
embOS
Real-Time Operating System

CPU & Compiler specifics for ARM
using IAR Embedded Workbench

Document: UM01002
Software Version: 5.18.3.0

Revision: 0
Date: July 19, 2024

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2024 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: July 19, 2024

Software Revision Date By Description

5.18.3.0 0 240719 MC New software version.

5.18.0.1 0 230307 MC New software version.

5.18.0.0 0 221111 MM Chapter “CPU and compiler specifics” updated.
Chapter “RTT and SystemView” added.

5.16.1.1 0 220707 MM Chapter “Libraries” and “VFP and NEON support” updated.

5.16.1.0 0 220201 MM Chapter “CPU and compiler specifics” updated.

5.14.0.0 1 210708 MM Chapter “VFP and NEON support” updated.

5.14.0.0 0 210618 MM New software version.

5.8.2.1 0 200417 MC New software version.

5.8.2.0 0 200304 MM New software version.
Chapter “MMU/MPU and cache support” updated.

5.06 0 191010 MM New software version.

5.02 0 180710 MC New software version.

4.40 0 180201 MC New software version.

4.38 0 171013 MC New software version.

4.36 0 170802 MC New software version.

4.34 1 170707 MC Updated chapter “libraries” to include descriptions for both IAR EWARM
6/7 and IAR EWARM 8.

4.34 0 170330 MC New software version.

4.16 0 160406 RH New software version.

4.14 0 151130 TS New software version.

4.12b 0 150928 TS New software version.

3.90 0 140310 AW

New software version.
Global enable and disable interrupts. Described in the generic manual.
Chapter 4, “Debug outputs, printf” and SWI_Handler() description
added.
Chapter 7, “MMU and cache support”, function descripition added:
OS_ARM_MMU_v2p()
OS_ARM_MMU_GetVirtualAddr()
OS_ARM720_MMU_v2p()
OS_ARM720_MMU_GetVirtualAddr()

3.88a 0 130503 AW New software version.

3.86n 1 130312 AW Chapter 4, “Thread safe system libraries with IAR compiler V6.4 or new-
er” corrected, one more required linker directive added.

3.86n 0 121210 AW

New software version.
Chapter 4, “Thread safe system libraries with IAR compiler V6.4 or new-
er” added to describe the procedure to activate thread safe library sup-
port with newer IAR compiler.

3.86l 0 121122 AW New software version.

3.86g 0 120806 AW New software version.

3.86f 0 120801 AW New software version.

3.84c 0 120110 TS New software version.

3.84a 0 111214 TS
New software version.
New function for VFP/Neon support in chapter 4: OS_ExtendTaskCon-
text_NEON()

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

4

Software Revision Date By Description

3.84 0 111105 AW New software version.

3.82v 0 110715 AW

New software version.
New functions for thread locale storage and VFP support in chapter 4:
OS_ExtendTaskContext_TLS()
OS_ExtendTaskContext_TLS_VFP()
OS_ExtendTaskContext_VFP()

3.82t 0 110503 AW
New software version.
Project settings and macros corrected for EWARM6.
New library mode OS_LIBMODE_DP with low optimization.

3.82m 0 101124 AW
New software version.
Thread-local storage and thread safe library support for IAR compiler V6
added, Chapter “Compiler specifics”.

3.82 1 090918 TS New software version.

3.80 0 090625 SK New software version.
Chapter “Using embOS ARM”: Sample corrected.

3.62 2 090513 SK Chapter “ARM core version specifics”: “Naming conventions for prebuild
libraries compatible to IAR EW V5.x” corrected.

3.62 1 081209 SK Chapter footer corrected.

3.62 0 080904 SK New software version.
Chapter “C-SPY plug-in” added.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (assembler, linker, C compiler).
• The C programming language.
• The target processor.
• DOS command line.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

6

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

7

Table of contents

1 Using embOS ..10

1.1 Installation .. 11
1.2 First Steps .. 12
1.3 The example application OS_StartLEDBlink.c ... 13
1.4 Stepping through the sample application ...14

2 Build your own application ..18

2.1 Introduction ...19
2.2 Required files for an embOS ..19
2.3 Change library mode .. 19
2.4 Select another CPU .. 19

3 Libraries ...20

3.1 Naming conventions for prebuilt libraries .. 21

4 CPU and compiler specifics ..23

4.1 IAR C-Spy stack check warning ... 24
4.2 IAR C-Spy RTOS plugin .. 24
4.3 Interrupt and thread safety ...24
4.4 Thread-Local Storage TLS ... 26

4.4.1 API functions .. 26
4.4.1.1 OS_TLS_Set() ..27
4.4.1.2 OS_TLS_SetTaskContextExtension() ..28

4.5 Debug output .. 29

5 Stacks ... 30

5.1 Task stack ...31
5.2 System stack ...31
5.3 Interrupt stack .. 31
5.4 Stack specifics ... 32

6 Interrupts ... 33

6.1 What happens when an interrupt occurs? ..34
6.2 Defining interrupt handlers in C ...34
6.3 Interrupt handling without vectored interrupt controller 34
6.4 Interrupt handling with vectored interrupt controller ...36

6.4.1 API functions .. 36
6.4.1.1 OS_ARM_InstallISRHandler() ... 37

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

8

6.4.1.2 OS_ARM_EnableISR() ... 38
6.4.1.3 OS_ARM_DisableISR() .. 39
6.4.1.4 OS_ARM_ISRSetPrio() ...40
6.4.1.5 OS_ARM_ClearPendingFlag() ..41
6.4.1.6 OS_ARM_IsPending() .. 42
6.4.1.7 OS_ARM_AssignISRSource() .. 43
6.4.1.8 OS_ARM_EnableISRSource() ..44
6.4.1.9 OS_ARM_DisableISRSource() ...45
6.4.1.10 OS_ARM_SetISRCfg() ..46
6.4.1.11 OS_ARM_SetVBAR() ... 47

6.5 Interrupt-stack switching .. 48
6.6 Fast Interrupt (FIQ) ... 49

7 MMU/MPU and cache support ... 50

7.1 Introduction ...51
7.2 MMU and cache handling for ARM720 CPUs ... 52

7.2.1 API functions .. 52
7.2.1.1 OS_ARM720_MMU_InitTT() ..53
7.2.1.2 OS_ARM720_MMU_AddTTEntries() ..54
7.2.1.3 OS_ARM720_MMU_Enable() ...55
7.2.1.4 OS_ARM720_MMU_GetVirtualAddr() ... 56
7.2.1.5 OS_ARM720_MMU_v2p() ...57
7.2.1.6 OS_ARM720_CACHE_Enable() ..58
7.2.1.7 OS_ARM720_CACHE_CleanRange() ...59
7.2.1.8 OS_ARM720_CACHE_InvalidateRange()60

7.3 MMU handling for ARMv5/ARMv7-A CPUs .. 61
7.3.1 API functions .. 61

7.3.1.1 OS_ARM_MMU_InitTT() ... 62
7.3.1.2 OS_ARM_MMU_AddTTEntries() ...63
7.3.1.3 OS_ARM_MMU_Enable() ..65
7.3.1.4 OS_ARM_MMU_GetVirtualAddr() ...66
7.3.1.5 OS_ARM_MMU_v2p() .. 67

7.4 MPU handling for ARMv7-R CPUs ... 68
7.4.1 API functions .. 68

7.4.1.1 OS_ARM_MPU_AddEntry() ... 69
7.4.1.2 OS_ARM_MPU_Enable() .. 71
7.4.1.3 OS_ARM_MPU_GetMinRegionSize() ... 72
7.4.1.4 OS_ARM_MPU_GetNumRegions() ..73
7.4.1.5 OS_ARM_MPU_Init() ... 74

7.5 Cache handling for ARMv5/ARMv7 CPUs ..75
7.5.1 API functions .. 75

7.5.1.1 OS_ARM_ICACHE_Enable() ..76
7.5.1.2 OS_ARM_ICACHE_Invalidate() ... 77
7.5.1.3 OS_ARM_DCACHE_Enable() ...78
7.5.1.4 OS_ARM_DCACHE_Invalidate() .. 79
7.5.1.5 OS_ARM_DCACHE_Clean() .. 80
7.5.1.6 OS_ARM_DCACHE_CleanRange() ..81
7.5.1.7 OS_ARM_DCACHE_InvalidateRange() ..82
7.5.1.8 OS_ARM_CACHE_Sync() ..83
7.5.1.9 OS_ARM_AddL2Cache() .. 84
7.5.1.10 OS_ARM_CACHE_GetLineSize() .. 85

7.6 MMU and cache handling program sample ...86
7.7 MPU and cache handling program sample ... 87

8 VFP and NEON support ... 88

8.1 Introduction ...89
8.2 Using embOS libraries with VFP/NEON support .. 89
8.3 Using the VFP/NEON unit in interrupt service routines89

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

9

9 RTT and SystemView ...90

9.1 SEGGER Real Time Transfer .. 91
9.2 SEGGER SystemView ..91

10 Technical data ...92

10.1 Resource Usage ... 93

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

Chapter 1

Using embOS

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

11 CHAPTER 1 Installation

1.1 Installation
This chapter describes how to get started with embOS. You should follow these steps to
become familiar with embOS.

embOS is shipped as a zip-file in electronic form. To install it, you should extract the zip-file
to any folder of your choice while preserving its directory structure (i.e. keep all files in their
respective sub directories). Ensure the files are not read-only after extraction. Assuming
that you are using an IDE to develop your application, no further installation steps are
required.

