

embOS

Real Time Operating System

CPU & Compiler specifics for

Renesas

V850 / V850E/ES/E2/E2M CPUs

and IAR compiler for V850

Document Rev. 5

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2/21 embOS for Renesas V850 / V850E CPUs and IAR compiler for V850

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

embOS for Renesas V850 / V850E CPUs and IAR compiler for V850 3/21

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

Contents

Contents.. 3
1. About this document ... 4

1.1. How to use this manual.. 4
2. Using embOS with IAR�s Embedded Workbench .. 5

2.1. Installation.. 5
2.2. First steps .. 6
2.3. The sample application Start2Tasks.c ... 7
2.4. Stepping through the sample application Main.c using CSpy.............................. 7

3. Build your own application... 11
3.1. Required files for an embOS application .. 11
3.2. Select a start project .. 11
3.3. Add your own code .. 11
3.4. Change memory model or library mode... 11
3.5. Modifications for a CPU which is not supported .. 12

4. V850 / V850E specifics ... 13
4.1. Memory models ... 13
4.2. Available libraries... 13

5. Stacks ... 16
5.1. Task stack for V850 ... 16
5.2. System stack for V850... 16
5.3. Interrupt stack for V850 ... 16
5.4. Stack specifics of the Renesas V850 family .. 16

6. Interrupts ... 17
6.1. What happens when an interrupt occurs? ... 17
6.2. Defining interrupt handlers in "C"... 17
6.3. Interrupt stack switching .. 18

7. HALT / IDLE / STOP Mode ... 19
8. Technical data... 20

8.1. Memory requirements .. 20
9. Files shipped with embOS for IAR V850 compiler ... 20
10. Index ... 21

4/21 embOS for Renesas V850 / V850E CPUs and IAR compiler for V850

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

1. About this document
This guide describes how to use embOS V850 Real Time Operating System
for the Renesas V850 series of microcontroller using IAR compiler for V850 and
IAR�s Embedded Workbench 4.x

1.1. How to use this manual

This manual describes all CPU and compiler specifics for embOS V850 for IAR
compiler. Before actually using embOS, you should read or at least glance
through this manual in order to become familiar with the software.
Chapter 2 gives you a step-by-step introduction, how to install and use embOS
using IAR workbench. If you have no experience using embOS, you should fol-
low this introduction, even if you do not plan to use C-SPY or IAR�s Embedded
Workbench, because it is the easiest way to learn how to use embOS in your
application.
Most of the other chapters in this document are intended to provide you with
detailed information about the functionality and fine-tuning of embOS for V850
using the IAR compiler and IARs Embedded Workbench.

embOS for Renesas V850 / V850E CPUs and IAR compiler for V850 5/21

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

2. Using embOS with IAR�s Embedded Work-
bench

2.1. Installation

embOS is shipped on CD-ROM or as a zip-file in electronic form.

In order to install it, proceed as follows:

If you received a CD, copy the entire contents to your hard-drive into any folder
of your choice. When copying, please keep all files in their respective sub direc-
tories. Make sure the files are not read only after copying.
If you received a zip-file, please extract it to any folder of your choice, preserv-
ing the directory structure of the zip-file.

Assuming that you are using IAR�s Embedded Workbench to develop your ap-
plication, no further installation steps are required. You will several sample
workspaces and prepared sample start projects for different V850 CPUs, which
you should use and modify to write your application. So follow the instructions
of the next chapter �First steps�.

You should do this even if you do not intend to use IAR�s Embedded Work-
bench for your application development in order to become familiar with
embOS.

If for some reason you will not work with IAR�s Embedded Workbench, you
should:
Copy either all or only the library-file that you need to your work-directory. Also
copy the entire CPU specific subdirectory and the embOS header file RTOS.h.
This has the advantage that when you switch to an updated version of embOS
later in a project, you do not affect older projects that use embOS also.
embOS does in no way rely on IAR�s Embedded Workbench, it may be used
without the workbench using batch files or a make utility without any problem.

6/21 embOS for Renesas V850 / V850E CPUs and IAR compiler for V850

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

2.2. First steps

After installation of embOS (→ Installation) you are able to create your first
multitasking application. You received several ready to go sample start projects
for different V850 CPUs and it is a good idea to use one of those as a starting
point of all of your applications.

