
embOS
Real-Time Operating System

CPU & Compiler specifics for Cortex-
M using IAR Embedded Workbench

Document: UM01014
Software Version: 5.18.3.1

Revision: 0
Date: November 10, 2023

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2023 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: November 10, 2023

Software Revision Date By Description

5.18.3.1 0 231110 MC New software version.

5.18.3.0 0 231027 MC New software version.

5.18.0.0 1 201024 MC Updated API table in chapter “Interrupt handling API”.

5.18.0.0 0 221014 MM New software version.

5.16.1.0 4 220901 MM Additional information for “OS_PSPLIM_SetTaskContextExtension()”
updated.

5.16.1.0 3 220221 TS Chapter “ARM TrustZone support” updated.

5.16.1.0 2 220216 TS Chapter “Libraries” corrected.
Chapter “CPU and compiler specifics” updated.

5.16.1.0 1 220201 MM Chapter “Interrupts” updated.
Chapter “CPU and compiler specifics” updated.

5.16.1.0 0 220125 MM Chapter “Libraries” updated.
Chapter “CPU and compiler specifics” updated.

5.14.0.0 0 210531 MM New software version.
Chapter “ARMv8-M Stack limit register PSPLIM” added.

5.10.1.0 1 210301 MM Added missing chapter “CPU and compiler specifics”.

5.10.1.0 0 200617 TS/MM
Chapter “Libraries” updated.
Chapter “CPU and compiler specifics -> IAR C-Spy stack check warning”
added.

5.06 1 190930 MC Chapter “Libraries” updated.

5.06 0 190514 MM New software version.

5.02a 0 180727 MM New software version.

5.00 0 180522 MM New software version.

4.40 0 180104 MC New software version.

4.38 0 170928 MC New software version.

4.36 0 170721 MC New software version.

4.34 0 170327 TS Chapter “Compiler specifics” updated.

4.30 0 161213 MC New software version.

4.26 0 161027 RH Chapters “Using embOS” and “embOS C-Spy Plugin” updated.

4.22 0 160531 MC Chapters “VFP support”, “CPU and compiler specifics”, and “embOS C-
Spy Plugin” updated.

4.16 0 160122 MC New software version.

4.14 0 151222 MC New software version.

4.12a 0 150917 TS New software version.

4.10 0 150505 TS Chapter “Compiler specifics” updated.

4.06b 0 150330 TS New software version.

4.06a 0 150317 TS Typos corrected.
New software version.

4.04a 0 150109 SC New generic embOS sources V4.04a.

4.02a 0 140918 TS New generic embOS sources V4.02a.

4.02 0 140819 TS New generic embOS sources V4.02.

4.00 0 140606 TS New generic embOS sources V4.00.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

4

Software Revision Date By Description

3.90 0 140228 AW New generic embOS sources V3.90.
Updated start project for EWARM V7.10.

3.88g 0 131104 TS New generic embOS sources V3.88g.

3.88c 0 130813 TS New generic embOS sources V3.88c.

3.88b 0 130528 AW/TS

New generic embOS sources V3.88b.
Chapter 4, “Thread safe system libraries with IAR compiler V6.4 or new-
er” corrected. One required linker parameter was missing in previous de-
scription.

3.86n 0 121210 AW

New generic embOS sources V3.86n.
Chapter 4, “Thread safe system libraries with IAR compiler V6.4 or new-
er” added to describe the procedure to activate thread safe library sup-
port with newer IAR compiler.

3.86l 0 121126 TS Software: New embOS sources V3.86i.

3.86g 0 120806 AW Software: New embOS sources V3.86g.

3.86f 0 120726 AW Software: New embOS sources V3.86f.
Task events are 32bits wide for Cortex-M.

3.86e 0 120708 AW Software: New embOS sources V3.86e.
Modified hard fault handler added to RTOSInit.

3.86d 0 120510 AW Software: New embOS sources V3.86d.
OS_ExtendTaskContext_TLS_VFP() corrected.

3.84c1 0 120203 AW

Software: Scheduler for Cortex-M4 with VFP corrected.
Chapter 4: New functions to save and restore VFP context of Cortex-M4
in ISR handler:
OS_VFP_Save()
OS_VFP_Restore()

3.84c 1 120117 TS Software version updated.

3.84.1 0 111103 AW

Software: New scheduler uses main stack for OS_Idle().
Chapter 5: Stacks, system stack descripton updated.
New Chapter 6.8.4 and 6.8.5: Interrupt peripheral identifier and priority
values used with embOS described more in detail.
Chapter 7: Interrupt controller setup using CMSIS described more in de-
tail. New chapter 7.7.1 describes differences between embOS functions
and CMSIS functions.

3.84 0 111027 AW

Chapter 3.2.1: New libraries with VFPv4 support added.
Chapter 4.3, 4.4: Support for VFPv4 added:
OS_ExtendTaskContext_TLS()
OS_ExtendTaskContext_TLS_VFP()
OS_ExtendTaskContext_VFP()

3.82u 0 110701 AW Chapter CMSIS with IAR EWARM V6 added.

3.82s 0 110323 TS New library mode DPL added.

3.82m 0 101117 AW Thread local storage for new IAR workbench V6.

3.82l 0 101027 AW Library names updated for new IAR workbench V6.
Thread safe library support modified for IAR workbench V6.

3.82h 0 100722 TS embOS CM3 and embOS CM0 manual merged.

3.82a 1 100701 AW Chapter Stacks: Task stack size corrected.

3.82a 0 091026 TS First version.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

6

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..9

1.1 Installation .. 10
1.2 First Steps .. 11
1.3 The example application OS_StartLEDBlink.c ... 12
1.4 Stepping through the sample application ...13

2 Build your own application ..17

2.1 Introduction ...18
2.2 Required files for an embOS ..18
2.3 Change library mode .. 18
2.4 Select another CPU .. 18

3 Libraries ...19

3.1 Naming conventions for prebuilt libraries .. 20

4 CPU and compiler specifics ..21

4.1 IAR C-Spy stack check warning ... 22
4.2 IAR C-Spy RTOS plugin .. 22
4.3 Interrupt and thread safety ...22
4.4 Thread-Local Storage TLS ... 24

4.4.1 API functions .. 24
4.4.1.1 OS_TLS_Set() ..25
4.4.1.2 OS_TLS_SetTaskContextExtension() ..26

4.5 Arm erratum 837070 ..27
4.6 Arm Stack limit register PSPLIM .. 28

4.6.1 API functions .. 28
4.6.1.1 OS_PSPLIM_Set() ...29
4.6.1.2 OS_PSPLIM_SetTaskContextExtension()30

4.7 Arm TrustZone support ... 31
4.7.1 API functions .. 31

4.7.1.1 OS_ARM_TZ_SetSecureStatePSP() ..32
4.7.1.2 OS_ARM_TZ_SetTaskContextExtension() 33

4.8 Arm Pointer Authentication (PAC) and Branch target identification (BTI) 34

5 Stacks ... 35

5.1 Task stack for Cortex-M .. 36
5.2 System stack for Cortex-M ..36
5.3 Interrupt stack for Cortex-M ..36

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

8

6 Interrupts ... 37

6.1 What happens when an interrupt occurs? ..38
6.2 Defining interrupt handlers in C ...38
6.3 Interrupt vector table ... 38
6.4 Interrupt-stack switching .. 39
6.5 Zero latency interrupts ... 39
6.6 Interrupt priorities ..39
6.7 Interrupt nesting ..41
6.8 Interrupt enable behavior ... 42
6.9 Interrupt handling ..43

6.9.1 API functions .. 43
6.9.1.1 OS_ARM_ISRInit() ..44
6.9.1.2 OS_ARM_InstallISRHandler() ... 45
6.9.1.3 OS_ARM_EnableISR() ... 46
6.9.1.4 OS_ARM_DisableISR() .. 47
6.9.1.5 OS_ARM_ISRSetPrio() ...48

7 CMSIS ...49

7.1 Introduction ...50
7.2 The generic CMSIS start project .. 51
7.3 Device specific files needed for embOS with CMSIS .. 51
7.4 Device specific functions/variables needed for embOS with CMSIS 51
7.5 CMSIS generic functions needed for embOS with CMSIS 52
7.6 Customizing the embOS CMSIS generic start project .. 52
7.7 Adding CMSIS to other embOS start projects .. 52
7.8 Interrupt and exception handling with CMSIS .. 54

7.8.1 Enable and disable interrupts ... 54
7.8.2 Setting the Interrupt priority .. 54

8 Floating Point (FP) support ...55

8.1 ARM Floating-point Extension .. 56
8.2 Using embOS libraries with floating-point support .. 56
8.3 Using the FPU in interrupt service routines ..56
8.4 FPU default behavior .. 56

9 RTT and SystemView ...57

9.1 SEGGER Real Time Transfer .. 58
9.2 SEGGER SystemView ..58

10 Technical data ...59

10.1 Resource Usage ... 60

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation
This chapter describes how to get started with embOS. You should follow these steps to
become familiar with embOS.

embOS is shipped as a zip-file in electronic form. To install it, you should extract the zip-file
to any folder of your choice while preserving its directory structure (i.e. keep all files in their
respective sub directories). Ensure the files are not read-only after extraction. Assuming
that you are using an IDE to develop your application, no further installation steps are
required.