Note

The projects at /Start/BoardSupport/<DeviceManufacturer>/<Board> assume a
relative location for the /Start/Lib and /Start/Inc folders. If you copy a BSP folder
to another location, you will need to adjust the include paths of the project accordingly.

At /Start/BoardSupport/<DeviceManufacturer>/<Board> you should find several exam-
ple start projects, which you may adapt to write your application. To do so, follow the in-
structions of section First Steps on page 12.

In order to become familiar with embOS, consider using the example projects (even if you
will not use the IDE for application development).

If you do not or do not want to work with an IDE, you may copy either all library files or only
the library that is used with your project into your work directory. embOS does in not rely on
an IDE, but may be used without an IDE just as well, e.g. using batch files or a make utility.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

12 CHAPTER 1 First Steps

1.2 First Steps
After installation of embOS, you can create your first multitasking application. You received
several ready-to-go sample workspaces and projects as well as all required embOS files
inside the subfolder Start. The subfolder Start/BoardSupport contains the workspaces
and projects, sorted into manufacturer- and board-specific subfolders. It is a good idea to
use one of the projects as a starting point for any application development.

To get your new application running, you should:
• Create a directory for your development.
• Copy the whole Start folder from your embOS shipment into the directory.
• Clear the read-only attribute of all files in the copied Start folder.
• Open one sample workspace/project in

Start/BoardSupport/<DeviceManufacturer>/<Board> with your IDE (for example, by
double clicking it).

• Build the project. It should be built without any error or warning messages.

After building the project of your choice, the screen should look like this:

For additional information, you should open the ReadMe.txt file that is part of every BSP.
It describes the different configurations of the project and, if required, gives additional
information about specific hardware settings of the supported evaluation board(s).

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

13 CHAPTER 1 The example application OS_StartLEDBlink.c

1.3 The example application OS_StartLEDBlink.c
The following is a printout of the example application OS_StartLEDBlink.c. It is a good
starting point for your application (the actual file shipped with your port of embOS may
differ slightly).

What happens is easy to see:

After initialization of embOS, two tasks are created and started. The two tasks get activated
and execute until they run into a delay, thereby suspending themselves for the specified
time, and eventually continue execution.

/***
* SEGGER Microcontroller GmbH *
* The Embedded Experts *
**

-------------------------- END-OF-HEADER -----------------------------
File : OS_StartLEDBlink.c
Purpose : embOS sample program running two simple tasks, each toggling
 an LED of the target hardware (as configured in BSP.c).
*/

#include "RTOS.h"
#include "BSP.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 while (1) {
 BSP_ToggleLED(0);
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 while (1) {
 BSP_ToggleLED(1);
 OS_TASK_Delay(200);
 }
}

/***
*
* main()
*/
int main(void) {
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 BSP_Init(); // Initialize LED ports
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

/*************************** End of file ****************************/

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

14 CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application
When starting the debugger, you will see the main() function (see example screenshot
below). The main() function appears as long as project option Run to main is selected,
which it is enabled by default. Now you can step through the program.

OS_Init() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

OS_InitHW() is part of RTOSInit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

OS_Start() should be the last line in main(), because it starts multitasking and does not
return.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

15 CHAPTER 1 Stepping through the sample application

Before you step into OS_Start(), you should set two breakpoints in the two tasks as shown
below.

As OS_Start() is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over OS_Start(), or step into OS_Start() in disassembly mode until you
reach the highest priority task.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

16 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK_Delay() function in disassembly
mode. OS_Idle() is part of RTOSInit.c. You may also set a breakpoint there before step-
ping over the delay in LPTask().

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

17 CHAPTER 1 Stepping through the sample application

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_Global.Time, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

19 CHAPTER 2 Introduction

2.1 Introduction
This chapter provides all information to set up your own embOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 12 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

2.2 Required files for an embOS
To build an application using embOS, the following files from your embOS distribution are
required and have to be included in your project:
• RTOS.h from the directory .\Start\Inc. This header file declares all embOS API

functions and data types and has to be included in any source file using embOS
functions.

• RTOSInit*.c from one target specific .\Start\BoardSupport\<Manufacturer>\<MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

• OS_Error.c from one target specific subfolder .\Start\BoardSupport
\<Manufacturer>\<MCU>. The error handler is used only if a debug library is used in
your project.

• One embOS library from the subfolder .\Start\Lib.
• Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level init() function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embOS internal variables. Your main() function has to initialize embOS by
calling OS_Init() and OS_InitHW() prior to any other embOS functions that are called.

2.3 Change library mode
For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embOS library in your project or target:
• If your selected library is already available in your project, just select the appropriate

project configuration.
• To add a library, you may add the library to the existing Lib group. Exclude all other

libraries from your build, delete unused libraries or remove them from the configuration.
• Check and set the appropriate OS_LIBMODE_* define as preprocessor option and/or

modify the OS_Config.h file accordingly.

2.4 Select another CPU
embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\Start\BoardSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTOSInit.c files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_InitH-
W(), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

21 CHAPTER 3 Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries
embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named following the naming convention of the IAR runtime libraries. How-
ever, some values, for example for the VFP/NEON setting, can be slightly different.

IAR EWARM V6 & V7

os<Architecture>_<CpuMode><Endianness><VFP_NEON><Interwork><LibMode>.a

IAR EWARM V8 & V9

os<Architecture>_<CpuMode><Endianness><VFP_NEON><LibMode>.a

Parameter Meaning Values

Architecture Specifies the ARM architecture

4t : ARMv4
5t : ARMv5, ARMv6
7a : ARMv7-A
7r : ARMv7-R

CpuMode Specifies the CPU mode
a : ARM
t : Thumb / Thumb2

Endianness Byte order
b : Big endian
l : Little endian

VFP_NEON Floating point / NEON support
_ : No VFP support
v16: VFP-D16 floating-point ABI
v32: VFP-D32 floating-point ABI

Interwork
Specifies if interworking is used
(Only IAR EWARM V6 and V7)

i : Interwork
_ : Non interwork

LibMode Specifies the library mode

xr : Extreme Release
r : Release
s : Stack check
sp : Stack check + profiling
d : Debug
dp : Debug + profiling + Stack check
dt : Debug + profiling + Stack check

 + trace
dpl : Debug + profiling + Stack check

 built with low optimization level

Example

os7a_tlv32idp.a is the IAR EWARM V6/V7 library for an ARMv7-A core, thumb2 mode, little
endian mode, support for VFP/NEON D32, interworking, with debug and profiling support.

os7a_tlv32dp.a is the IAR EWARM V8/V9 library for an ARMv7-A core, thumb2 mode, little
endian mode, support for VFP/NEON D32, with debug and profiling support.

The Debug and Profiling library built with low optimization level may be used during devel-
opment to show a more detailed call stack when using the CSpy plugin.

Note

With embOS V5.06 for ARM and IAR, the names of the ARMv7-A libraries were
changed. In previous versions, these libraries were erroneously named with an os7t_
prefix in the shipment, even though the manual correctly denoted them to have an

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

22 CHAPTER 3 Naming conventions for prebuilt libraries

os7a_ prefix. Starting with embOS V5.06 for ARM and IAR, the shipped libraries use
the os7a_ prefix as described in the manual.

Note

When updating from an earlier embOS version you might need to update to an embOS
library with VFP/NEON support. For example, if you use libos_v7a_t_le_i_dp.a for
an ARMv7-A CPU with VFP/NEON unit you will get a linker error message like ’no
definition for “OS_Init_VFPD32”’.
This check avoids that the project and the used embOS library use different VFP/NEON
settings. If your project settings allow the compiler to generate VFP/NEON instructions,
an embOS library with VFP/NEON support like os7a_tlv32dp.a must be used.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

24 CHAPTER 4 IAR C-Spy stack check warning

4.1 IAR C-Spy stack check warning
IAR’s C-Spy debugger provides a stack check feature which throws a warning when the
stack pointer does not point to memory within the CSTACK scope anymore. This renders
the C-Spy stack check useless, as C-Spy is not aware of any task stacks the application is
using. Depending on the IAR version used, this warning can be disabled by removing the
check mark for Tools -> Options… -> Stack -> ’Warn when stack pointer is out
of bounds’ or Project -> Options… -> Debugger -> Plugins -> Stack.

