrupt mask level in the EXR register of the CPU is updated from the level

of the interrupting device.
� The CPU jumps to the address specified in the vector table for the interrupt ser-

vice routine (ISR)
� ISR: Save registers
� ISR: User-defined functionality
� ISR: Restore registers
� ISR: Execute RTE command, restoring PC, CCR register and status register from

the stack.

For more details, refer to the RENESAS manuals.

5.3 Fast interrupts with H8 CPUs
Instead of disabling interrupts when embOS does atomic operations, the interrupt
level of the CPU is set to a higher user definable level. Therefore all interrupts with
higher levels can still be processed.
These interrupts are named Fast interrupts.
The default level limit for fast interrupts is set to 4, meaning, any interrupt with level
5 or above is never disabled and can be accepted anytime.

You must not execute any embOS function from within a fast interrupt func-
tion.

5.4 Interrupt priorities with embOS for H8 CPUs
With introduction of Fast interrupts, interrupt priorities useable by the application are
divided into two groups:

� Low priority interrupts with priorities from 1 to a user definable priority limit.
These interrupts are called embOS interrupts.

� High priority interrupts with priorities above the user definable priority limit.
These interrupts are called Fast interrupts.

Interrupt handler functions for both types have to follow the coding guidelines
described in the following chapters. The priority limit between embOS interrupts and
fast interrupts can be set at runtime by a call of OS_SetFastIntPriorityLimit().
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

29
5.5 Defining interrupt handlers for H8 CPUs in "C"
Routines preceded by the keywords �__interrupt� save & restore the temporary reg-
isters and all registers they modify onto the stack and return with RTE.
The interrupt function has to be declared in the interrupt vector table file �intprg.c�.
The interrupt handler itself may be implemented in any source file. Default dummy
interrupt handler are delivered in the source file �intprg.c� . The interrupt handler
used by embOS are implemented in the CPU specific RTOSInit_*.c file.

Example of an embOS interrupt handler

embOS interrupt handler have to be used for interrupt sources running at all priori-
ties up to the user definable interrupt priority level limit for fast interrupts.
__interrupt void OS_ISR_Tick(void) {
 OS_CallNestableISR(_IsrTickHandler);
}

Any interrupt handler running at priorities from 1 to 4 has to be written accord-ing
the code example above, regardless any other embOS API function is called.

The rules for an embOS interrupt handler are as follows:

� The embOS interrupt handler must not define any local variables.
� The embOS interrupt handler has to call OS_CallISR(), when interrupts should

not be nested. It has to call OS_CallNestableISR(), when nesting should be
allowed.

� The interrupt handler must not perform any other operation, calculation or func-
tion call. This has to be done by the local function called from OS_CallISR() or
OS_CallNestableISR().

Differences between OS_CallISR() and OS_CallNestableISR()

OS_CallISR() should be used as entry function in an embOS interrupt han-dler, when
the corresponding interrupt should not be interrupted by another embOS interrupt.
OS_CallISR() sets the interrupt priority of the CPU to the user definable �fast� inter-
rupt priority level, thus locking any other embOS in-terrupt, Fast interrupts are not
disabled.
OS_CallNestableISR() should be used as entry function in an embOS interrupt han-
dler, when interruption by higher prioritized embOS interrupts should be allowed.
OS_CallNestableISR() does not alter the interrupt priority of the CPU, thus keeping
all interrupts with higher priority enabled.

Example of a Fast interrupt handler

Fast interrupt handler have to be used for interrupt sources running at priorities
above the user definable interrupt priority limit.
__interrupt void FastUserInterrupt (void) {
 unsigned long Count; // local variables are allowed
 Count = TPU_TCNT0;
 HandleCount(Count); // Any function call except embOS functions is al-lowed
}

The rules for a Fast interrupt handler are as follows:

� Local variables may be used.
� Other functions may be called.
� embOS functions must not be called, nor direct, neither indirect.
� The priority of the interrupt has to be above the user definable priority limit for

fast interrupts.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 5 Interrupts
5.6 OS_SetFastIntPriorityLimit(): Setting the interrupt
priority limit for fast interrupts

The interrupt priority limit for fast interrupts is set to 4 by default. This means, all
interrupts with higher priority from 5 to 7 will never be disabled by embOS.

Description

OS_SetFastIntPriorityLimit() is used to set the interrupt priority limit between fast
interrupts and lower priority embOS interrupts.

Prototype

void OS_SetFastIntPriorityLimit(unsigned int Priority)

Return value

NONE.