Your embOS distribution contains the folder �Start\Boardsupport� which con-
tains several CPU specific subfolders. Each CPU specific subfolder contains a
sample start project readily setup for the specific CPU. Sample applications are
located in the �Application� subfolders and every additional files needed are lo-
cated in the �setup� folder.
To start, select one CPU specific start project.
Every project also contains a configuration setup for the IAR CSpy simulator, so
there is no real hardware required to strt.

To get your application running, you should proceed as follows:
• Create a work directory for your application, for example c:\work
• Copy all files and subdirectories from the embOS distribution disk into your

work directory.
• Clear the read only attribute of all files in the new �Start�-folder in your work-

ing directory.
• Open the folder �Start� in your work directory.
• Open one project workspace from the BoardSupport\CPU_*\ subfolder�.
• Select a configuration, for example SIM_DP, which is uilt for the CSpy

simulator.
• Build the start project

After building the start project your screen should look like follows:

embOS for Renesas V850 / V850E CPUs and IAR compiler for V850 7/21

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

2.3. The sample application Start2Tasks.c

The following is a printout of the sample application Start2Tasks.c. It is a good
starting-point for your application.

What happens is easy to see:
After initialization of embOS, two tasks are created and started
The two tasks are activated and execute until they run into the delay, then sus-
pend for the specified time and continue execution.

/***
* SEGGER MICROCONTROLLER GmbH & Co KG
* Solutions for real time microcontroller applications
**
--
File : Start_2Tasks.c
Purpose : Skeleton program for embOS
-------- END-OF-HEADER ---
*/

#include "RTOS.h"

OS_STACKPTR int StackHP[128], StackLP[128]; /* Task stacks */
OS_TASK TCBHP, TCBLP; /* Task-control-blocks */

static void HPTask(void) {
 while (1) {
 OS_Delay (10);
 }
}

static void LPTask(void) {
 while (1) {
 OS_Delay (50);
 }
}

/***
*
* main
*
***/

int main(void) {
 OS_IncDI(); /* Initially disable interrupts */
 OS_InitKern(); /* Initialize OS */
 OS_InitHW(); /* Initialize Hardware for OS */
 /* You need to create at least one task here ! */
 OS_CREATETASK(&TCBHP, "HP Task", HPTask, 100, StackHP);
 OS_CREATETASK(&TCBLP, "LP Task", LPTask, 50, StackLP);
 OS_Start(); /* Start multitasking */
 return 0;
}

2.4. Stepping through the sample application Main.c using CSpy

When starting the CSpy simulator or emulator after building the project, you will
usually see the main() function, or you may look at the startup code and have
to set a breakpoint at main(). Now you can step through the program.
OS_IncDI() disables interrupts and tells embOS, that interrupts should not be
enabled during OS_InitKern().
OS_InitKern()initializes embOS �Variables. If OS_incDI() was not called
before, interrupts will be enabled. As this function is part of the embOS library,
you may step into it in disassembly mode only.

8/21 embOS for Renesas V850 / V850E CPUs and IAR compiler for V850

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

OS_InitHW() is part of RTOSINIT.c and therefore part of your application. Its
primary purpose is to initialize the hardware required to generate the timer-tick-
interrupt for embOS. Step through it to see what is done.
OS_COM_Init() in OS_InitHW() is optional. It is required if embOSView
should be used. As simulators usually can not simulate UART operations,
OS_UART may be defined as (-1) to disable UART initialization and communi-
cation when using a simulation target.
OS_Start() should be the last line in main, since it starts multitasking and
does not return.

Before you step into OS_Start(), you should set breakpoints in the two
tasks:

When you step over OS_Start(), the next line executed is already in the
highest priority task created. (you may also step into OS_Start(), then step-
ping through the task switching process in disassembly mode). In our small
start program, HPTask() is the highest priority task and is therefore active.

embOS for Renesas V850 / V850E CPUs and IAR compiler for V850 9/21

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

If you continue stepping, you will arrive in the task with the lower priority:

Continuing to step through the program, there is no other task ready for execu-
tion. embOS will suspend LPTask and switch to the idle-loop, which is an end-
less loop which is always executed if there is nothing else to do (no task is
ready, no interrupt routine or timer executing).
OS_Idle() is found in RTOSInit.c:

10/21 embOS for Renesas V850 / V850E CPUs and IAR compiler for V850

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

If you set a breakpoint in one or both of our tasks, you will see that they con-
tinue execution after the given delay.
Coming from OS_Idle(), you should execute the �Go� command to arrive at
the highest priority task after its delay is expired.

embOS for Renesas V850 / V850E CPUs and IAR compiler for V850 11/21

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

3. Build your own application
To build your own application, you should start with one of the sample start pro-
jects. This has the advantage, that all necessary files are included and all set-
tings for the project are already done.