4.2 IAR C-Spy RTOS plugin
SEGGER’s embOS plug-in for the IAR Embedded Workbench provides embOS awareness
during debugging sessions. This enables you to inspect the state of several embOS primi-
tives such as the task list, semaphores, mailboxes, and software timers.
SEGGER’s embOS plug-in is already shipped with IAR EWARM but the most recent ver-
sion can be downloaded from segger.com/products/rtos/embos/tools/plug-ins/iar-embed-
ded-workbench.

4.3 Interrupt and thread safety
Using embOS with specific calls to standard library functions (e.g. heap management func-
tions) may require thread-safe system libraries if these functions are called from several
tasks or interrupts. IAR’s system libraries provide functions, which can be overwritten to
implement a locking mechanism making the system library functions thread-safe.

The Setup directory in each embOS BSP contains the file OS_ThreadSafe.c which overwrites
these functions. By default they disable and restore embOS interrupts to ensure thread
safety in tasks, embOS interrupts, OS_Idle() and software timers. Zero latency interrupts
are not disabled and therefore unprotected. If you need to call e.g. malloc() also from
within a zero latency interrupt additional handling needs to be added. If you don’t call such
functions from within embOS interrupts, OS_Idle() or software timers, you can instead
use thread safety for tasks only. This reduces the interrupt latency because a mutex is used
instead of disabling embOS interrupts.

You can choose the safety variant with the macro OS_INTERRUPT_SAFE.
• When defined to 1 thread safety is guaranteed in tasks, embOS interrupts, OS_Idle()

and software timers.
• When defined to 0 thread safety is guaranteed only in tasks. In this case you must not

call e.g. heap functions from within an ISR, OS_Idle() or embOS software timers.

4.3.1 Enabling thread-safe IAR system libraries
By default, IAR does not use thread-safe system libraries. As a result the implemented hook
functions are not linked into the application. For more information on IAR’s multithread
support, please refer to the IAR Embedded Workbench manuals.

To use the thread-safe system libraries the option “Enable thread support in library”
must be set in Project -> Options… -> General Options -> Library Configura-
tion. Alternatively, the option --threaded_lib can be passed to the linker. Additionally
the function OS_INIT_SYS_LOCKS() must be called.

With older IAR Embedded Workbench versions, neither the IDE option nor the linker option
are available. In this case, the linker has to be told to explicitly link the hook functions by
redirecting them to another symbol.

Activate the checkbox “Use command line options” in the dialog Project -> Options…
-> Linker -> Extra Options. Then, in the “Command line options:” field, add the
following lines:

--redirect __iar_Locksyslock=__iar_Locksyslock_mtx

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

https://www.segger.com/products/rtos/embos/tools/plug-ins/iar-embedded-workbench
https://www.segger.com/products/rtos/embos/tools/plug-ins/iar-embedded-workbench

25 CHAPTER 4 Interrupt and thread safety

--redirect __iar_Unlocksyslock=__iar_Unlocksyslock_mtx
--redirect __iar_Lockfilelock=__iar_Lockfilelock_mtx
--redirect __iar_Unlockfilelock=__iar_Unlockfilelock_mtx
--keep __iar_Locksyslock_mtx

C++ thread safety

To enable thread-safe C++ constructors and destructors the option --guard_calls needs
to be passed to the compiler.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

26 CHAPTER 4 Thread-Local Storage TLS

4.4 Thread-Local Storage TLS
The DLib for IAR supports usage of thread-local storage. Several library objects and func-
tions need local variables which have to be unique to a thread. Thread-local storage will be
required when these functions are called from multiple threads.

embOS for IAR is prepared to support the tread-local storage, but does not use it per
default. This has the advantage of no additional overhead as long as thread-local storage is
not needed by the application. The embOS implementation of thread-local storage allows
activation of TLS separately for each task.

Only tasks that are accessing TLS variables, for instance by calling functions from the
system library, need to initialize their TLS by calling an initialization function when the task is
started. For each task that uses TLS the memory for the thread-local storage is allocated by
the IAR runtime environment on the heap. Therefore, thread-safe heap management should
be used together with TLS. For information on thread-safety, please refer to Interrupt and
thread safety on page 24.

When the task terminates by a call of OS_TASK_Terminate(), the memory used for TLS is
automatically freed and put back into the free heap memory.

Library objects that need thread-local storage when used in multiple tasks are for example:
• error functions - errno, strerror.
• locale functions - localeconv, setlocale.
• time functions - asctime, localtime, gmtime, mktime.
• multibyte functions - mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,

wctomb.
• rand functions - rand, srand.
• etc functions - atexit, strtok.
• C++ exception engine.

4.4.1 API functions

Routine Description

m
ain

P
riv T

ask

U
n

p
riv T

ask

IS
R

S
W

 T
im

er

OS_TLS_Set()
Initializes the thread-local
storage for the current task. ●

OS_TLS_SetTaskContextExtension()

Initializes the thread-local
storage and sets the TLS
task context extension for
the current task.

●

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

27 CHAPTER 4 Thread-Local Storage TLS

4.4.1.1 OS_TLS_Set()

Description

Initializes the thread-local storage for the current task.

Prototype

void OS_TLS_Set(void);

Additional information

OS_TLS_Set() shall be the first function called from a task when TLS should be used in
this task.

The required memory for the thread-local storage is allocated from the heap. If
OS_TLS_Set() was already called for this task or if there is not enough memory on the
heap, then embOS will call OS_Error() with the error code OS_ERR_TLS_INIT.

This function has to be used only in combination with OS_TASK_AddContextExtension() or
OS_TASK_SetContextExtension() and OS_TLS_ContextExtension as argument to these
functions. When OS_TLS_SetTaskContextExtension() is used, OS_TLS_Set() will be called
automatically.

Example

static void Task(void) {
 OS_TLS_Set();
 OS_TASK_SetContextExtension(&OS_TLS_ContextExtension);
 while (1) {
 }
}

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

28 CHAPTER 4 Thread-Local Storage TLS

4.4.1.2 OS_TLS_SetTaskContextExtension()

Description

Initializes the thread-local storage and sets the TLS task context extension for the current
task.

Prototype

void OS_TLS_SetTaskContextExtension(void);

Additional information

OS_TLS_SetTaskContextExtension() shall be the first function called from a task when
TLS should be used in this task.

The required memory for the thread-local storage is allocated from the heap. If
OS_TLS_Set() was already called for this task or if there is not enough memory on the
heap, then embOS will call OS_Error() with the error code OS_ERR_TLS_INIT.

If the task already contains a task context extension, OS_TLS_SetTaskContextExten-
sion() cannot be used. Instead, OS_TASK_AddContextExtension() needs to be called with
OS_TLS_ContextExtension as argument. Furthermore, OS_TLS_Set() needs to be called
to initialize TLS for this task.

Example

The following printout demonstrates the usage of task specific TLS in an application.

#include "RTOS.h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; // Task control blocks

static void HPTask(void) {
 OS_TLS_SetTaskContextExtension();
 while (1) {
 errno = 42; // errno specific to HPTask
 OS_TASK_Delay(50);
 }
}

static void LPTask(void) {
 OS_TLS_SetTaskContextExtension();
 while (1) {
 errno = 1; // errno specific to LPTask
 OS_TASK_Delay(200);
 }
}

int main(void) {
 errno = 0; // errno not specific to any task
 OS_Init(); // Initialize embOS
 OS_InitHW(); // Initialize required hardware
 OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
 OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
 OS_Start(); // Start embOS
 return 0;
}

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

29 CHAPTER 4 Debug output

4.5 Debug output
The IAR Embedded Workbench and compiler allow debug output via e.g. printf() which are
redirected to the IAR terminal in the debugger.

There are two different modes for debug outputs available under the “Library low-level
interface implementation” settings in the “Library Configuration” tab under “General Op-
tions” of the project options dialog. Using “Semihosted” triggers an SWI interrupt during
execution of printf(). The default SWI handler in the IAR startup code is implemented as
an endless loop. The debugger sets a breakpoint at the SWI handler entry address and
monitors the code execution. When the breakpoint is reached, the debugger starts the data
exchange with the target application.

When the same code runs stand alone without connection to the debugger, the application
runs into the default SWI handler and gets stuck in the endless loop. To avoid this situation,
every embOS start project comes with an SWI handler that is delivered in source code in the
file SWI_Handler.c in the Setup folder. The SWI_Handler() from this file function replaces
the weak SWI_Handler() from the startup code in the system library. The SWI_Handler()
function has no functionality, it just returns. If the SWI handler shall fulfill another purpose
than just enabling printf() output, a custom SWI handler has to be used.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

31 CHAPTER 5 Task stack

5.1 Task stack
Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The task stack needs to be able to accommodate the stack
content of any (sub-)function plus the basic stack size.

The basic stack size is the size of memory required to store the context of the task on the
stack. The minimum basic task stack size is 72 bytes for CPUs without a VFP/NEON unit and
up to 332 bytes for CPUs with a VFP/NEON unit. We recommend at least 256 bytes stack
as a start for CPUs without a VFP/NEON unit and 512 bytes for CPUs with a VFP/NEON unit.