Note

The projects at /Start/BoardSupport/<DeviceManufacturer>/<Board> assume a
relative location for the /Start/Lib and /Start/Inc folders. If you copy a BSP folder
to another location, you will need to adjust the include paths of the project accordingly.

At /Start/BoardSupport/<DeviceManufacturer>/<Board> you should find several exam-
ple start projects, which you may adapt to write your application. To do so, follow the in-
structions of section First Steps on page 11.

In order to become familiar with embOS, consider using the example projects (even if you
will not use the IDE for application development).

If you do not or do not want to work with an IDE, you may copy either all library files or only
the library that is used with your project into your work directory. embOS does in not rely on
an IDE, but may be used without an IDE just as well, e.g. using batch files or a make utility.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

11 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS, you can create your first multitasking application. You received
several ready-to-go sample workspaces and projects as well as all required embOS files
inside the subfolder Start. The subfolder Start/BoardSupport contains the workspaces
and projects, sorted into manufacturer- and board-specific subfolders. It is a good idea to
use one of the projects as a starting point for any application development.

To get your new application running, you should:
• Create a directory for your development.
• Copy the whole Start folder from your embOS shipment into the directory.
• Clear the read-only attribute of all files in the copied Start folder.
• Open one sample workspace/project in

Start/BoardSupport/<DeviceManufacturer>/<Board> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After building the project of your choice, the screen should look like this:

For additional information, you should open the ReadMe.txt file that is part of every BSP.
It describes the different configurations of the project and, if required, gives additional
information about specific hardware settings of the supported evaluation board(s).

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

12 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application (the actual file shipped with your port of embOS may
differ slightly).

What happens is easy to see:

After initialization of embOS, two tasks are created and started. The two tasks get activated
and execute until they run into a delay, thereby suspending themselves for the specified
time, and eventually continue execution.

/***
* SEGGER Microcontroller GmbH *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 an LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

13 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screenshot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

15 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

16 CHAPTER 1 Stepping through the sample application

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

18 CHAPTER 2 Introduction

2.1 Introduction
This chapter provides all information to set up your own embOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 11 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from the directory .\Start\Inc. This header file declares all embOS API

functions and data types and has to be included in any source file using embOS
functions.

• RTOSInit*.c from one target specific .\Start\BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

• OS_Error.c from one target specific subfolder .\Start\BoardSupport
\<Manufacturer>\<MCU>. The error handler is used only if a debug library is used in
your project.

• One embOS library from the subfolder .\Start\Lib.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

project configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\Start\BoardSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

20 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.
Note that not all combinations are available (e.g., there is no big endian mode for Ar-
mv8.1-M).

The libraries are named as follows:

os<Architecture><Endianness><VFP><LibMode><Errata><TrustZone><PACBTI>.a

Parameter Meaning Values

Architecture ARM architecture

6m : Cortex-M0/M0+/M1
7m : Cortex-M3/M4/M7
8mbl : Cortex-M23
8mml : Cortex-M33
81mml: Cortex-M55/M85

Endianness Byte order
_tb : Thumb mode, big endian
_tl : Thumb mode, little endian

VFP Floating point support
v : Hardware VFP support
_ : No hardware VFP support

LibMode embOS library mode

_xr : Extreme Release
_r : Release
_s : Stack check
_sp : Stack check + profiling
_d : Debug
_dp : Debug + profiling + Stack check
_dpl : Debug + profiling + Stack check

 built with low optimization level
_dt : Debug + profiling + Stack check

 + trace

Errata Considered Arm errata _837070 : Erratum 837070
: No erratum considered

TrustZone Armv8-M TrustZone support _tz : TrustZone support
: No TrustZone support

PACBTI Armv8.1-M PACBTI support _pacbti : PACBTI support
: No PACBTI support

Example

os7m_tl__dp.a is the library for a project using Cortex-M3 core, thumb mode, little endian
mode with debug and profiling support.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

22 CHAPTER 4 IAR C-Spy stack check warning

4.1 IAR C-Spy stack check warning
IAR’s C-Spy debugger provides a stack check feature which throws a warning when the
stack pointer does not point to memory within the CSTACK scope anymore. This renders
the C-Spy stack check useless, as C-Spy is not aware of any task stacks the application is
using. Depending on the IAR version used, this warning can be disabled by removing the
check mark for Tools -> Options… -> Stack -> ’Warn when stack pointer is out
of bounds’ or Project -> Options… -> Debugger -> Plugins -> Stack.

4.2 IAR C-Spy RTOS plugin
SEGGER’s embOS plug-in for the IAR Embedded Workbench provides embOS awareness
during debugging sessions. This enables you to inspect the state of several embOS primi-
tives such as the task list, semaphores, mailboxes, and software timers.
SEGGER’s embOS plug-in is already shipped with IAR EWARM but the most recent ver-
sion can be downloaded from segger.com/products/rtos/embos/tools/plug-ins/iar-embed-
ded-workbench.

4.3 Interrupt and thread safety
Using embOS with specific calls to standard library functions (e.g. heap management func-
tions) may require thread-safe system libraries if these functions are called from several
tasks or interrupts. IAR’s system libraries provide functions, which can be overwritten to
implement a locking mechanism making the system library functions thread-safe.

The Setup directory in each embOS BSP contains the file OS_ThreadSafe.c which overwrites
these functions. By default they disable and restore embOS interrupts to ensure thread
safety in tasks, embOS interrupts, OS_Idle() and software timers. Zero latency interrupts
are not disabled and therefore unprotected. If you need to call e.g. malloc() also from
within a zero latency interrupt additional handling needs to be added. If you don’t call such
functions from within embOS interrupts, OS_Idle() or software timers, you can instead
use thread safety for tasks only. This reduces the interrupt latency because a mutex is used
instead of disabling embOS interrupts.

You can choose the safety variant with the macro OS_INTERRUPT_SAFE.
• When defined to 1 thread safety is guaranteed in tasks, embOS interrupts, OS_Idle()

and software timers.
• When defined to 0 thread safety is guaranteed only in tasks. In this case you must not

call e.g. heap functions from within an ISR, OS_Idle() or embOS software timers.

4.3.1 Enabling thread-safe IAR system libraries
By default, IAR does not use thread-safe system libraries. As a result the implemented hook
functions are not linked into the application. For more information on IAR’s multithread
support, please refer to the IAR Embedded Workbench manuals.

To use the thread-safe system libraries the option “Enable thread support in library”
must be set in Project -> Options… -> General Options -> Library Configura-
tion. Alternatively, the option --threaded_lib can be passed to the linker. Additionally
the function OS_INIT_SYS_LOCKS() must be called.

With older IAR Embedded Workbench versions, neither the IDE option nor the linker option
are available. In this case, the linker has to be told to explicitly link the hook functions by
redirecting them to another symbol.

Activate the checkbox “Use command line options” in the dialog Project -> Options…
-> Linker -> Extra Options. Then, in the “Command line options:” field, add the
following lines:

--redirect __iar_Locksyslock=__iar_Locksyslock_mtx

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

https://www.segger.com/products/rtos/embos/tools/plug-ins/iar-embedded-workbench
https://www.segger.com/products/rtos/embos/tools/plug-ins/iar-embedded-workbench

23 CHAPTER 4 Interrupt and thread safety

--redirect __iar_Unlocksyslock=__iar_Unlocksyslock_mtx
--redirect __iar_Lockfilelock=__iar_Lockfilelock_mtx
--redirect __iar_Unlockfilelock=__iar_Unlockfilelock_mtx
--keep __iar_Locksyslock_mtx

C++ thread safety

To enable thread-safe C++ constructors and destructors the option --guard_calls needs
to be passed to the compiler.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

24 CHAPTER 4 Thread-Local Storage TLS

4.4 Thread-Local Storage TLS
The DLib for IAR supports usage of thread-local storage. Several library objects and func-
tions need local variables which have to be unique to a thread. Thread-local storage will be
required when these functions are called from multiple threads.

embOS for IAR is prepared to support the tread-local storage, but does not use it per
default. This has the advantage of no additional overhead as long as thread-local storage is
not needed by the application. The embOS implementation of thread-local storage allows
activation of TLS separately for each task.

Only tasks that are accessing TLS variables, for instance by calling functions from the
system library, need to initialize their TLS by calling an initialization function when the task is
started. For each task that uses TLS the memory for the thread-local storage is allocated by
the IAR runtime environment on the heap. Therefore, thread-safe heap management should
be used together with TLS. For information on thread-safety, please refer to Interrupt and
thread safety on page 22.