3.1. Required files for an embOS application

To build an application using embOS, the following files from your embOS dis-
tribution are required and have to be included in your project:
• RTOS.h from sub folder Start\Inc\

This header file declares all embOS API functions and data types and has to
be included in any source file using embOS functions.

• RTOSInit_*.c, the CPU specific initialization, from one CPU specific sub-
folder Start\Boardsupport\CPU_*\Setup.
It contains the hardware dependent initialization code for the embOS timer
and optional functions for a UART to communicate with embOSiew.

• OS_Error.c from a CPU specific �Start\BoardSupport\CPU_*\Setup\� folder.
The OS_Error() function is called when any error during runtime is de-
tected by the stack check or debug library. When using an emulator, it may
be helpful to set a breakpoint at OS_Error(). Therefore it is delivered as
source code.

• One embOS library from the �Start\Lib\� subfolder
• Additional CPU specific files in the �Start\BoardSupport\CPU_*\Setup\� folder

may be required depending on the V850 CPU variant.

When you decide to write your own startup code, please ensure that non initial-
ized variables are initialized with zero, according to �C� standard, as this is re-
quired by embOS.
Your main() function has to initialize embOS by call of OS_InitKern() and
OS_InitHW() prior any other embOS functions except OS_IncDI() are
called.

3.2. Select a start project

embOS comes with different start projects for different Renesas V850 CPU
derivates.
For your own application, select a start project that (mostly) fits your CPU.

3.3. Add your own code

For your own code, you may add a new group to the project.
You may also modify or replace the sample application in the Application folder.

3.4. Change memory model or library mode

If you have to select an other memory model or want to use an other type of
embOS library which is not used in one configuration of the selected start pro-
ject, you have to replace the embOS library in your project:
• Add the appropriate library from the Lib-subdirectory to the Lib group.
• Disable or remove all other libraries.

12/21 embOS for Renesas V850 / V850E CPUs and IAR compiler for V850

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

Finally check the project options about the target CPU memory and code model
settings and compiler settings according the library mode used. Refer to chap-
ter 4 about the library naming conventions to select the correct library and set
the appropriate define in the preprocessor settings for your project.

3.5. Modifications for a CPU which is not supported

If your CPU is not supported by the current version of embOS, you have to
check and modify the hardware dependent functions found in RTOSInit_*.c.

Check all RTOSInit_*.c files found in one of the CPU specific �Setup� subfold-
ers to find out which one is closest to your unsupported CPU.
You should not modify the files delivered with embOS.
Make a copy of the CPU specific folder which contains the project, the selected
RTOSInit_*.c and rename it according to your CPU derivate.
Then check and modify the following entries in your new RTOSInit_*.c

• Modify the special function register #include according to your CPU.

#include <io_V850_df3017.h> /* SFR file delivered from IAR */
Normally the sfr definition file is delivered by IAR. If there is no special file for
your CPU available, please check whether you may use any file available.
Check the addresses of sfrs used in RTOSInit_*.c.

• Check and modify the timer init function OS_InitHW()
• Check and modify the time measurement function OS_GetTime_Cycles()
• Check the interrupt vector related to OS_ISR_Tick()

#ifdef __ghs /* This declaration for Green Hills */
__interrupt void OS_ISR_Tick(void)
 #pragma intvect OS_ISR_Tick 0x280
#else /* This for IAR compiler */
 #pragma vector = 0x280
__interrupt void OS_ISR_Tick(void)
#endif
{
 OS_TickHandler();
}

When embOSView should be used, a UART has to be initialized and handled
in RTOSInit_*.c.
• Check and modify the UART init function OS_COM_Init()
• Check and modify the transmit function OS_COM_Send1()
• Check and modify the transmit interrupt handler function OS_ISR_tx()and

its related interrupt vector.
• Check and modify the receive interrupt handler function OS_ISR_rx()and

its related interrupt vector.

embOS for Renesas V850 / V850E CPUs and IAR compiler for V850 13/21

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

4. V850 / V850E specifics

4.1. Memory models

embOS supports all memory and code model combinations that IAR' s C-
Compiler supports.