Note

Stacks for ARM devices need to be 8-byte aligned. embOS ensures that task stacks
are properly aligned. If an unaligned stack was aligned, the first few bytes up to the
aligned address will not be used. Thus, the application should ensure that task stacks
are properly aligned. This can be achieved by defining an array using a 64-bit data
type like OS_U64.

5.2 System stack
The embOS scheduler executes in supervisor (SVC) mode. However, embOS doesn’t use the
dedicated SVC stack symbol in order to initialize the SVC stack pointer. After OS_Start()
was called embOS uses the stack symbol of the system stack which was used in the main()
routine. This avoids the need to allocate dedicated SVC stack space.

The minimum system stack size required by embOS is about 160 bytes (stack check &
profiling build, no VFP/NEON unit). Since the system stack is also used by the application
before the start of multitasking (the call to OS_Start()), and because software timers and
C-level interrupt handlers also use the system stack, the actual stack requirements depend
on the application.

The size of the system stack can be changed by modifying the stack size definition in your
linker file or within the project settings. We recommend a minimum stack size of 512 bytes
for the system stack for CPUs without a VFP/NEON unit and 1024 bytes for CPUs with a
VFP/NEON unit.

5.3 Interrupt stack
If a normal hardware exception occurs, the ARM core switches to IRQ mode, which has a
separate stack pointer. After saving the scratch registers as well as LR_irq and SPSR_irq
(and FPSCR, if VFP/NEON unit is present) onto the IRQ stack embOS switches to SVC mode.
Only the previously mentioned registers are saved onto the IRQ stack. Thus, every interrupt
requires 32 bytes on the IRQ stack. The maximum IRQ stack size required by the application
can be calculated as “Maximum interrupt nesting level * 32 bytes”. For the interrupt routine
itself, the system stack is used, because they’re executed in SVC mode.

The size of the IRQ stack can be changed by modifying the stack size definition in your
linker file or within the project settings.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

32 CHAPTER 5 Stack specifics

5.4 Stack specifics
There are two stacks which have to be declared in the linker script file or project settings:
• The system stack.
• The IRQ stack.

The system stack is used by the startup, the main() routine, embOS internal functions,
and C-level interrupt handlers.

The IRQ stack is used when an interrupt exception is triggered. The exception handler saves
some registers and then performs a mode switch which then uses the system stack for
further execution.

When the CPU starts, it runs in supervisor mode. Then the startup code initializes the
various stack pointer registers for each mode with their assigned stack and finally jumps
into the main() routine. embOS expects the main() routine to use the system stack, no
matter in which CPU mode.

When OS_Init() is called, embOS initializes the supervisor stack pointer to point to the
system stack. After embOS is started with OS_Start(), the embOS scheduler runs in su-
pervisor mode using the system stack while each task is running in system mode using
its own dedicated stack.

Note

Stacks for ARM devices need to be 8-byte aligned.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

34 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?
• The CPU-core receives an interrupt request.
• As soon as the interrupts are enabled, the interrupt is executed.
• The CPU switches to the IRQ mode which uses the IRQ stack.
• The CPU saves PC and flags in registers LR_irq and SPSR_irq.
• The CPU jumps to offset 0x18 in the exception vector table which contains an instruction

to branch to the embOS low-level IRQ_Handler().
• embOS IRQ_Handler(): Saves scratch registers as well as LR_irq, SPSR_irq and FPSCR

on the IRQ stack.
• embOS IRQ_Handler(): Switches to supervisor mode and system stack.
• embOS IRQ_Handler(): Saves scratch VFP registers on the system stack.
• embOS IRQ_Handler(): Executes OS_irq_handler() (defined in RTOSInit_*.c).
• embOS OS_irq_handler(): Checks for interrupt source and executes the according ISR

handler. The implementation of this functions depends on the implemented interrupt
controller.

• embOS IRQ_Handler(): Restores scratch VFP registers from the system stack.
• embOS IRQ_Handler(): Switches to IRQ mode and IRQ stack.
• embOS IRQ_Handler(): Restores scratch registers as well as LR_irq, SPSR_irq and

FPSCR from the IRQ stack.
• embOS IRQ_Handler(): Returns from interrupt.

Note

FPSCR and VFP registers are only preserved by embOS libraries with VFP support.

6.2 Defining interrupt handlers in C
Interrupt handlers called from the default C interrupt handler OS_irq_handler() located
in RTOSInit*.c are just normal functions which do not take parameters and do not return
any value. OS_irq_handler() first calls OS_INT_Enter() or OS_INT_EnterNestable() to
inform embOS that interrupt code is running. Then this handler examines the source of
interrupt and calls the related interrupt handler function. Finally, OS_irq_handler() calls
OS_INT_Leave() or OS_INT_LeaveNestable() and returns to the primary low level inter-
rupt handler IRQ_Handler().

Depending on the interrupting source, it may be required to reset the interrupt pending
condition of the related peripherals.

Example

Simple interrupt routine:

void Timer_IRQHandler(void) {
 static unsigned long Time = 0;

 //
 // Handle timer IRQ
 //
 Time++;
}

6.3 Interrupt handling without vectored interrupt
controller

When using an ARM CPU without implementation of a vectored interrupt controller, the
application is responsible to examine which interrupting source triggered the IRQ.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

35 CHAPTER 6 Interrupt handling without vectored interrupt
controller

The reaction to an interrupt is as follows:
• IRQ_Handler() calls OS_irq_handler().
• OS_irq_handler() informs embOS that interrupt code is running by calling

OS_INT_Enter().
• OS_irq_handler() determines the interrupt sources and handles all pending IRQs.
• OS_irq_handler() informs embOS that interrupt handling ended by calling

OS_INT_Leave().
• IRQ_Handler() returns to IRQ_Handler().

Example

Simple interrupt routine:

void OS_irq_handler(void) {
 OS_INT_Enter();
 if (Timer_IsPending()) { // Interrupt pending?
 Timer_IRQHandler(); // Handle interrupt
 }
 if (UART_IsPending()) { // Interrupt pending ?
 UUART_IRQHandler(); // Handle interrupt
 }
 OS_INT_Leave();
}

During interrupt processing, you should not re-enable interrupts, as this would lead in
recursion.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

36 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4 Interrupt handling with vectored interrupt
controller

For ARM derivatives with built in vectored interrupt controller, embOS uses a different
interrupt handling procedure and delivers additional functions to install and setup interrupt
handler functions. You should not program the interrupt controller for IRQ handling directly.
You should use the functions delivered with embOS.

The reaction to an interrupt with vectored interrupt controller is as follows:
• IRQ_Handler() calls OS_irq_handler().
• OS_irq_handler() examines the interrupting source by reading the interrupt vector

from the interrupt controller.
• OS_irq_handler() informs embOS that interrupt code is running by calling

OS_INT_Enter().
• OS_irq_handler() calls the interrupt handler function which is addressed by the

interrupt vector.
• OS_irq_handler() resets the interrupt controller to re-enable acceptance of new

interrupts.
• OS_irq_handler() informs embOS that interrupt handling ended by calling

OS_INT_Leave().
• OS_irq_handler() returns to IRQ_Handler().

Note

Different ARM CPUs may have different versions of vectored interrupt controller hard-
ware, and usage of embOS supplied functions varies depending on the type of inter-
rupt controller. Refer to the samples delivered with embOS which are used in the CPU
specific RTOSInit module.

6.4.1 API functions
To handle interrupts with vectored interrupt controller, embOS offers the following func-
tions:

Function Description

OS_ARM_InstallISRHandler() Installs an interrupt handler
OS_ARM_EnableISR() Enables an interrupt
OS_ARM_DisableISR() Disables an interrupt
OS_ARM_ISRSetPrio() Sets the priority of an interrupt
OS_ARM_ClearPendingFlag() Clears an interrupt pending flag
OS_ARM_IsPending() Checks if an interrupt is pending

OS_ARM_AssignISRSource()
Assigns a hardware interrupt channel to an inter-
rupt vector

OS_ARM_EnableISRSource()
Enables an interrupt channel of a VIC type interrupt
controller

OS_ARM_DisableISRSource()
Disables an interrupt channel of a VIC type inter-
rupt controller

OS_ARM_SetISRCfg() Sets the interrupt configuration.
OS_ARM_SetVBAR() Writes the vector table address register.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

37 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.1 OS_ARM_InstallISRHandler()

Description

OS_ARM_InstallISRHandler() is used to install a specific interrupt vector when ARM CPUs
with vectored interrupt controller are used.

Prototype

OS_ISR_HANDLER* OS_ARM_InstallISRHandler(int ISRIndex,
 OS_ISR_HANDLER* pISRHandler);

Parameters

Parameter Description

ISRIndex Index of the interrupt source, usually the interrupt vector number.
pISRHandler Address of the interrupt handler function.

Return Value

OS_ISR_HANDLER*: The address of the interrupt handler that was previously installed with
the addressed interrupt source.