When the task terminates by a call of OS_TASK_Terminate(), the memory used for TLS is
automatically freed and put back into the free heap memory.

Library objects that need thread-local storage when used in multiple tasks are for example:
• error functions - errno, strerror.
• locale functions - localeconv, setlocale.
• time functions - asctime, localtime, gmtime, mktime.
• multibyte functions - mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,

wctomb.
• rand functions - rand, srand.
• etc functions - atexit, strtok.
• C++ exception engine.

4.4.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TLS_Set()
Initializes the thread-local
storage for the current task. ●

OS_TLS_SetTaskContextExtension()

Initializes the thread-local
storage and sets the TLS
task context extension for
the current task.

●

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

25 CHAPTER 4 Thread-Local Storage TLS

4.4.1.1 OS_TLS_Set()

Description

Initializes the thread-local storage for the current task.

Prototype

void OS_TLS_Set(void);

Additional information

OS_TLS_Set() shall be the first function called from a task when TLS should be used in
this task.

The required memory for the thread-local storage is allocated from the heap. If
OS_TLS_Set() was already called for this task or if there is not enough memory on the
heap, then embOS will call OS_Error() with the error code OS_ERR_TLS_INIT.

This function has to be used only in combination with OS_TASK_AddContextExtension() or
OS_TASK_SetContextExtension() and OS_TLS_ContextExtension as argument to these
functions. When OS_TLS_SetTaskContextExtension() is used, OS_TLS_Set() will be called
automatically.

Example

static void Task(void) {
 OS_TLS_Set();
 OS_TASK_SetContextExtension(&OS_TLS_ContextExtension);
 while (1) {
 }
}

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

26 CHAPTER 4 Thread-Local Storage TLS

4.4.1.2 OS_TLS_SetTaskContextExtension()

Description

Initializes the thread-local storage and sets the TLS task context extension for the current
task.

Prototype

void OS_TLS_SetTaskContextExtension(void);

Additional information

OS_TLS_SetTaskContextExtension() shall be the first function called from a task when
TLS should be used in this task.

The required memory for the thread-local storage is allocated from the heap. If
OS_TLS_Set() was already called for this task or if there is not enough memory on the
heap, then embOS will call OS_Error() with the error code OS_ERR_TLS_INIT.

If the task already contains a task context extension, OS_TLS_SetTaskContextExten-
sion() cannot be used. Instead, OS_TASK_AddContextExtension() needs to be called with
OS_TLS_ContextExtension as argument. Furthermore, OS_TLS_Set() needs to be called
to initialize TLS for this task.

Example

The following printout demonstrates the usage of task specific TLS in an application.

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 OS_TLS_SetTaskContextExtension();
 while (1) {
 errno = 42; // errno specific to HPTask
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 OS_TLS_SetTaskContextExtension();
 while (1) {
 errno = 1; // errno specific to LPTask
 OS_TASK_Delay(200);
 }
}

int main(void) {
 errno = 0; // errno not specific to any task
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

27 CHAPTER 4 Arm erratum 837070

4.5 Arm erratum 837070
Specific embOS ARMv7-M libraries use a workaround for the Cortex-M7 erratum 837070
(refer to Naming conventions for prebuilt libraries on page 20). When an embOS library
without this workaround is used with a device that requires the workaround, debug builds
of embOS will call OS_Error() with the error code OS_ERR_LIB_INCOMPATIBLE.

Cortex-M7 devices that implement the ARM core r0p0 or r0p1 are affected by the erratum,
while later versions of these devices are unaffected. The workaround sets PRIMASK before
writing to BASEPRI and restores PRIMASK afterwards; it therefore adds a minimal latency
to Zero latency interrupts.

When working with an affected device, the define USE_ERRATUM_837070 shall be set to 1 in
the preprocessor settings or inside OS_Config.h, regardless of whether the embOS source
code or an embOS library is being used.
Additionally, if working with the embOS source code, it also is possible for efficiency rea-
sons to not restore any previous value of PRIMASK after modification of BASEPRI. To do so,
the define OS_PRESERVE_PRIMASK shall be set to 0 in the preprocessor settings or inside
OS_Config.h.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

28 CHAPTER 4 Arm Stack limit register PSPLIM

4.6 Arm Stack limit register PSPLIM
When the ARMv8-M Security Extension is included, there are two PSPLIM registers in the
processor:
• PSPLIM_NS for the Non-secure state.
• PSPLIM_S for the Secure state.

The hardware continuously compares the process stack register (PSP) against this process
stack limit register (PSPLIM). If the PSP is lower than the PSPLIM register value a stack
overflow occurred and a fault exception is generated.

embOS Cortex-M comes with a task context extension for the PSPLIM register. Each task
context can be extended by the call of OS_PSPLIM_SetTaskContextExtension(). The task
context extension saves and restores the PSPLIM register on the according task stack. When
a task gets deactivated the PSPLIM register is set to zero which deactivates the PSPLIM
stack check for other tasks which do not use this extension.

4.6.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_PSPLIM_Set() Sets the PSPLIM register. ●

OS_PSPLIM_SetTaskContextExtension()
Extends the task context
with the stack check limit
register PSPLIM.

●

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

29 CHAPTER 4 Arm Stack limit register PSPLIM

4.6.1.1 OS_PSPLIM_Set()

Description

Sets the PSPLIM register.

Prototype

void OS_PSPLIM_Set(const void OS_STACKPTR *pStack);

Parameters

Parameter Description

pStack Pointer to the task stack.

Additional information

The PSPLIM register is banked between security states. OS_PSPLIM_Set() initially sets the
PSPLIM register of the currently active security state to the parameter pStack.

If you like to use the PSPLIM register for more than one task the task context needs to
be extended with e.g. OS_TASK_AddContextExtension() or OS_PSPLIM_SetTaskContex-
tExtension().

The PSPLIM register can only be written in privileged state. Unprivileged writes to PSPLIM
are ignored.

Example

static OS_STACKPTR int StackHP[128];
static OS_TASK TCBHP;

static void HPTask(void) {
 OS_EXTEND_TASK_CONTEXT_LINK PSPLIM_ContextExtensionLink;

 OS_TASK_AddContextExtension(&PSPLIM_ContextExtensionLink,
 &OS_PSPLIM_ContextExtension);
 OS_PSPLIM_Set(StackHP);
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

30 CHAPTER 4 Arm Stack limit register PSPLIM

4.6.1.2 OS_PSPLIM_SetTaskContextExtension()

Description

Extends the task context with the stack check limit register PSPLIM.

Prototype

void OS_PSPLIM_SetTaskContextExtension(const void OS_STACKPTR *pStack);

Additional information

OS_PSPLIM_SetTaskContextExtension() initially sets the PSPLIM register to the parame-
ter pStack. This is not done when the task context is extended with OS_TASK_AddCon-
textExtension() or OS_TASK_SetContextExtension(). In that case the PSPLIM register
should be set manually with OS_PSPLIM_Set().

After using this function, any further task context extensions cannot be added by calling
OS_TASK_SetContextExtension(), but can be added using OS_TASK_AddContextExten-
sion() instead.

If a task has already another task context extension set, the PSPLIM task context exten-
sion can be added by passing the predefined OS_PSPLIM_ContextExtension structure to
OS_TASK_AddContextExtension().

OS_PSPLIM_SetTaskContextExtension() handles the PSPLIM register of the security state
the embOS runs in. By default, embOS runs in the secure world, thus saving and restoring
the PSPLIM_s register on context switches. If TrustZone is used, i.e. embOS and tasks run
in the non-secure world, then the PSPLIM_ns register is saved and restored on context
switches. However, non-secure tasks can also set a dedicated task context extension for
TrustZone which additionally saves and restores PSP_s, PSPLIM_s and CONTROL_s of the
non-secure task so that it can perform calls into the secure world.

For more information about TrustZone and the TrustZone context extension, please refer
to Arm TrustZone support on page 31.

Example

static OS_STACKPTR int StackHP[128];
static OS_TASK TCBHP;

static void HPTask(void) {
 OS_PSPLIM_SetTaskContextExtension(StackHP);
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

31 CHAPTER 4 Arm TrustZone support

4.7 Arm TrustZone support
embOS Cortex-M comes with libraries for Arm TrustZone support. With it embOS runs
completely in the non-secure world but tasks can call functions from the secure world.
When using the embOS sources the define OS_SUPPORT_TRUSTZONE = 1 must be used.

If an embOS task wants to call secure functions the secure register PSP_S, PSPLIM_S and
CONTROL_S must be set beforehand and the task context must be extended to save and
restore these register at every context switch. An embOS task runs in secure state on a
separate stack which is located in the secure memory.