4.2. Available libraries

embOS for V850 for IAR compiler is shipped with 196 different libraries, one
for each CPU / addressing mode / memory model / code model and library type
combination. The libraries are named as follows:

OS w x y z_LM.r85

Parameter Meaning Values

V: V850 W Specifies the CPU variant
E: V850E/V850ES/V850E2M
S: short address X Short address mode
N: NO short address
T: Tiny
S: Small
L: Large

Y Memory model

M: Medium (V850E2M only)
N: Normal Z Code model
L: Large
XR: eXtreme release
R: Release
S: Stack check
SP: Stack check + profiling
D: Debug + stack check
DP: Debug + stack check
 + Profiling

LM Library mode

DT: Debug + stack check
 + profiling + Trace

Example:
osESTN_R.r85 is the library for a V850E core, short addressing mode, tiny
memory model, normal code model and release build library type. Depending
on the library type, you have to set the appropriate compiler setting (define) for
your project.

14/21 embOS for Renesas V850 / V850E CPUs and IAR compiler for V850

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

embOS library modes and library mode definition:

Processor Library type Library define
V850 eXtreme Release OSV x y z_R OS_LIBMODE_XR
V850 Release OSV x y z_R OS_LIBMODE_R
V850 Stack-check OSV x y z_S OS_LIBMODE_S
V850 Stack-check + Profiling OSV x y z_SP OS_LIBMODE_SP
V850 Debug OSV x y z_D OS_LIBMODE_D
V850 Debug + Profiling OSV x y z_DP OS_LIBMODE_DP
V850 Debug + Profiling + Trace OSV x y z_DT OS_LIBMODE_DT
V850E eXtreme Release OSV x y z_R OS_LIBMODE_R
V850E Release OSV x y z_R OS_LIBMODE_R
V850E Stack-check OSV x y z_S OS_LIBMODE_S
V850E Stack-check + Profiling OSV x y z_SP OS_LIBMODE_SP
V850E Debug OSV x y z_D OS_LIBMODE_D
V850E Debug + Profiling OSV x y z_DP OS_LIBMODE_DP
V850E Debug + Profiling + Trace OSV x y z_DT OS_LIBMODE_DT
V850E2M eXtreme Release OSE x M z_R OS_LIBMODE_XR
V850E2M Release OSE x M z_R OS_LIBMODE_R
V850E2M Stack-check OSE x M z_S OS_LIBMODE_S
V850E2M Stack-check + Profiling OSE x M z_SP OS_LIBMODE_SP
V850E2M Debug OSE x M z_D OS_LIBMODE_D
V850E2M Debug + Profiling OSE x M z_DP OS_LIBMODE_DP
V850E2M Debug + Profiling + Trace OSE x M z_DT OS_LIBMODE_DT

When using the IAR workbench, please check the following points:
• Setup the CPU variant, memory and code model as general project options

embOS for Renesas V850 / V850E CPUs and IAR compiler for V850 15/21

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

• One embOS library is included and enabled in the project.
• The library type definition (OS_LIBMODE_*) is set as compiler option

16/21 embOS for Renesas V850 / V850E CPUs and IAR compiler for V850

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

5. Stacks

5.1. Task stack for V850

Every embOS task has to have its own stack. Task stacks can be located in
any RAM memory location.
The stack-size required is the sum of the stack-size of all routines plus a basic
stack size.
The basic stack size is the size of memory required to store the registers of the
CPU plus the stack size required by embOS -routines.
For the V850 CPUs, this minimum stack size is about 136 bytes to store the
CPU registers. A practical minimum value is about 180 bytes

5.2. System stack for V850

The system stack size required by embOS is about 40 bytes. However, since
the system stack is also used by the application before the start of multitasking
(the call of OS_Start()), and because software-timers and interrupts also use
the system-stack, the actual stack requirements depend on the application.
Interrupt stack switching of embOS also uses the system stack for interrupts.
The size of the system stack is given in the link-file as size of CSTACK.