Additional Information

This function just installs the interrupt vector but does not modify the priority and does not
automatically enable the interrupt.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

38 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.2 OS_ARM_EnableISR()

Description

OS_ARM_EnableISR() is used to enable interrupt acceptance of a specific interrupt source
in a vectored interrupt controller.

Prototype

void OS_ARM_EnableISR(int ISRIndex);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be enabled.

Additional Information

This function just enables the interrupt inside the interrupt controller. It does not enable
the interrupt of any peripherals. This has to be done elsewhere.

Note

For ARM CPUs with VIC type interrupt controller, this function just enables the inter-
rupt vector itself. To enable the hardware assigned to that vector, you have to call
OS_ARM_EnableISRSource() also.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

39 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.3 OS_ARM_DisableISR()

Description

OS_ARM_DisableISR() is used to disable interrupt acceptance of a specific interrupt source
in a vectored interrupt controller which is not of the VIC type.

Prototype

void OS_ARM_DisableISR(int ISRIndex);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be disabled.

Additional Information

This function just disables the interrupt controller. It does not disable the interrupt of any
peripherals. This has to be done elsewhere.

Note

When using an ARM CPU with built in interrupt controller of VIC type, use OS_AR-
M_DisableISRSource() to disable a specific interrupt.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

40 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.4 OS_ARM_ISRSetPrio()

Description

OS_ARM_ISRSetPrio() is used to set or modify the priority of a specific interrupt source by
programming the interrupt controller.

Prototype

int OS_ARM_ISRSetPrio(int ISRIndex,
 int Prio);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be modified.
Prio The priority which should be set for the specific interrupt.

Return Value

Previous priority which was assigned before the call of OS_ARM_ISRSetPrio().

Additional Information

This function sets the priority of an interrupt channel by programming the interrupt con-
troller. Refer to CPU-specific manuals about allowed priority levels.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

41 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.5 OS_ARM_ClearPendingFlag()

Description

OS_ARM_ClearPendingFlag() is used to clear an interrupt pending flag

Prototype

void OS_ARM_ClearPendingFlag(int ISRIndex);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be cleared

Additional Information

This function just clears the interrupt pending flag inside the interrupt controller. It does
not clear the interrupt pending flag in any peripheral.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

42 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.6 OS_ARM_IsPending()

Description

OS_ARM_IsPending() is used to check if an interrupt is pending

Prototype

unsigned int OS_ARM_IsPending(int ISRIndex);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be checked

Return value

= 0 Interrupt is not pending.
= 1 Interrupt is pending.

Additional Information

This function just checks the interrupt pending flag inside the interrupt controller. It does
not check the interrupt pending flag in any peripheral.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

43 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.7 OS_ARM_AssignISRSource()

Description

OS_ARM_AssignISRSource() is used to assign a hardware interrupt channel to an interrupt
vector in an interrupt controller of VIC type.

Prototype

void OS_ARM_AssignISRSource(int ISRIndex,
 int Source);

Parameters

Parameter Description

ISRIndex Index of the interrupt source which should be modified.

Source
The source channel number which should be assigned to the specified
interrupt vector.

Additional Information

This function assigns a hardware interrupt line to an interrupt vector of VIC type only. It
cannot be used for other types of vectored interrupt controllers. The hardware interrupt
channel number of specific peripherals depends on specific CPU derivatives and has to be
taken from the hardware manual of the CPU.

Example

/* Install UART interrupt handler */
OS_ARM_InstallISRHandler(UART_ID, &COM_ISR); // UART interrupt vector
OS_ARM_ISRSetPrio(UART_ID, UART_PRIO); // UART interrupt priority
OS_ARM_EnableISR(UART_ID); // Enable UART interrupt
/* Install UART interrupt handler with VIC type interrupt controller*/
OS_ARM_InstallISRHandler(UART_INT_INDEX, &COM_ISR); // UART interrupt vector
OS_ARM_AssignISRSource(UART_INT_INDEX, UART_INT_SOURCE);
OS_ARM_EnableISR(UART_INT_INDEX); // Enable UART interrupt vector
OS_ARM_EnableISRSource(UART_INT_SOURCE); // Enable UART interrupt source

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

44 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.8 OS_ARM_EnableISRSource()

Description

OS_ARM_EnableISRSource() is used to enable an interrupt input channel of an interrupt
controller of VIC type.

Prototype

void OS_ARM_EnableISRSource(int SourceIndex);

Parameters

Parameter Description

SourceIndex Index of the interrupt channel which should be enabled.

Additional Information

This function enables a hardware interrupt input of a VIC-type interrupt controller. It cannot
be used for other types of vectored interrupt controllers. The hardware interrupt channel
number of specific peripherals depends on specific CPU derivatives and has to be taken
from the hardware manual of the CPU.

Example

/* Install UART interrupt handler */
OS_ARM_InstallISRHandler(UART_ID, &COM_ISR); // UART interrupt vector
OS_ARM_ISRSetPrio(UART_ID, UART_PRIO); // UART interrupt priority
OS_ARM_EnableISR(UART_ID); // Enable UART interrupt
/* Install UART interrupt handler with VIC type interrupt controller*/
OS_ARM_InstallISRHandler(UART_INT_INDEX, &COM_ISR); // UART interrupt vector
OS_ARM_AssignISRSource(UART_INT_INDEX, UART_INT_SOURCE);
OS_ARM_EnableISR(UART_INT_INDEX); // Enable UART interrupt vector
OS_ARM_EnableISRSource(UART_INT_SOURCE); // Enable UART interrupt source

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

45 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.9 OS_ARM_DisableISRSource()

Description

OS_ARM_DisableISRSource() is used to disable an interrupt input channel of an interrupt
controller of VIC type.

Prototype

void OS_ARM_DisableISRSource(int SourceIndex);

Parameters

Parameter Description

SourceIndex Index of the interrupt channel which should be disabled.

Additional Information

This function disables a hardware interrupt input of a VIC-type interrupt controller. It cannot
be used for other types of vectored interrupt controllers. The hardware interrupt channel
number of specific peripherals depends on specific CPU derivatives and has to be taken
from the hardware manual of the CPU.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

46 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.10 OS_ARM_SetISRCfg()

Description

OS_ARM_SetISRCfg() sets the interrupt configuration.

Prototype

void OS_ARM_SetISRCfg(int ISRIndex,
 OS_U32 Cfg);

Parameters

Parameter Description

ISRIndex Index of the interrupt source.

Cfg
0: Corresponding interrupt is level-sensitive.
1: Corresponding interrupt is edge-triggered.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

47 CHAPTER 6 Interrupt handling with vectored interrupt
controller

6.4.1.11 OS_ARM_SetVBAR()

Description

OS_ARM_SetVBAR() writes the vector table address register.

Prototype

void OS_ARM_SetVBAR(OS_U32 Addr);

Parameters

Parameter Description

Addr Address of the vector table.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

48 CHAPTER 6 Interrupt-stack switching

6.5 Interrupt-stack switching
Because ARM core based controllers have a separate stack pointer for interrupts, there
is no need for explicit stack-switching in an interrupt routine. The routines OS_INT_En-
terIntStack() and OS_INT_LeaveIntStack() are supplied for source compatibility to oth-
er processors only and have no functionality.

The ARM interrupt stack is used for the low-level interrupt handler IRQ_Handler() in the
embOS library only.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

49 CHAPTER 6 Fast Interrupt (FIQ)

6.6 Fast Interrupt (FIQ)
The FIQ interrupt cannot be used with embOS functions, it is reserved for high speed user
functions.

Note the following:
• FIQ is never disabled by embOS.
• Never call any embOS function from an FIQ handler.
• Do not assign any embOS interrupt handler to FIQ.

Note

When you decide to use FIQ, ensure the FIQ stack is initialized during startup and that
an interrupt vector for FIQ handling is included in your application.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

Chapter 7

MMU/MPU and cache support

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

51 CHAPTER 7 Introduction

7.1 Introduction
This chapter describes the MMU/MPU and cache support for ARM CPUs. With the ARM core
the MMU is part of the Virtual Memory System Architecture (VMSA) and the MPU is part
of the Protected Memory System Architecture (PMSA). embOS comes with functions to
support the MMU/MPU and cache of ARMv4, ARMv5 and ARMv7-A/ARMv7-R CPUs.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

52 CHAPTER 7 MMU and cache handling for ARM720 CPUs

7.2 MMU and cache handling for ARM720 CPUs
ARM720 CPUs with MMU have a unified cache for data and instructions. embOS delivers
the following functions to setup and handle the MMU and cache.

7.2.1 API functions

Function Description

OS_ARM720_MMU_InitTT() Initialize the MMU translation table.
OS_ARM720_MMU_AddTTEntries() Add address entries to the table.
OS_ARM720_MMU_Enable() Enable the MMU.

OS_ARM720_MMU_GetVirtualAddr()
Translates a physical address into a virtual
address.

OS_ARM720_MMU_v2p()
Translates a virtual address into a physical
address.