You can use OS_ARM_TZ_SetSecureStatePSP() or OS_ARM_TZ_SetTaskContextExten-
sion() to set the secure register. Additionally, OS_ARM_TZ_SetTaskContextExtension()
extends the task context. OS_ARM_TZ_SetSecureStatePSP() sets the secure register on-
ly and the task context must be extended with OS_TASK_AddContextExtension() or
OS_TASK_SetContextExtension() and the context extension OS_ARM_TZ_ContextExten-
sion.

4.7.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_ARM_TZ_SetSecureStatePSP()
Sets the secure PSP_S, PS-
PLIM_S and CONTROL_S reg-
isters.

●

OS_ARM_TZ_SetTaskContextExtension()

Sets the secure PSP_S, PS-
PLIM_S and CONTROL_S reg-
isters and extends the task
context to save and restore
these registers.

●

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

32 CHAPTER 4 Arm TrustZone support

4.7.1.1 OS_ARM_TZ_SetSecureStatePSP()

Description

Sets the secure PSP_S, PSPLIM_S and CONTROL_S registers.

Prototype

void OS_ARM_TZ_SetSecureStatePSP(OS_ARM_TZ_SECURE_API_LIST* ApiList,
 const void* pStack,
 unsigned long StackSize);

Parameters

Parameter Description

ApiList
Pointer to a list of secure functions for accessing PSP_S, PS-
PLIM_S and CONTROL_S.

pStack Pointer to the secure task stack.
StackSize Size of the secure stack to which pStack points.

Additional information

The parameter ApiList must point to a function pointer list with secure functions for ac-
cessing the secure process stack pointer, secure process stack limit and the secure control
registers. The parameter pStack must point to a stack which is located in the secure mem-
ory. This stack is used whenever the task calls a function in the secure world.

OS_ARM_TZ_SetSecureStatePSP() must be called before the task calls any functions from
the secure world. The task context must be extended beforehand with the task context
OS_ARM_TZ_ContextExtension (e.g. by using OS_TASK_SetContextExtension()).

Example:

//
// Locate secure task stack in secure memory.
//
static __no_init OS_STACKPTR int StackHP_s[256] @ "RAM_S";
//
// These functions must be placed in the secure memory.
//
static OS_ARM_TZ_SECURE_API_LIST Arm_TZ_ApiList = {
 Arm_TZ_GetCONTROL_s
 ,Arm_TZ_GetPSP_s
 ,Arm_TZ_GetPSPLIM_s
 ,Arm_TZ_SetCONTROL_s
 ,Arm_TZ_SetPSP_s
 ,Arm_TZ_SetPSPLIM_s
};

static void Task(void) {
 //
 // Extend the task context for the secure world and set the secure register
 //
 OS_TASK_SetContextExtension(&OS_ARM_TZ_ContextExtension);
 OS_ARM_TZ_SetSecureStatePSP(&Arm_TZ_ApiList, StackHP_s, sizeof(StackHP_s));
 while (1) {
 IncrementCounter_s(); // Call secure function and increment secure counter
 OS_TASK_Delay(10);
 }
}

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

33 CHAPTER 4 Arm TrustZone support

4.7.1.2 OS_ARM_TZ_SetTaskContextExtension()

Description

Sets the secure PSP_S, PSPLIM_S and CONTROL_S registers and extends the task context
to save and restore these registers.

Prototype

void OS_ARM_TZ_SetTaskContextExtension(OS_ARM_TZ_SECURE_API_LIST* ApiList,
 const void* pStack,
 unsigned long StackSize);

Parameters

Parameter Description

ApiList
Pointer to a list of secure functions for accessing PSP_S, PS-
PLIM_S and CONTROL_S.

pStack Pointer to the secure task stack.
StackSize Size of the secure stack to which pStack points.

Additional information

The parameter ApiList must point to a function pointer list with secure functions for ac-
cessing the secure process stack pointer, secure process stack limit and the secure control
registers. The parameter pStack must point to a stack which is located in the secure mem-
ory. This stack is used whenever the task calls a function in the secure world.

OS_ARM_TZ_SetTaskContextExtension() must be called before the task calls any functions
from the secure world.

Example:

//
// Locate secure task stack in secure memory.
//
static __no_init OS_STACKPTR int StackHP_s[256] @ "RAM_S";
//
// These functions must be placed in the secure memory.
//
static OS_ARM_TZ_SECURE_API_LIST Arm_TZ_ApiList = {
 Arm_TZ_GetCONTROL_s
 ,Arm_TZ_GetPSP_s
 ,Arm_TZ_GetPSPLIM_s
 ,Arm_TZ_SetCONTROL_s
 ,Arm_TZ_SetPSP_s
 ,Arm_TZ_SetPSPLIM_s
};

static void Task(void) {
 //
 // Extend the task context for the secure world.
 //
 OS_ARM_TZ_SetTaskContextExtension(&Arm_TZ_ApiList, StackHP_s, sizeof(StackHP_s));
 while (1) {
 IncrementCounter_s(); // Call secure function and increment secure counter
 OS_TASK_Delay(10);
 }
}

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

34 CHAPTER 4 Arm Pointer Authentication (PAC) and Branch
target identification (BTI)

4.8 Arm Pointer Authentication (PAC) and Branch
target identification (BTI)

ARMv8.1-M PAC und BTI extensions can be used with embOS. BTI requires that the embOS
sources are built with OS_SUPPORT_ARMV81M_BTI set to 1 or embOS libraries with PAC and
BTI support are used. The application is responsible to enable PAC and BTI and to set the
PAC key.

embOS libraries with BTI and PAC support use both features to protect embOS against
security attacks. The attacks utilize existing and legitimate code fragments called gadgets.
In a successful exploit the attacker gains control over the call stack, for example via stack
smashing, and then the pointers stored on the stack are overwritten to point to selected
gadgets. By branching from one gadget to another the attacker can escalate the operating
privileges and take full control of the system.

Please refer to the ARMv8-M Architecture Reference Manual for more details.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

36 CHAPTER 5 Task stack for Cortex-M

5.1 Task stack for Cortex-M
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For Cortex-M CPUs, this minimum basic task stack size is about 88 bytes. Because any
function call uses some amount of stack and every exception also pushes at least 32 bytes
onto the current stack, the task stack size has to be large enough to handle one exception
too. For privileged tasks, we recommend at least 512 bytes stack as a start. Unprivileged
tasks will require an additional 128 bytes of task stack.

Note

Stacks for Cortex-M devices need to be 8-byte aligned. embOS ensures that task
stacks are properly aligned. However, since this can result in unused bytes, the ap-
plication should ensure that task stacks are properly aligned. This can be achieved by
defining an array using a 64-bit data type like OS_U64.

5.2 System stack for Cortex-M
The embOS system executes in thread mode, the scheduler executes in handler mode.
The minimum system stack size required by embOS is about 160 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because software timers and C-level
interrupt handlers also use the system stack, the actual stack requirements depend on the
application.

The size of the system stack can be changed by modifying the project settings or linker
file. We recommend a minimum stack size of 256 bytes for the system stack.

5.3 Interrupt stack for Cortex-M
If a normal hardware exception occurs, the Cortex-M core switches to handler mode which
uses the main stack pointer. With embOS, the main stack pointer is initialized to use the
CSTACK which is defined in the linker command file. The main stack is also used as stack by
the embOS scheduler and during idle times, when no task is ready to run and OS_Idle()
is executed.

Note

When using an embOS Safe build, please note that the stack-check-limit is config-
urable through OS_STACK_SetCheckLimit() and by default is configured at 70 percent
of the total stack size. This will impact the minimum size requirement for both task
stacks and the CSTACK.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

38 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?
• The CPU-core receives an interrupt request from the interrupt controller.
• As soon as the interrupts are enabled, the interrupt is accepted and executed.
• The CPU pushes R0-R3, R12, LR, Return Address and xPSR onto the current stack.
• The CPU loads the according EXC_RETURN value into LR.
• The CPU switches to handler mode and main stack.
• The CPU jumps to the vector address delivered by the NVIC.
• The interrupt handler is processed.
• The interrupt handler ends with a return from interrupt.
• The CPU uses the EXC_RETURN value in LR to switch back to the mode and stack which

was active before the exception was entered.
• The CPU restores R0-R3, R12, LR, Return Address and xPSR from the stack and

continues execution of the interrupted application.

6.2 Defining interrupt handlers in C
Interrupt handlers for Cortex-M cores are written as normal C-functions which do not take
parameters and do not return any value. Interrupt handlers which call an embOS function
need a prologue and an epilogue function as described in the generic manual and in the
examples below.

Example

Simple interrupt routine:

static void _Systick(void) {
 OS_INT_EnterNestable(); // Inform embOS that interrupt code is running
 OS_TICK_Handle(); // May be interrupted
 OS_INT_LeaveNestable(); // Inform embOS that interrupt handler is left
}

6.3 Interrupt vector table
After reset, ARM Cortex-M CPUs use an initial interrupt vector table located in ROM at
address 0x00. It contains the initial stack pointer as well as the addresses of all exception
handlers, which are defined in a C source or assembly file in the CPU specific subdirectory.
All interrupt handler function addresses have to be present in that file at compile time as
long as the table is kept in ROM.