5.3. Interrupt stack for V850

V850 CPUs do not support a separate hardware interrupt stack. Therefore
every interrupt runs on the task stack, as long as interrupt functions do not use
interrupt stack switching functions.
To reduce task stack load by interrupts, embOS uses the system stack as in-
terrupt stack. Interrupt handler should use OS_EnterIntStack() and
OS_LeaveIntstack() to switch to the interrupt stack. Please refer to chapter
�Interrupts�.

5.4. Stack specifics of the Renesas V850 family

The Renesas V850 family of microcontroller can address the whole memory
space as stack. Therefore, stacks can be located anywhere in RAM. For per-
formance reasons you should try to locate stacks in fast RAM.

embOS for Renesas V850 / V850E CPUs and IAR compiler for V850 17/21

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

6. Interrupts

6.1. What happens when an interrupt occurs?

• The CPU-core receives an interrupt request.
• As soon as interrupts are enabled and the processors interrupt priority level

is below the current interrupt priority level of the interrupting source, the inter-
rupt is accepted and executed.

• The CPU saves the current PC in the EIPC register.
• The CPU saves the current processor status in the EIPSW register.
• An exception is written into ECR
• Further interrupts are disabled, the EP bit is cleared
• The CPU jumps to the address specified in the vector table for the interrupt

service routine (ISR) of the interrupting source.
• ISR : Save registers.
• ISR : User-defined functionality
• ISR : Restore registers
• ISR: Execute the RETI command, restoring the saved processor status word

and the saved PC thus continuing the interrupted program.

6.2. Defining interrupt handlers in "C"

Routines defined with the keyword __interrupt automatically save & restore
the registers they modify and return with RETI.
The corresponding interrupt vector number may be defined by a #pragma direc-
tive prior the interrupt service routine.
For a detailed description on how to define an interrupt routine in "C", refer to
the IAR Compiler Reference guide.

"Simple" interrupt-routine:
#pragma vector = 0x1c0
__interrupt void OS_ISR_tx(void) {
 SendNextChar();
}

Interrupt-routine using embOS functions:
#pragma vector = 0x1c0
__interrupt void OS_ISR_tx(void) {
 OS_EnterInterrupt();
 OS_OnTx();
 OS_LeaveInterrupt();
}

Every interrupt service routine which uses embOS functions has to inform
embOS that interrupt code is running. Therefore the first command in an inter-
rupt service routine should be OS_EnterInterrupt(), the last command has
to be OS_LeaveInterrupt().
If interrupts should be re-enabled in an interrupt service routine, thus allowing
nested interrupts, use OS_EnterNestableInterrupt() and
OS_LeaveNestableInterrupt()

18/21 embOS for Renesas V850 / V850E CPUs and IAR compiler for V850

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

6.3. Interrupt stack switching

Since the V850 CPUs do not have a separate stack pointer for interrupts, every
interrupt runs on the current stack. To reduce stack load of tasks, embOS of-
fers its own interrupt stack which is located in the system stack.
To use embOS interrupt stack, call OS_EnterIntStack() at the beginning of
an interrupt handler just after the call of the embOS ISR entry function
OS_EnterInterrupt() or OS_EnterNestableInterrupt() and
OS_LeaveIntStack() at the end just before calling
OS_LeaveNestableInterrupt() or OS_LeaveInterrupt().

An interrupt handler using interrupt stack switching must not use local
variables.
An interrupt handler using interrupt stack switching shall call a function
that does the work and handles the interrupt.

Interrupt-routine using the embOS interrupt stack:
static void OS_ISR_Rx_Handler(void) {
 if (ASIS1 & 0x07) { /* Check any reception error */
 Dummy = RXBL1; /* Reset error, discard Byte */
 } else {
 OS_OnRx(RXBL1); /* Process data */
 }
}

#pragma vector = 0x360
__interrupt void OS_ISR_rx(void) {
 OS_EnterNestableInterrupt(); /* We will enable interrupts */
 OS_EnterIntStack(); /* We will use interrupt stack */
 OS_ISR_Rx_Handler(); /* Call to handler is required ! */
 OS_LeaveIntStack(); /* Interrupt stack switching does */
 OS_LeaveNestableInterrupt(); /* not allow local variables in ISR */
}