OS_ARM720_CACHE_Enable() Enable the cache.
OS_ARM720_CACHE_CleanRange() Clean the cache.
OS_ARM720_CACHE_InvalidateRange() Invalidate the cache.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

53 CHAPTER 7 MMU and cache handling for ARM720 CPUs

7.2.1.1 OS_ARM720_MMU_InitTT()

Description

OS_ARM720_MMU_InitTT() is used to initialize an MMU translation table which is located in
RAM. The table is filled with zero, thus all entries are marked invalid initially.

Prototype

void OS_ARM720_MMU_InitTT (unsigned int* pTranslationTable);

Parameters

Parameter Description

pTranslationTable Points to the base address of the translation table.

Additional information

This function does not need to be called, if the translation table is located in ROM.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

54 CHAPTER 7 MMU and cache handling for ARM720 CPUs

7.2.1.2 OS_ARM720_MMU_AddTTEntries()

Description

OS_ARM720_MMU_AddTTEntries() is used to add entries to the MMU address translation
table. The start address of the virtual address, physical address, area size and cache modes
are passed as parameter.

Prototype

void OS_ARM720_MMU_AddTTEntries(unsigned int* pTranslationTable,
 unsigned int CacheMode,
 unsigned int VIndex,
 unsigned int PIndex,
 unsigned int NumEntries);

Parameters

Parameter Description

pTranslationTable Points to the base address of the translation table.

CacheMode

Specifies the cache operating mode which should be used for
the selected area. May be one of the following modes:
OS_ARM_CACHEMODE_NC_NB

non-cacheable, non-bufferable
OS_ARM_CACHEMODE_C_NB

cacheable, non-bufferable
OS_ARM_CACHEMODE_NC_B

non-cacheable, bufferable
OS_ARM_CACHEMODE_C_B

cacheable, bufferable

VIndex
Virtual address index, which is the start address of the virtu-
al memory address range with MBytes resolution.
VIndex = (virtual address >> 20)

PIndex
Physical address index, which is the start address of the
physical memory area range with MBytes resolution.
PIndex = (physical address >> 20)

NumEntries Specifies the size of the memory area in MBytes.

Additional information

This function does not need to be called, if the translation table is located in ROM. The
function adds entries for every section of one MegaByte size into the translation table for
the specified memory area.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

55 CHAPTER 7 MMU and cache handling for ARM720 CPUs

7.2.1.3 OS_ARM720_MMU_Enable()

Description

OS_ARM720_MMU_Enable() is used to enable the MMU which will then perform the address
mapping.

Prototype

void OS_ARM720_MMU_Enable (unsigned int* pTranslationTable);

Parameters

Parameter Description

pTranslationTable Points to the base address of the translation table.

Additional information

As soon as the function was called, the address translation is active. The MMU table has to
be setup before calling OS_ARM720_MMU_Enable().

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

56 CHAPTER 7 MMU and cache handling for ARM720 CPUs

7.2.1.4 OS_ARM720_MMU_GetVirtualAddr()

Description

OS_ARM720_MMU_GetVirtualAddr() is used to translate a physical address into a virtual
address with specified cache mode.

Prototype

void* OS_ARM720_MMU_GetVirtualAddr(unsigned long PAddr,
 unsigned int NumEntries);

Parameters

Parameter Description

PAddr The physical address as unsigned long.

CacheMode

The cache mode of the requested virtual address
May be one of the defined cache modes:
OS_ARM_CACHEMODE_NC_NB
OS_ARM_CACHEMODE_C_NB
OS_ARM_CACHEMODE_NC_B
OS_ARM_CACHEMODE_C_B
OS_ARM_CACHEMODE_ANY

Return value

void* which is the first virtual address found. A value of 0xFFFFFFFF indicates that no entry
was found.

Additional information

The function may be useful to examine an address of memory mapped to a virtual address
with specific cache mode.

For the CPU it may be necessary to write into a specific memory in uncached mode. This can
be done by setting up the MMU table with different virtual address for the same physical
memory with different cache modes. For efficiency reasons, the CPU should access the
memory fully cached for normal operation.

When a peripheral or DMA accesses the same memory for reading, for example an LCD
controller accesses the diplay buffer, or an Ethernet MAC access a transfer buffer, the CPU
has to write the data uncached into this memory, or has to clean the cache after writing.

The function OS_ARM720_MMU_GetVirtualAddress() can be used to find the address for
uncached access.

The MMU table has to be setup before the function is called.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

57 CHAPTER 7 MMU and cache handling for ARM720 CPUs

7.2.1.5 OS_ARM720_MMU_v2p()

Description

OS_ARM720_MMU_v2p() is used to translate a virtual address into a physical address.

Prototype

unsigned long OS_ARM720_MMU_v2p (void* pVAddr);

Parameters

Parameter Description

pVAddr Pointer which represents the virtual address.

Return value

The physical address which is mapped to the virtual address passed as parameter.

Additional information

The function can be used to examine the physical address of memory. The CPU normally
operates with virtual addresses which may differ from the physical address of the memory.
When a peripheral or DMA has to be programmed to access the same memory, the periph-
eral has to be programmed to access the physical memory. The function OS_ARM720_M-
MU_v2p() can be used to find the physical address of a memory area. The MMU table has
to be setup before the function is called.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

58 CHAPTER 7 MMU and cache handling for ARM720 CPUs

7.2.1.6 OS_ARM720_CACHE_Enable()

Description

OS_ARM720_CACHE_Enable() is used to enable the data cache of the CPU.

Prototype

void OS_ARM720_CACHE_Enable(void);

Additional information

As soon as the function was called, the unified cache is active. The MMU has to be set up
and has to be enabled before the cache is enabled.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

59 CHAPTER 7 MMU and cache handling for ARM720 CPUs

7.2.1.7 OS_ARM720_CACHE_CleanRange()

Description

OS_ARM720_CACHE_CleanRange() is used to clean a range in the data cache memory to
ensure that the data is written from the data cache into the memory.

Prototype

void OS_ARM720_CACHE_CleanRange(void* p,
 unsigned int NumEntries);

Parameters

Parameter Description

p
Points to the base address of the memory area that should
be updated.

NumBytes
Number of bytes which have to be written from cache to
memory.

Additional information

Cleaning the data cache is needed, when data should be transferred by a DMA or other
BUS master that does not use the data cache. When the CPU writes data into a cacheable
area, the data might not be written into the memory immediately. When then a DMA cycle
is started to transfer the data from memory to any other location or peripheral, the wrong
data will be written.

Before starting a DMA transfer, a call of OS_ARM720_CACHE_CleanRange() ensures, that the
data is transferred from the data cache into the memory and the write buffers are drained.

The cache is cleaned line by line. Cleaning one cache line takes approximately 10 CPU
cycles. As each cache line covers 32 bytes, the total time to invalidate a range may be
calculated as:

t = (NumBytes / 32) * (10 [CPU clock cycles] + Memory write time).

The real time depends on the content of the cache. If data in the cache is marked as dirty,
the cache line has to be written to memory. The memory write time depends on the memory
BUS clock and memory speed. If data has to be written to memory, the required cycles
for this memory operation has to be added to the 10 CPU clock cycles for every 32 bytes
to be cleaned.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

60 CHAPTER 7 MMU and cache handling for ARM720 CPUs

7.2.1.8 OS_ARM720_CACHE_InvalidateRange()

Description

OS_ARM720_CACHE_InvalidateRange() is used to invalidate a memory area in the data
cache. Invalidating means, mark all entries in the specified area as invalid. Invalidation
forces re-reading the data from memory into the cache, when the specified area is accessed
again.

Prototype

void OS_ARM720_CACHE_InvalidateRange(void* p,
 unsigned int NumBytes);

Parameters

Parameter Description

SourceIndex Index of the interrupt channel which should be disabled.

Additional information

This function is needed, when a DMA or other BUS master is used to transfer data into the
main memory and the CPU has to process the data after the transfer.

To ensure, that the CPU processes the updated data from the memory, the cache has to
be invalidated. Otherwise the CPU might read invalid data from the cache instead of the
memory.

Special care has to be taken, before the data cache is invalidated. Invalidating a data area
marks all entries in the data cache as invalid. If the cache contained data which was not
written into the memory before, the data gets lost. Unfortunately, only complete cache
lines can be invalidated.

Therefore, it is requires, that the base address of the memory area has to be located at a 32
byte boundary and the number of bytes to be invalidated has to be a multiple of 32 bytes.

The debug version of embOS will call OS_Error() with error code OS_ERR_NON_ALIGNED_IN-
VALIDATE, if one of these restrictions is violated.

The cache is invalidated line by line. Invalidating one cache line takes approximately 10
CPU cycles. As each cache line covers 32 bytes, the total time to invalidate a range may
be calculated as:

t = (NumBytes / 32) * 10 [CPU clock cycles].