If the vector table is copied to RAM, however, interrupt handlers can be installed dynamically
at runtime. To do so, the vector table base register inside the NVIC controller has to be
initialized to point to the vector table base address in RAM.

6.3.1 Required embOS system interrupt handler
embOS for Cortex-M core needs two exception handlers which belong to the system itself,
PendSV_Handler() and SysTick_Handler(). Both are delivered with embOS. When using
your own interrupt vector table, ensure that they are referenced in the vector table.

Note

Some older BSPs used to name the PendSV ISR OS_Exception() and thus need to
rename it to PendSV_Handler().

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

39 CHAPTER 6 Interrupt-stack switching

6.4 Interrupt-stack switching
Since Cortex-M core based controllers have two separate stack pointers and embOS utilizes
the process stack pointer to execute tasks, there is no need to explicitly switch stacks inside
interrupt routines, which utilize the main stack pointer. The routines OS_INT_EnterIntS-
tack() and OS_INT_LeaveIntStack() are supplied for source code compatibility to other
processors only and have no functionality.

6.5 Zero latency interrupts
ARM Cortex-M3, M4, M7 and M33 processors provide a mechanism to raise the interrupt
priority level of the CPU in order to disable interrupts with a higher interrupt priority level
(please note that lower priority numbers define a higher priority). When embOS needs to
perform atomic operations, embos raises the interrupt priority level of the CPU to 128.
All interrupt priorities from 0 to 127 are never disabled by embOS and thus named zero
latency interrupts. To ensure that the operations are still atomic, embOS functions must
not be called from within zero latency interrupts.

It is not possible to raise the interrupt priority level of the CPU for Cortex-M0, M0+, M1 and
M23 processors. Thus, zero latency interrupts are not available on those processors.

Note

Please be aware with ARM Erratum 837070, embOS sets PRIMASK before writing to
BASEPRI and unconditionally clears it afterwards. Therefore, zero latency interrupts
are disabled for a few cycles when embOS dis- or enables embOS interrupts. Please
refer to chapter ARM erratum 837070 for more details.

6.6 Interrupt priorities
The interrupt priority is any number between 0 and 255 as seen by the CPU core. With
embOS and its own setup functions for the interrupt controller and priorities, there is no
difference in the priority values regardless of the different preemption level of specific
devices. Using the CMSIS functions to set up interrupt priorities requires different values
for the priorities. These values depend on the number of preemption levels of the specific
chip. A description is found in the chapter CMSIS.

6.6.1 Interrupt priorities with Cortex-M3, M4, M7 and M33
cores

Cortex-M3, M4, M7 and M23 supports up to 256 levels of programmable priority with a
maximum of 128 levels of preemption. Most Cortex-M chips have fewer supported levels,
for example 8, 16, 32, and so on. The chip designer can customize the chip to obtain the
levels required. There is a minimum of 8 preemption levels. Every interrupt with a higher
preemption level may preempt any other interrupt handler running on a lower preemption
level. Interrupts with equal preemption level may not preempt each other. The interrupt
priority is split into group priority and subpriority. The group priority determines the pre-
emption level.

With introduction of zero latency interrupts, interrupt priorities usable for interrupts using
embOS API functions are limited.
• Any interrupt handler using embOS API functions has to run with interrupt

priorities from 128 to 255. These embOS interrupt handlers have to start with
OS_INT_Enter() or OS_INT_EnterNestable() and have to end with OS_INT_Leave()
or OS_INT_LeaveNestable().

• Any zero latency interrupt (running at priorities from 0 to 127) must not call any embOS
API function. Even OS_INT_Enter() and OS_INT_Leave() must not be called.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

40 CHAPTER 6 Interrupt priorities

• Interrupt handlers running at low priorities (from 128 to 255) not calling any embOS
API function are allowed, but must not re-enable interrupts! The priority limit between
embOS interrupts and zero latency interrupts is fixed to 128 and can only be
changed by defining OS_IPL_THRESHOLD and recompiling the embOS libraries (or using
embOS sources in your project)! This is done for efficiency reasons. The macro
OS_IPL_THRESHOLD can be modified in OSCHIP.h or overwritten by project specific
preprocessor settings. In case of doubt, please contact the embOS support.

Note

If you do not set an interrupt priority with NVIC_SetPriority() or OS_ARM_ISRSet-
Prio() the priority after reset is 0x00 which is not a valid embOS interrupt priority
but a zero latency interrupt.

6.6.2 Interrupt priorities with Cortex-M0, M0+, M1 and M23
cores

All Cortex-M0, M0+, M1 and M23 support 4 levels of programmable priority. Priority group-
ing is not available. Thus, the interrupt priority equals the preemption level. Every interrupt
with a higher interrupt priority may preempt any other interrupt handler running with a
lower interrupt priority. Interrupts with equal priority may not preempt each other.

All interrupt handlers may call embOS API irrespective of their priority. Any interrupt handler
using embOS API functions has to start with OS_INT_Enter() or OS_INT_EnterNestable()
and has to end with OS_INT_Leave() or OS_INT_LeaveNestable().

6.6.3 Priority of the embOS scheduler
The embOS scheduler runs in the PendSV handler and on the lowest interrupt priority.
The scheduler may be preempted by any other interrupt with higher preemption level. The
application interrupts shall run on higher preemption levels to ensure short reaction time.

During initialization, the priority of the embOS scheduler is set to 0x03 for ARMv6-M and
ARMv8-M Baseline and to 0xFF for ARMv7-M and ARMv8-M Mainline, which is the lowest
preemption level regardless of the number of preemption levels.

Note

Applications that prevent the execution of the PendSV interrupt (e.g. by disabling
interrupts via PRIMASK or via FAULTMASK on ARMv-7M, or by disabling interrupts via
FAULTMASK on ARMv6-M) must not call any embOS API that would initiate a task
switch.

Note

Applications must not change the priority of the PendSV interrupt.

6.6.4 Priority of the embOS system timer
The embOS system timer runs on the second lowest preemption level. Thus, the embOS
timer may preempt the scheduler. Application interrupts which require fast reaction should
run on a higher preemption level.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

41 CHAPTER 6 Interrupt nesting

6.6.5 Priority of embOS software timers
The embOS software timer callback functions are called from the scheduler and run on the
schedulers preemption level which is the lowest interrupt priority level. To ensure short
reaction time of other interrupts, other interrupts should run on a higher preemption level
and the software timer callback functions should be as short as possible.

6.6.6 Priority of application interrupts for Cortex-M0, M0+, M1
and M23 cores

Application interrupts using embOS functions may run on any priority. We recommend that
application interrupts should run on a higher preemption level than the embOS scheduler,
at least at the second lowest preemption level.

6.6.7 Priority of application interrupts for Cortex-M3, M4, M7
and M33 cores

Application interrupts using embOS functions may run on any priority level between 255
to 128. Interrupt handlers which require fast reaction may run on higher priorities than
128, but must not call any embOS function (zero latency interrupts). We recommend that
application interrupts should run on a higher preemption level than the embOS scheduler,
at least at the second lowest preemption level.

As the number of priority levels is chip specific, the second lowest preemption level varies
depending on the chip. If the number of preemption levels is not documented, the second
lowest preemption level can be set as follows, using embOS functions:

unsigned char Priority;
OS_ARM_ISRSetPrio(OS_ISR_ID_TICK, 0xFF);
 // Set to lowest level, ALL BITS set
Priority = OS_ARM_ISRSetPrio(OS_ISR_ID_TICK, 0xFF); // Read priority back
Priority -= 1; // Lower preemption level
OS_ARM_ISRSetPrio(OS_ISR_ID_TICK, Priority);

6.7 Interrupt nesting
The Cortex-M CPU uses a priority controlled interrupt scheduling which allows nesting of
interrupts. Any interrupt or exception with a higher preemption level may interrupt an in-
terrupt handler running on a lower preemption level when interrupts are enabled during
execution of the interrupt service routine. An interrupt handler calling embOS functions has
to start with an embOS prologue function that informs embOS that an interrupt handler is
running. For any interrupt handler, the user may decide individually whether this interrupt
handler may be preempted or not by choosing the prologue function OS_INT_Enter() or
OS_INT_EnterNestable(). When OS_INT_Enter() is called it disables embOS interrupts,
while OS_INT_EnterNestable() keeps interrupts enabled allowing the interrupt to be pre-
empted by other interrupts with higher priority.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

42 CHAPTER 6 Interrupt enable behavior

6.8 Interrupt enable behavior

6.8.1 Interrupt enable behavior with Cortex-M0, M0+, M1 and
M23 cores

Calling OS_INT_Disable() on these architectures results in PRIMASK being set, effectively
disabling embOS interrupts. An embOS API function is called after that call to OS_INT_Dis-
able() may internally disable embOS interrupts by setting PRIMASK and, since the embOS
interrupt disable counter is not set, will subsequently re-enable embOS interrupts by clear-
ing PRIMASK. Therefore, upon returning from that embOS API function embOS interrupts
are enabled although the application did not call OS_INT_Enable().