Add. information

To disable fast interrupts at all, the priority limit may be set to 7 which is the highest
interrupt priority for interrupts.
To modify the default priority limit, OS_SetFastIntPriorityLimit() should be called
before embOS was started. In the default projects, OS_SetFastIntPriorityLimit() is
called from OS_IntHW() in RTOSInit_*.c.
All interrupts running at low priority from 1 to the user definable priority limit for fast
interrupts have to call OS_CallISR() or OS_CallNestableISR() regardless any other
embOS function is called in the interrupt handler.
This is required, because interrupts with low priorities may be interrupted by other
interrupts calling embOS functions. The task switch from interrupt will only work if
every embOS interrupt uses the same stack layout. This can only be guaranteed
when OS_CallISR() or OS_CallNestableISR() is used.
Any interrupts running above the fast interrupt priority limit must not call any embOS
function.

5.7 Interrupt vector table
The sample start project uses startup code and an interrupt vector table written in
�C� source and header files.

For embOS, the embOS timer tick interrupt vector is defined in the vector table. The
embOS timer interrupt handler itself is located in the in the source code file
RTOSInit_*.c.

Priority
The highest value useable as priority for embOS interrupts. All
interrupts with higher priority are never disabled by embOS. Valid
range: 1 <= Priority <= 7

Table 5.1:
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

31
Chapter 6

Stop / Wait mode
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 6 Stop / Wait mode
6.1 Saving power
In case your controller does support some kind of power saving mode, it should
bepossible to use it also with embOS, as long as the timer keeps working and timer-
interrupts are processed. To enter that mode, you usually have to implement
somespecial sequence in function OS_Idle(), which you can find in embOS module
RTOSIinit_*.c.
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

33
Chapter 7

Technical Data
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 7 Technical Data
7.1 Memory requirements
These values are neither precise nor guaranteed but they give you a good idea of the
memory-requirements. They vary depending on the current version of embOS. Using
H8 cpu, the minimum ROM requirement for the kernel itself is about 2.500 bytes. In
the table below, you find the minimum RAM size for embOS resources. The sizes
depend on selected embOS library mode; the table below is for a release build.

embOS resource RAM [bytes]
Task control block 28
Resource semaphore 14
Counting semaphore 6
Mailbox 16
Software timer 14
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

35
Chapter 8

Files shipped with embOS
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 8 Files shipped with embOS
8.1 Files included in embOS

Any additional files shipped serve as example.

Directory File Explanation
root *.pdf Generic API and target specific documentation

root embOSView.exe
Utility for runtime analysis, described in generic
documentation

root Release.html Version control document

Start\Start*.hws\ *.*
Sample workspaces and project files for Renesas
HEW

Start\Start*\CPU**\Appli-
cation\

. Sample programs to serve as a start

Start\Start*\CPU*\Setup\ *.* CPU specific hardware routines

Start\Inc\ BSP.h
Include file for BoardSupport packages, to be
included in every "C"-file using BSP-functions

Start\Inc\ OS_Config.h
Include file for embOS library mode configuration,
included by RTOS.h

Start\Inc\ RTOS.h
Include file for embOS, to be included in every "C"-
file using embOS-functions

Start\Lib\ os*.lib embOS libraries
embOS for H8 and Renesas H8 Tools © 2008 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	About this document
	Using embOS with HEW workbench
	2.1 Installation
	2.2 First steps
	2.3 The sample application Start_LEDBlink.c
	2.4 Using debugging tools to debug the application
	2.4.1 Using Renesas E10A emulator and HEW workbench

	2.5 Common debugging hints
	2.6 Build your own application
	2.7 Required files for an embOS application
	2.8 Add your own code
	2.9 Change library mode

	H8 specifics
	3.1 CPU modes
	3.2 Available libraries
	3.3 Distributed project files
	3.4 H8 CPU specifics
	3.5 Clock settings for embOS timer interrupt
	3.6 Clock settings for UART used for embOSView
	3.7 Conclusion about clock settings
	3.8 embOS hardware timer selection
	3.9 UART for embOSView

	Stacks
	4.1 Task stack for H8 CPUs
	4.2 System stack for H8 CPUs
	4.3 Interrupt stack for H8 CPUs
	4.4 Reducing the stack size

	Interrupts
	5.1 Interrupts with H8 CPUs
	5.2 Interrupt processing with H8 CPUs
	5.3 Fast interrupts with H8 CPUs
	5.4 Interrupt priorities with embOS for H8 CPUs
	5.5 Defining interrupt handlers for H8 CPUs in "C"
	5.6 OS_SetFastIntPriorityLimit(): Setting the interrupt priority limit for fast interrupts
	5.7 Interrupt vector table

	Stop / Wait mode
	6.1 Saving power

	Technical Data
	7.1 Memory requirements

	Files shipped with embOS
	8.1 Files included in embOS