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

61 CHAPTER 7 MMU handling for ARMv5/ARMv7-A CPUs

7.3 MMU handling for ARMv5/ARMv7-A CPUs
The MMU allows virtual-to-physical address mapping with sections of one MByte and cache
control. The MMU requires a translation table which can be located in any data area, RAM
or ROM, but has to be aligned at a 16Kbyte boundary. A translation table in RAM has to be
set up during run time. embOS delivers API functions to set up this table.

7.3.1 API functions

Function Description

OS_ARM_MMU_InitTT() Initialize the MMU translation table.
OS_ARM_MMU_AddTTEntries() Add address entries to the table.
OS_ARM_MMU_Enable() Enable the MMU.

OS_ARM_MMU_GetVirtualAddr()
Translates a physical address into a virtual ad-
dress

OS_ARM_MMU_v2p()
Translates a virtual address into a physical ad-
dress.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

62 CHAPTER 7 MMU handling for ARMv5/ARMv7-A CPUs

7.3.1.1 OS_ARM_MMU_InitTT()

Description

OS_ARM_MMU_InitTT() is used to initialize an MMU translation table which is located in RAM.
The table is filled with zeroes, thus all entries are marked as OS_ARM_MMU_UNMAPPED initially.

Prototype

void OS_ARM_MMU_InitTT(unsigned int* pTranslationTable);

Parameters

Parameter Description

pTranslationTable Points to the base address of the translation table.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

63 CHAPTER 7 MMU handling for ARMv5/ARMv7-A CPUs

7.3.1.2 OS_ARM_MMU_AddTTEntries()

Description

OS_ARM_MMU_AddTTEntries() is used to add entries to the MMU address translation table.
The start address of the virtual address, physical address, area size and cache modes are
passed as parameter.

Prototype

void OS_ARM_MMU_AddTTEntries(unsigned int* pTranslationTable,
 unsigned int CacheMode,
 unsigned int VIndex,
 unsigned int PIndex,
 unsigned int NumEntries);

Parameters

Parameter Description

pTranslationTable Points to the base address of the translation table.

CacheMode

Specifies the cache operating mode and memory access permis-
sions which should be used for the selected area.
May be one of the following modes:
ARMv4/ARMv5:
 OS_ARM_MMU_UNMAPPED:

 The associated MVA is unmapped, and attempting to access it
 generates a translation fault

 OS_ARM_CACHEMODE_NC_NB:
 non-cacheable, non-bufferable

 OS_ARM_CACHEMODE_C_NB:
 cacheable, non-bufferable

 OS_ARM_CACHEMODE_NC_B:
 non-cacheable, bufferable

 OS_ARM_CACHEMODE_C_B:
 cacheable, bufferable

ARMv7-A:
 OS_ARM_MMU_UNMAPPED:

 The associated MVA is unmapped, and attempting to access it
 generates a translation fault

 OS_ARM_CACHEMODE_STRONGLY_ORDERED:
 Strongly ordered

 OS_ARM_CACHEMODE_SHAREABLE_DEVICE:
 Shareable Device

 OS_ARM_CACHEMODE_WRITE_THROUGH:
 Outer and Inner Write-Through, no Write-Allocate

 OS_ARM_CACHEMODE_WRITE_BACK_NO_ALLOC:
 Outer and Inner Write-Back, no Write-Allocate

 OS_ARM_CACHEMODE_NON_CACHEABLE:
 Outer and Inner Non-cacheable

 OS_ARM_CACHEMODE_WRITE_BACK_ALLOC:
 Outer and Inner Write-Back, Write-Allocate

 OS_ARM_CACHEMODE_NON_SHAREABLE_DEVICE:
 Non-shareable Device

 OS_ARM_MMU_NOACCESS:
 All accesses generate Permission faults

 OS_ARM_MMU_READWRITE:
 Full access

 OS_ARM_MMU_READONLY:
 Read-only access

 OS_ARM_MMU_EXECUTE_NEVER:
 Determines whether the memory region is executable

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

64 CHAPTER 7 MMU handling for ARMv5/ARMv7-A CPUs

Parameter Description

VIndex
Virtual address index, which is the start address of the virtual
memory address range with MBytes resolution.
VIndex = (virtual address >> 20)

PIndex
Physical address index, which is the start address of the physical
memory area range with MBytes resolution.
PIndex = (physical address >> 20)

NumEntries Specifies the size of the memory area in MBytes.

Additional information

The function adds entries for every section of one MegaByte size into the translation table
for the specified memory area.

The macros for normal memory, i.e. OS_ARM_CACHEMODE_WRITE_THROUGH, OS_AR-
M_CACHEMODE_WRITE_BACK_NO_ALLOC, OS_ARM_CACHEMODE_NON_CACHEABLE and OS_AR-
M_CACHEMODE_WRITE_BACK_ALLOC, can be OR-red with OS_ARM_MMU_SHAREABLE to mark
normal memory as shareable.

OS_ARM_MMU_NOACCESS, OS_ARM_MMU_READWRITE, OS_ARM_MMU_READONLY and OS_ARM_M-
MU_EXECUTE_NEVER can be used in combination with the cache attribute defines. If no mem-
ory access permissions are set full memory access is allowed per default.
OS_ARM_MMU_InitTT() sets all entries to OS_ARM_MMU_UNMAPPED. The MMU table does not
need to define such entries.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

65 CHAPTER 7 MMU handling for ARMv5/ARMv7-A CPUs

7.3.1.3 OS_ARM_MMU_Enable()

Description

OS_ARM_MMU_Enable() is used to enable the MMU which will then perform the address
mapping.

Prototype

void OS_ARM_MMU_Enable(unsigned int* pTranslationTable);

Parameters

Parameter Description

pTranslationTable Points to the base address of the translation table.

Additional information

As soon as the function was called, the address translation is active. The MMU table has to
be setup before calling OS_ARM_MMU_Enable().

OS_ARM_MMU_Enable() also enables the branch prediction unit of Cortex-A CPUs.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

66 CHAPTER 7 MMU handling for ARMv5/ARMv7-A CPUs

7.3.1.4 OS_ARM_MMU_GetVirtualAddr()

Description

OS_ARM_MMU_GetVirtualAddr() is used to translate a physical address into a virtual ad-
dress with specified cache mode.

Prototype

void* OS_ARM_MMU_GetVirtualAddr(unsigned long PAddr,
 unsigned int NumEntries);

Parameters

Parameter Description

PAddr The physical address as unsigned long.

CacheMode

The cache mode of the requested virtual address
May be one of the defined cache modes:
ARMv4/ARMv5:
 OS_ARM_CACHEMODE_NC_NB
 OS_ARM_CACHEMODE_C_NB
 OS_ARM_CACHEMODE_NC_B
 OS_ARM_CACHEMODE_C_B
 OS_ARM_CACHEMODE_ANY
ARMv7-A:
 OS_ARM_CACHEMODE_STRONGLY_ORDERED
 OS_ARM_CACHEMODE_SHAREABLE_DEVICE
 OS_ARM_CACHEMODE_WRITE_THROUGH
 OS_ARM_CACHEMODE_WRITE_BACK_NO_ALLOC
 OS_ARM_CACHEMODE_NON_CACHEABLE
 OS_ARM_CACHEMODE_WRITE_BACK_ALLOC
 OS_ARM_CACHEMODE_NON_SHAREABLE_DEVICE
 OS_ARM_CACHEMODE_ANY

Return value

void* to the first virtual address found. A value of 0xFFFFFFFF indicates that no entry was
found.

Additional information

The function may be useful to examine an address of memory mapped to a virtual address
with specific cache mode. For the CPU it may be necessary to write into a specific memory
in uncached mode. This can be done by setting up the MMU table with different virtual
address for the same physical memory with different cache modes. For efficiency reasons,
the CPU should access the memory fully cached for normal operation. When a peripheral
or DMA accesses the same memory for reading, for exaplme an LCD controller accesses
the diplay buffer, or an Ethernet MAC access a transferbuffer, the CPU has to write the
data uncached into this memory, or has to clean the cache after writing. The function
OS_ARM_MMU_GetVirtualAddress() can be used to find the address for uncached access.
The MMU table has to be setup before the function is called.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

67 CHAPTER 7 MMU handling for ARMv5/ARMv7-A CPUs

7.3.1.5 OS_ARM_MMU_v2p()

Description

OS_ARM_MMU_v2p() is used to translate a virtual address into a physical address.

Prototype

unsigned long OS_ARM_MMU_v2p(void* pVAddr);

Parameters

Parameter Description

pVAddr Pointer which represents the virtual address.

Return value

The physical address which is mapped to the virtual address passed as parameter.

Additional information

The function can be used to examine the physical addresss of memory. The CPU normally
operates with virtual addresses which may differ from the physical address of the memo-
ry. When a peripheral or DMA has to be programmed to access the same memory, the
peripheral has to be programmed to access the physical memory. The function OS_ARM_M-
MU_v2p() can be used to find the physical address of a memory area. The MMU table has
to be setup before the function is called.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

68 CHAPTER 7 MPU handling for ARMv7-R CPUs

7.4 MPU handling for ARMv7-R CPUs
The ARMv7-R MPU is used to set cache and access settings for memory regions.

7.4.1 API functions

Function Description

OS_ARM_MPU_AddEntry() Sets an ARMv7-R PMSA MPU memory region.
OS_ARM_MPU_Enable() Enables the ARMv7-R PMSA MPU.