Since zero latency interrupts are not supported with these architectures, calling OS_IN-
T_DisableAll() results in an identical behavior as calling OS_INT_Disable().

6.8.2 Interrupt enable behavior with Cortex-M3, M4, M7 and
M33 cores

Calling OS_INT_Disable() on these architectures results in BASEPRI being set, effectively
disabling embOS interrupts. An embOS API function may internally disable embOS inter-
rupts by writing OS_IPL_THRESHOLD to BASEPRI and, since the embOS interrupt disable
counter is not set, will subsequently re-enable embOS interrupts by clearing BASEPRI.
Therefore, upon returning from that embOS API function embOS interrupts are enabled
although the application did not call OS_INT_Enable().

Calling OS_INT_DisableAll() on these architectures results in PRIMASK being set, effec-
tively disabling both embOS interrupts and zero latency interrupts. An embOS API function
may internally disable embOS interrupts by writing OS_IPL_THRESHOLD to BASEPRI and,
since the embOS interrupt disable counter is not set, will subsequently re-enable embOS
interrupts by clearing BASEPRI. The value of BASEPRI, however, does not have any effect
while PRIMASK is still set. Therefore, upon returning from that embOS API function both
embOS interrupts and zero latency interrupts are still disabled.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

43 CHAPTER 6 Interrupt handling

6.9 Interrupt handling
For the Cortex-M core, which has a built-in vectored interrupt controller, embOS delivers
additional functions to install and setup interrupt handler functions.

This API is not available in embOS library mode OS_LIBMODE_SAFE.

6.9.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_ARM_ISRInit() Initializes the interrupt handling. ● ●

OS_ARM_InstallISRHandler()
Sets an interrupt handler in the RAM
vector table. ● ●

OS_ARM_EnableISR()
Enables acceptance of a specific inter-
rupt source. ● ● ● ●

OS_ARM_DisableISR()
Disables acceptance of a specific inter-
rupt source. ● ● ● ●

OS_ARM_ISRSetPrio()
Sets the priority of a specific interrupt
source. ● ● ● ●

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

44 CHAPTER 6 Interrupt handling

6.9.1.1 OS_ARM_ISRInit()

Description

Initializes the interrupt handling.

Prototype

void OS_ARM_ISRInit(OS_U32 IsVectorTableInRAM,
 OS_U32 NumInterrupts,
 OS_ISR_HANDLER* VectorTableBaseAddr[],
 OS_ISR_HANDLER* RAMVectorTableBaseAddr[]);

Parameters

Parameter Description

IsVectorTableInRAM Defines the vector table location. (0 = Flash, 1 = RAM)
NumInterrupts Number of implemented interrupts.
VectorTableBaseAddr Flash vector table base address.
RAMVectorTableBaseAd-
dr

RAM vector table base address.

Additional information

This function must be called before OS_ARM_InstallISRHandler(), OS_ARM_EnableISR(),
OS_ARM_DisableISR() and OS_ARM_ISRSetPrio() can be called.

Note

Please note a RAM vector table can be used only if the device has a configurable VTOR
implemented.

Example

void OS_InitHW(void) {
 OS_ARM_ISRInit(1u, 82, (OS_ISR_HANDLER**)__Vectors, (OS_ISR_HANDLER**)pRAMVectTable);
 OS_ARM_InstallISRHandler(OS_ISR_ID_TICK, OS_Systick);
 OS_ARM_ISRSetPrio(OS_ISR_ID_TICK, 0xE0u);
 OS_ARM_EnableISR(OS_ISR_ID_TICK);
}

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

45 CHAPTER 6 Interrupt handling

6.9.1.2 OS_ARM_InstallISRHandler()

Description

Sets an interrupt handler in the RAM vector table. Does nothing when vector table is in
Flash.

Prototype

OS_ISR_HANDLER *OS_ARM_InstallISRHandler(int ISRIndex,
 OS_ISR_HANDLER* pISRHandler);

Parameters

Parameter Description

ISRIndex
Index of the interrupt source which should be installed. Note
that the index counts from 0 for the first entry in the vector
table.

pISRHandler Address of the interrupt handler.

Return value

Previous interrupt handler address in the vector table.

Additional information

OS_ARM_InstallISRHandler() copies the vector table from Flash to RAM when it is called
for the first time and RAM vector table is enabled.

Note

Please note a RAM vector table can be used only if the device has a configurable VTOR
implemented.

Note that the ISRIndex counts from 0 for the first entry in the vector table. The first
peripheral index therefore has the ISRIndex 16, because the first peripheral interrupt vector
is located after the 16 generic vectors in the vector table. This differs from index values
used with CMSIS.

Example

void OS_InitHW(void) {
 OS_ARM_ISRInit(1u, 82, (OS_ISR_HANDLER**)__Vectors, (OS_ISR_HANDLER**)pRAMVectTable);
 OS_ARM_InstallISRHandler(OS_ISR_ID_TICK, OS_Systick);
 OS_ARM_ISRSetPrio(OS_ISR_ID_TICK, 0xE0u);
 OS_ARM_EnableISR(OS_ISR_ID_TICK);
}

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

46 CHAPTER 6 Interrupt handling

6.9.1.3 OS_ARM_EnableISR()

Description

Enables acceptance of a specific interrupt source.

Prototype

void OS_ARM_EnableISR(int ISRIndex);

Parameters

Parameter Description

ISRIndex
Index of the interrupt source which should be enabled. Note
that the index counts from 0 for the first entry in the vector
table.

Additional information

This function just enables the interrupt inside the interrupt controller. It does not enable
the interrupt of any peripherals. This has to be done elsewhere.

Note that the ISRIndex counts from 0 for the first entry in the vector table. The first
peripheral index therefore has the ISRIndex 16, because the first peripheral interrupt vector
is located after the 16 generic vectors in the vector table. This differs from index values
used with CMSIS.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

47 CHAPTER 6 Interrupt handling

6.9.1.4 OS_ARM_DisableISR()

Description

Disables acceptance of a specific interrupt source.

Prototype

void OS_ARM_DisableISR(int ISRIndex);

Parameters

Parameter Description

ISRIndex
Index of the interrupt source which should be disabled. Note
that the index counts from 0 for the first entry in the vector
table.

Additional information

This function just disables the interrupt in the interrupt controller. It does not disable the
interrupt of any peripherals. This has to be done elsewhere.

Note that the ISRIndex counts from 0 for the first entry in the vector table. The first
peripheral index therefore has the ISRIndex 16, because the first peripheral interrupt vector
is located after the 16 generic vectors in the vector table. This differs from index values
used with CMSIS.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

48 CHAPTER 6 Interrupt handling

6.9.1.5 OS_ARM_ISRSetPrio()

Description

Sets the priority of a specific interrupt source.

Prototype

int OS_ARM_ISRSetPrio(int ISRIndex,
 int Prio);

Parameters

Parameter Description

ISRIndex
Index of the interrupt source which should be modified. Note
that the index counts from 0 for the first entry in the vector
table.

Prio
The priority which should be set for the specified interrupt
source. Prio ranges from 0 (highest priority) to 255 (lowest
priority).

Additional information

The priority value is independent of the chip-specific preemption levels. Any value between
0 and 255 can be used, were 255 always is the lowest priority and 0 is the highest priority.
The function can be called to set the priority for all interrupt sources, regardless of whether
embOS is used or not in the specified interrupt handler. Note that interrupt handlers running
on priorities from 127 or higher must not call any embOS function.

Note that the ISRIndex counts from 0 for the first entry in the vector table. The first
peripheral index therefore has the ISRIndex 16, because the first peripheral interrupt vector
is located after the 16 generic vectors in the vector table. This differs from index values
used with CMSIS.

Note

Please note there are Arm core specific restrictions when you must not change the
exception priority. For more information, please have a look in the according Arm
Architecture Reference Manual.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

Chapter 7

CMSIS

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

50 CHAPTER 7 Introduction

7.1 Introduction
ARM introduced the Cortex Microcontroller Software Interface Standard (CMSIS) as a ven-
dor independent hardware abstraction layer for simplifying software re-use. The standard
enables consistent and simple software interfaces to the processor, for peripherals, for real
time operating systems as embOS and other middleware. As SEGGER is one of the CMSIS
partners, embOS for Cortex-M is fully CMSIS compliant. embOS comes with a generic CMSIS
start project which should run on any Cortex-M3 CPU. All other start projects, even those
not based on CMSIS, are also fully CMSIS compliant and can be used as starting points
for CPU specific CMSIS projects. How to use the generic project and adding vendor specific
files to this or other projects is explained in the following chapters.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

51 CHAPTER 7 The generic CMSIS start project

7.2 The generic CMSIS start project
The folder Start\BoardSupport\CMSIS contains a generic CMSIS start project that should
run on any ARMv7-M core. The subfolder DeviceSupport\ contains the device specific
source and header files which have to be replaced by the device specific files of the vendor
to make the CMSIS sample start project device specific.