Interrupt stack switching is efficient when using multiple nestable interrupts with
different priorities, because only the first interruptible interrupt will store some
registers onto the current stack, before switching to the embOS interrupt stack.
All additional interrupts with higher priority run on the interrupt stack as long as
the interrupt stack is active.

embOS for Renesas V850 / V850E CPUs and IAR compiler for V850 19/21

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

7. HALT / IDLE / STOP Mode
Usage of the HALT mode is one possibility to save power consumption during
idle times. If required, you may modify the OS_Idle() routine, which is part of
the hardware dependent module RtosInit.c.
As internal peripheral clock is not stopped in this mode, embOS keeps func-
tioning. Any interrupt will wake up the CPU and will therefore continue sus-
pended tasks if required.

IDLE and STOP mode stop internal peripheral clock and can only be resumed
by NMI or RESET and should therefore not be used to reduce power consump-
tion during idle times in OS_Idle()

20/21 embOS for Renesas V850 / V850E CPUs and IAR compiler for V850

  2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

8. Technical data

8.1. Memory requirements

These values are neither precise nor guaranteed but they give you a good idea
of the memory-requirements. They vary depending on the current version of
embOS. The values in the table are for the tiny memory model, short address
mode and release build library.

Short description ROM

[byte]
RAM
[byte]

Kernel approx.1870 38
Add. Task --- 32
Add. Semaphore --- 8
Add. Mailbox --- 20
Add. Timer --- 20
Power-management --- ---

9. Files shipped with embOS for IAR V850 com-
piler!

Directory File Explanation
root *.pdf Generic API- and target specific docu-

mentation
root Release.html Release notes of embOS V850
root embOSView.exe Utility for runtime analysis, described in

generic documentation
Start\Inc\ RTOS.h To be included in any file using embOS

functions
Start\Lib\ os*.r85 embOS libraries
Start\CPU_*\ Start*.eww CPU specific sample workspace
Start\CPU_*\ Start*.ewp CPU specific sample project
Start\CPU_*\ Start*.eww Debugger configuration file for sample

project
Start\CPU_*\
Application\

*.c Sample application programs.

Start\CPU_*\
Setup\

OS_Error.c embOS error handler, used in stack
check or debug builds

Start\CPU_*\
Setup\

RTOSInit_*.c Target CPU specific init functions. May be
modified according to your hardware.

Start\CPU_*\
Setup\

*.mac Target CPU specific simulation macro files
for C-SPY simulator.

Start\CPU_*\
Setup\

. Target CPU specific linker files and others
required for the specific CPU variant

embOS for Renesas V850 / V850E CPUs and IAR compiler for V850 21/21

 2001 - 2011 SEGGER Microcontroller GmbH & Co. KG

10. Index
_
__interrupt.................................... 17
C
CSTACK...................................... 16
H
Halt-mode 19
I
Idle-mode 19
Installation 5
Interrupt stack 16
Interrupt stack switching.............. 18

Interrupts17
M
memory models13
Memory requirements20
O
OS_EnterInterrupt()17
OS_EnterIntStack()16, 18
OS_EnterNestableInterrupt()........17
OS_Idle()......................................19
OS_LeaveInterrupt()17
OS_LeaveIntStack()16, 18
OS_LeaveNestableInterrupt().......17

S
Stacks .. 16
Stacks, interrupt stack.................. 16
Stacks, system stack..................... 16
Stacks, task stacks........................ 16
Stop-mode 19
System stack 16
T
Task stacks................................... 16
Technical data.............................. 20

	Contents
	About this document
	How to use this manual

	Using embOS with IAR’s Embedded Workbench
	Installation
	First steps
	The sample application Start2Tasks.c
	Stepping through the sample application Main.c using CSpy

	Build your own application
	Required files for an embOS application
	Select a start project
	Add your own code
	Change memory model or library mode
	Modifications for a CPU which is not supported

	V850 / V850E specifics
	Memory models
	Available libraries

	Stacks
	Task stack for V850
	System stack for V850
	Interrupt stack for V850
	Stack specifics of the Renesas V850 family

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in "C"
	Interrupt stack switching

	HALT / IDLE / STOP Mode
	Technical data
	Memory requirements

	Files shipped with embOS for IAR V850 compiler
	Index