7.3 Device specific files needed for embOS with
CMSIS

• Device.h: Contains the device specific exception and interrupt numbers and
names. embOS needs the Cortex-M generic exception numbers PendSV_IRQn and
SysTick_IRQn, as well as the exception names PendSV_Handler and SysTick_Handler,
which are vendor independent and common for all devices. The sample file delivered
with embOS does not contain any peripheral interrupt vector numbers and names as
those are not needed by embOS. To make the embOS CMSIS sample device specific
and allow usage of peripheral interrupts, this file has to be replaced by the one which
is delivered from the CPU vendor.

• System_Device.h: Declares at least the two required system timer functions which are
used to initialize the CPU clock system and one variable which allows the application
software to retrieve information about the current CPU clock speed. The names of the
clock controlling functions and variables are defined by the CMSIS standard and are
therefore identical in all vendor specific implementations.

• System_Device.c: Implements the core specific functions to initialize the CPU, at least
to initialize the core clock. The sample file delivered with embOS contains empty
dummy functions and has to be replaced by the vendor specific file which contains the
initialization functions for the core.

• Startup_Device.s: The startup file which contains the initial reset sequence and
contains exception handler and peripheral interrupt handler for all interrupts. The
handler functions are declared weak, so they can be overwritten by the application which
implements the application specific handler functionality. The sample which comes with
embOS only contains the generic exception vectors and handler and has to be replaced
by the vendor specific startup file.

Startup code requirements:

The reset handler must call the SystemInit() function which is delivered with the core
specific system functions. When using an ARMv7 CPU which may have a VFP floating point
unit equipped, please ensure that the reset handler activates the VFP and VFP support
is selected in the project options. When VFP support is not selected, the VFP should not
be switched on. Otherwise, the SystemInit() function delivered from the device vendor
should also honor the project settings and enable the VFP or keep it disabled according the
project settings. Using CMSIS compliant startup code from the chip vendors may require
modification if it enables the VFP unconditionally.

7.4 Device specific functions/variables needed for
embOS with CMSIS

The embOS system timer is triggered by the Cortex-M generic system timer. The correct
core clock and pll system is device specific and has to be initialized by a low level init function
called from the startup code. embOS calls the CMSIS function SysTick_Config() to set up
the system timer. The function relies on the correct core clock initialization performed by
the low level initialization function SystemInit() and the value of the core clock frequency
which has to be written into the SystemCoreClock variable during initialization or after
calling SystemCoreClockUpdate().
• SystemInit(): The system init function is delivered by the vendor specific CMSIS library

and is normally called from the reset handler in the startup code. The system init

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

52 CHAPTER 7 CMSIS generic functions needed for embOS with
CMSIS

function has to initialize the core clock and has to write the CPU frequency into the
global variable SystemCoreClock.

• SystemCoreClock: Contains the current system core clock frequency and is initialized
by the low level initialization function SystemInit() during startup. embOS for CMSIS
relies on the value in this variable to adjust its own timer and all time related functions.
Any other files or functions delivered with the vendor specific CMSIS library may be
used by the application, but are not required for embOS.

7.5 CMSIS generic functions needed for embOS with
CMSIS

The embOS system timer is triggered by the Cortex-M generic system timer which has
to be initialized to generate periodic interrupts in a specified interval. The configuration
function SysTick_Config() for the system timer relies on correct initialization of the core
clock system which is performed during startup.
• SystemCoreClockUpdate(): This CMSIS function has to update the SystemCoreClock

variable according the current system timer initialization. The function is device specific
and may be called before the SystemCoreClock variable is accessed or any function
which relies on the correct setting of the system core clock variable is called. embOS
calls this function during the hardware initialization function OS_InitHW() before the
system timer is initialized.

• SysTick_Config(): This CMSIS generic function is declared an implemented in the
core_cm*.h file. It initializes and starts the SysTick counter and enables the SysTick
interrupt. For embOS it is recommended to run the SysTick interrupt at the second
lowest preemption priority. Therefore, after calling the SysTick_Config() function
from OS_InitHW(), the priority is set to the second lowest preemption priority ba a
call of NVIC_SetPriority(). The embOS function OS_InitHW() has to be called after
initialization of embOS during main and is implemented in the RTOSInit*.c file.

• SysTick_Handler(): The embOS timer interrupt handler, called periodically by the
interrupt generated from the SysTick timer. The SysTick_Handler is declared weak
in the CMSIS startup code and is replaced by the embOS Systick_Handler function
implemented in RTOSInit*.c which comes with the embOS start project.

• PendSV_Handler(): The embOS scheduler entry function. It is declared weak in the
CMSIS startup code and is replaced by the embOS internal function contained in
the embOS library. The embOS initialization code enables the PendSV exception and
initializes the priority. The application MUST NOT change the PendSV priority.

7.6 Customizing the embOS CMSIS generic start
project

The embOS CMSIS generic start project should run on every ARMv7-M CPU. As the generic
device specific functions delivered with embOS do not initialize the core clock system and
the PLL, the timing is not correct, a real CPU will run very slow. To run the sample project
on a specific CPU, replace all files in the DeviceSupport\ folder by the versions delivered
by the CPU vendor. The vendor and CPU specific files should be found in the CMSIS release
package, or are available from the core vendor. No other changes are necessary on the
start project or any other files.

To run the generic CMSIS start project on an ARMv6-M, you have to replace the embOS
libraries with libraries for ARMv6-M and have to add the specific vendor files.

7.7 Adding CMSIS to other embOS start projects
All CPU specific start projects are fully CMSIS compatible. If required or wanted in the
application, the CMSIS files for the specific CPU may be added to the project without any
modification on existing files. Note that the OS_InitHW() function in the RTOSInit file ini-

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

53 CHAPTER 7 Adding CMSIS to other embOS start projects

tialize the core clock system and pll of the specific CPU. The system clock frequency and
core clock frequency are defined in the RTOSInit file. If the application needs access to
the SystemCoreClock, the core specific CMSIS startup code and core specific initialization
function SystemInit has to be included in the project. In this case, OS_InitHW() function
in RTOSInit may be replaced, or the CMSIS generic RTOSInit_CMSIS.c file may be used
in the project.

7.7.1 Differences between embOS projects and CMSIS
Several embOS start projects are not based on CMSIS but are fully CMSIS compliant and can
be mixed with CMSIS libraries from the device vendors. Switching from embOS to CMSIS,
or mixing embOS with CMSIS functions is possible without problems, but may require some
modification when the interrupt controller setup functions from CMSIS shall be used instead
of the embOS functions.

7.7.1.1 Different peripheral ID numbers
Using CMSIS, the peripheral IDs to setup the interrupt controller start from 0 for the first
peripheral interrupt. With embOS, the first peripheral is addressed with ID number 16.
embOS counts the first entry in the interrupt vector table from 0, so, the first peripheral
interrupt following the 16 Cortex system interrupt entries, is 16. When the embOS functions
should be replaced by the CMSIS functions, this correction has to be taken into account, or
if available, the symbolic peripheral id numbers from the CPU specific CMSIS device header
file may be used with CMSIS. Note that using these IDs with the embOS functions will work
only, when 16 is added to the IDs from the CMSIS device header files.

7.7.1.2 Different interrupt priority values
Using embOS functions, the interrupt priority value ranges from 0 to 255 and is written
into the NVIC control registers as is, regardless of the number of implemented priority bits.
255 is the lowest priority, 0 is the highest priority. Using CMSIS, the range of interrupt
priority levels used to setup the interrupt controller depends on the number of priority bits
implemented in the specific CPU. The number of priority bits for the specific device shall be
defined in the device specific CMSIS header file as __NVIC_PRIO_BITS. If it is not defined
in the device specific header files, a default of 4 is set in the generic CMSIS core header
file. A CPU with 4 priority bits supports up to 16 preemption levels. With CMSIS, the range
of interrupt priorities for this CPU would be 0 to 15, where 0 is the highest priority and
15 is the lowest. To convert an embOS priority value into a value for the CMSIS functions,
the value has to be shifted to the right by (8 - __NVIC_PRIO_BITS). To convert an CMSIS
value for the interrupt priority into the value used with the embOS functions, the value has
to be shifted to the left by (8 - __NVIC_PRIO_BITS). In any case, half of the priorities
with lower values (from zero) are high priorities which must not be used with any interrupt
handler using embOS functions.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

54 CHAPTER 7 Interrupt and exception handling with CMSIS

7.8 Interrupt and exception handling with CMSIS
The embOS CPU specific projects come with CPU specific vector tables and empty exception
and interrupt handlers for the specific CPU. All handlers are named according the names
of the CMSIS device specific handlers and are declared weak and can be replaced by an
implementation in the application source files. The CPU specific vector table and interrupt
handler functions in the embOS start projects can be replaced by the CPU specific CMSIS
startup file of the CPU vendor without any modification on other files in the project. embOS
uses the two Cortex-M generic exceptions PendSV and SysTick and delivers its own handler
functions to handle these exceptions. All peripheral interrupts are device specific and are
not used with embOS except for profiling support and system analysis with embOSView
using a UART.

7.8.1 Enable and disable interrupts
The generic CMSIS functions NVIC_EnableIRQ() and NVIC_DisableIRQ() can be used in-
stead of the embOS functions OS_ARM_EnableISR() and OS_ARM_DisableISR() functions.
Note that the CMSIS functions use different peripheral ID indices to address the specific
interrupt number. embOS counts from 0 for the first entry in the interrupt vector table,
CMSIS counts from 0 for the first peripheral interrupt vector, which is ID number 16 for
the embOS functions. About these differences, please refer to Different peripheral ID num-
bers on page 53. To enable and disable interrupts in general, the embOS functions OS_IN-
T_IncDI() and OS_INT_DecRI() or other embOS functions described in the generic embOS
manual should be used instead of the intrinsic functions from the CMSIS library.

7.8.2 Setting the Interrupt priority
With CMSIS, the CMSIS generic function NVIC_SetPriority() can be used instead of the
OS_ARM_ISRSetPrio() function. Note that with the CMSIS function, the range of valid in-
terrupt priority values depends on the number of priority bits defined and implemented
for the specific device. The number of priority bits for the specific device shall be defined
in the device specific CMSIS header file as __NVIC_PRIO_BITS. If it is not defined in the
device specific header files, a default of 4 is set in the generic CMSIS core header file. A
CPU with 4 priority bits supports up to 16 preemption levels. With CMSIS, the range of
interrupt priorities for this CPU would be 0 to 15, where 0 is the highest priority and 15 is
the lowest. About interrupt priorities in an embOS project, please refer to Interrupt priori-
ties on page 39 and Interrupt nesting on page 41, about the differences between interrupt
priority and ID values used to setup the NVIC controller, please refer to Different interrupt
priority values on page 53.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

Chapter 8

Floating Point (FP) support

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

56 CHAPTER 8 ARM Floating-point Extension

8.1 ARM Floating-point Extension
Some Cortex-M4, Cortex-M7 and Cortex-M33 processors implement the ARMv7-M/ARMv8-M
Floating-point Extension, providing a Floating Point Unit (FPU).

When selecting such CPU and activating floating-point support in the IDE’s project options,
the compiler and linker will generate efficient code that uses the FPU when floating-point
calculations are performed in the application. With embOS, the FPU registers are automat-
ically saved and restored during preemptive and cooperative task switches. For efficiency
reasons, embOS does not save and restore the FPU registers for tasks that did not use
the FPU.

8.2 Using embOS libraries with floating-point support
When floating-point support is selected as project option, an embOS library with float-
ing-point support must be used in the project. embOS libraries with floating-point support
require that the FPU is switched on during startup and remains switched on during program
execution. When using a customized startup code, ensure that the FPU is switched on dur-
ing startup and that the ASPEN and LSPEN bits of the Floating-point Context Control
Register (FPCCR) are not cleared (their reset value is 1 and embOS expects them to
remain set).

In OS_Init(), a debug build of embOS checks whether the FPU was switched on and the
FPCCR.ASPEN and FPCCR.LSPEN bits are set: If any of these conditions is not met, embOS
calls OS_Error() with error code OS_ERR_FPU_NOT_ENABLED.

8.3 Using the FPU in interrupt service routines
Using the FPU in interrupt service routines does not require any additional functions in order
to save and restore the FPU registers, since these are automatically saved and restored
by hardware.

8.4 FPU default behavior
The behavior of the ARM FPU is controlled by different flags in the Floating-point Status
and Control Register (FPSCR). Each time a new floating-point context is generated,
the FPSCR is loaded with default values stored in the Floating-point Default Status
and Control Register (FPDSCR). The FPDSCR is initialized in OS_Init() using the value
0x02000000, thereby setting the Default NaN mode control bit to 1. If a different default
FPU behavior is desired, FPDSCR may be modified after OS_Init() was executed.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

Chapter 9

RTT and SystemView

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

58 CHAPTER 9 SEGGER Real Time Transfer

9.1 SEGGER Real Time Transfer
With SEGGER’s Real Time Transfer (RTT) it is possible to output information from the target
microcontroller as well as sending input to the application at a very high speed without
affecting the target’s real time behavior. SEGGER RTT can be used with any J-Link model
and any supported target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application’s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

9.2 SEGGER SystemView
SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemView, is not shipped with embOS. Instead, the most recent version of that applica-
tion is available for download from our website.

SystemView is initialized by calling SEGGER_SYSVIEW_Conf() on the target microcontroller.
This call is performed within OS_InitHW() of the respective RTOSInit*.c file. As soon as
this function was called, the connection of the SystemView desktop application to the target
can be started. In order to remove SystemView from the target application, remove the
SEGGER_SYSVIEW_Conf() call, the SEGGER_SYSVIEW.h include directive as well as any other
reference to SEGGER_SYSVIEW_* like SEGGER_SYSVIEW_TickCnt.

For more information on SEGGER SystemView and the download of the SystemView desktop
application, refer to segger.com/systemview.

Note

SystemView uses embOS timing API to get at start the current system time. This re-
quires that OS_TIME_ConfigSysTimer() was called before SEGGER_SYSVIEW_Start()
is called or the SystemView PC application is started.

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt
https://www.segger.com/systemview

Chapter 10

Technical data

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

60 CHAPTER 10 Resource Usage

10.1 Resource Usage
The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS
library mode OS_LIBMODE_XR.

Module Memory type Memory requirements

embOS kernel ROM ~1700 bytes
embOS kernel RAM ~136 bytes
Task control block RAM 36 bytes
Software timer RAM 20 bytes
Task event RAM 0 bytes
Event object RAM 12 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLock RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 12 bytes
Fixed Block Size Memory Pool RAM 32 bytes

embOS for Cortex-M and IAR © 2010-2023 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	IAR C-Spy stack check warning
	IAR C-Spy RTOS plugin
	Interrupt and thread safety
	Enabling thread-safe IAR system libraries

	Thread-Local Storage TLS
	API functions
	OS_TLS_Set()
	OS_TLS_SetTaskContextExtension()

	Arm erratum 837070
	Arm Stack limit register PSPLIM
	API functions
	OS_PSPLIM_Set()
	OS_PSPLIM_SetTaskContextExtension()

	Arm TrustZone support
	API functions
	OS_ARM_TZ_SetSecureStatePSP()
	OS_ARM_TZ_SetTaskContextExtension()

	Arm Pointer Authentication (PAC) and Branch target identification (BTI)

	Stacks
	Task stack for Cortex-M
	System stack for Cortex-M
	Interrupt stack for Cortex-M

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt vector table
	Required embOS system interrupt handler

	Interrupt-stack switching
	Zero latency interrupts
	Interrupt priorities
	Interrupt priorities with Cortex-M3, M4, M7 and M33 cores
	Interrupt priorities with Cortex-M0, M0+, M1 and M23 cores
	Priority of the embOS scheduler
	Priority of the embOS system timer
	Priority of embOS software timers
	Priority of application interrupts for Cortex-M0, M0+, M1 and M23 cores
	Priority of application interrupts for Cortex-M3, M4, M7 and M33 cores

	Interrupt nesting
	Interrupt enable behavior
	Interrupt enable behavior with Cortex-M0, M0+, M1 and M23 cores
	Interrupt enable behavior with Cortex-M3, M4, M7 and M33 cores

	Interrupt handling
	API functions
	OS_ARM_ISRInit()
	OS_ARM_InstallISRHandler()
	OS_ARM_EnableISR()
	OS_ARM_DisableISR()
	OS_ARM_ISRSetPrio()

	CMSIS
	Introduction
	The generic CMSIS start project
	Device specific files needed for embOS with CMSIS
	Device specific functions/variables needed for embOS with CMSIS
	CMSIS generic functions needed for embOS with CMSIS
	Customizing the embOS CMSIS generic start project
	Adding CMSIS to other embOS start projects
	Differences between embOS projects and CMSIS
	Different peripheral ID numbers
	Different interrupt priority values

	Interrupt and exception handling with CMSIS
	Enable and disable interrupts
	Setting the Interrupt priority

	Floating Point (FP) support
	ARM Floating-point Extension
	Using embOS libraries with floating-point support
	Using the FPU in interrupt service routines
	FPU default behavior

	RTT and SystemView
	SEGGER Real Time Transfer
	SEGGER SystemView

	Technical data
	Resource Usage