OS_ARM_MPU_GetMinRegionSize()
Returns the ARMv7-R PMSA minimum memory
region size.

OS_ARM_MPU_GetNumRegions()
Returns the number of available memory re-
gions.

OS_ARM_MPU_Init() Initializes the ARMv7-R PMSA MPU.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

69 CHAPTER 7 MPU handling for ARMv7-R CPUs

7.4.1.1 OS_ARM_MPU_AddEntry()

Description

OS_ARM_MPU_AddEntry() sets an ARMv7-R PMSA MPU memory region.

Prototype

void OS_ARM_MPU_AddEntry(OS_U32 Region,
 void* BaseAddr,
 OS_U32 Size,
 OS_U32 Permissions,
 OS_U32 Attributes);

Parameters

Parameter Description

Region Region index
BaseAddr Memory region address
Size Memory region size in bytes

Permissions

 OS_ARM_MPU_NOACCESS:
 No read or write access

 OS_ARM_MPU_READWRITE:
 Read and write access

 OS_ARM_MPU_READONLY:
 Read access only

 OS_ARM_MPU_EXECUTE_NEVER:
 No code execution allowed

Attributes

 OS_ARM_CACHEMODE_STRONGLY_ORDERED:
 Strongly ordered

 OS_ARM_CACHEMODE_SHAREABLE_DEVICE:
 Shareable Device

 OS_ARM_CACHEMODE_WRITE_THROUGH:
 Outer and Inner Write-Through, no Write-Allocate

 OS_ARM_CACHEMODE_WRITE_BACK_NO_ALLOC:
 Outer and Inner Write-Back, no Write-Allocate

 OS_ARM_CACHEMODE_NON_CACHEABLE:
 Outer and Inner Non-cacheable

 OS_ARM_CACHEMODE_WRITE_BACK_ALLOC:
 Outer and Inner Write-Back, Write-Allocate

 OS_ARM_CACHEMODE_NON_SHAREABLE_DEVICE:
 Non-shareable Device

Additional information

The region index starts at zero for the first region. The number of available regions can be
read with OS_ARM_MPU_GetNumRegions(). The regions size must be aligned to the PMSA
regions size which can be read with OS_ARM_MPU_GetMinRegionSize().

The macros for normal memory, i.e. OS_ARM_CACHEMODE_WRITE_THROUGH, OS_AR-
M_CACHEMODE_WRITE_BACK_NO_ALLOC, OS_ARM_CACHEMODE_NON_CACHEABLE and OS_AR-
M_CACHEMODE_WRITE_BACK_ALLOC, can be OR-red with OS_ARM_MPU_SHAREABLE to mark
normal memory as shareable.

Example

int __low_level_init(void) {
 //
 // Sets access and cache settings for 256 Bytes at address 0x00
 //
 OS_ARM_MPU_AddEntry(0u,(void*)0x00000000, 256,

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

70 CHAPTER 7 MPU handling for ARMv7-R CPUs

 OS_ARM_MPU_READWRITE,
 OS_ARM_CACHEMODE_WRITE_BACK_ALLOC);
 return 1;
}

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

71 CHAPTER 7 MPU handling for ARMv7-R CPUs

7.4.1.2 OS_ARM_MPU_Enable()

Description

OS_ARM_MPU_Enable() enables the ARMv7-R PMSA MPU.

Prototype

void OS_ARM_MPU_Enable(void);

Additional information

OS_ARM_MPU_Enable() has to be called after the the MPU was initialized and configured.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

72 CHAPTER 7 MPU handling for ARMv7-R CPUs

7.4.1.3 OS_ARM_MPU_GetMinRegionSize()

Description

OS_ARM_MPU_GetMinRegionSize() returns the ARMv7-R PMSA minimum memory region
size.

Prototype

OS_U32 OS_ARM_MPU_GetMinRegionSize(void);

Return value

Minimum memory region size which can be used with this PMSA implementation.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

73 CHAPTER 7 MPU handling for ARMv7-R CPUs

7.4.1.4 OS_ARM_MPU_GetNumRegions()

Description

OS_ARM_MPU_GetNumRegions() returns the number of available memory regions.

Prototype

OS_U32 OS_ARM_MPU_GetNumRegions(void);

Return value

Number of available memory regions.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

74 CHAPTER 7 MPU handling for ARMv7-R CPUs

7.4.1.5 OS_ARM_MPU_Init()

Description

OS_ARM_MPU_Init() initializes the ARMv7-R PMSA MPU.

Prototype

void OS_ARM_MPU_Init(void);

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

75 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5 Cache handling for ARMv5/ARMv7 CPUs
ARM CPUs with MMU/MPU and cache have separate data and instruction caches. embOS
delivers the following functions to setup and handle the MMU and caches.

7.5.1 API functions

Function Description

OS_ARM_ICACHE_Enable() Enable the instruction cache.
OS_ARM_ICACHE_Invalidate() Invalidates the complete instruction cache.
OS_ARM_DCACHE_Enable() Enable the data cache.
OS_ARM_DCACHE_Invalidate() Invalidates the complete data cache.
OS_ARM_DCACHE_Clean() Clean data cache.
OS_ARM_DCACHE_CleanRange() Clean data cache range.
OS_ARM_DCACHE_InvalidateRange() Invalidate the data cache.
OS_ARM_CACHE_Sync() Syncs data and instruction cache.
OS_ARM_AddL2Cache() Sets 2nd level cache API table.

OS_ARM_CACHE_GetLineSize()
Returns cache line size of the specified cache lev-
el.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

76 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5.1.1 OS_ARM_ICACHE_Enable()

Description

OS_ARM_ICACHE_Enable() is used to enable the instruction cache of the CPU.

Prototype

void OS_ARM_ICACHE_Enable(void);

Additional information

As soon as the function was called, the instruction cache is active. It is CPU implementation
defined whether the instruction cache works without MMU. Normally, the MMU should be
setup before activating instruction cache.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

77 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5.1.2 OS_ARM_ICACHE_Invalidate()

Description

OS_ARM_ICACHE_Invalidate() invalidates the complete instruction cache. Invalidating
means, mark all entries in the specified area as invalid. Invalidation forces re-reading the
code from memory into the cache, when the specified area is accessed again.

Prototype

void OS_ARM_ICACHE_Invalidate(void);

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

78 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5.1.3 OS_ARM_DCACHE_Enable()

Description

OS_ARM_DCACHE_Enable() is used to enable the data cache of the CPU.

Prototype

void OS_ARM_DCACHE_Enable(void);

Additional information

The function must not be called before the MMU translation table was set up correctly
and the MMU was enabled. As soon as the function was called, the data cache is active,
according to the cache mode settings which are defined in the MMU translation table. It is
CPU implementation defined whether the data cache is a write through, a write back, or a
write through/write back cache. Most modern CPUs will have implemented a write through/
write back cache.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

79 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5.1.4 OS_ARM_DCACHE_Invalidate()

Description

OS_ARM_DCACHE_Invalidate() invalidates the complete data cache. Invalidating means,
mark all entries in the specified area as invalid. Invalidation forces re-reading the data from
memory into the cache, when the specified area is accessed again.

Prototype

void OS_ARM_DCACHE_Invalidate(void);

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

80 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5.1.5 OS_ARM_DCACHE_Clean()

Description

OS_ARM_DCACHE_Clean() is used to clean the data cache memory without invalidating the
instruction cache.

Prototype

void OS_ARM_DCACHE_Clean(void);

Additional information

Cleaning the data cache is needed, when data should be transferred by a DMA or other
BUS master that does not use the data cache. When the CPU writes data into a cacheable
area, the data might not be written into the memory immediately. When then a DMA cycle
is started to transfer the data from memory to any other location or peripheral, the wrong
data will be written.

The cache is cleaned line by line. Cleaning one cache line takes approximately 10 CPU
cycles. The total time to invalidate a range may be calculated as:

t = (NumBytes / Cache line size) * (10 [CPU clock cycles] + Memory write time).

The real time depends on the content of the cache. If data in the cache is marked as dirty,
the cache line has to be written to memory. The memory write time depends on the memory
BUS clock and memory speed. If data has to be written to memory, the required cycles
for this memory operation has to be added to the 10 CPU clock cycles for every cache line
to be cleaned.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

81 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5.1.6 OS_ARM_DCACHE_CleanRange()

Description

OS_ARM_DCACHE_CleanRange() is used to clean a range in the data cache memory to ensure
that the data is written from the data cache into the memory.

Prototype

void OS_ARM_DCACHE_CleanRange(void* p,
 unsigned int NumEntries);

Parameters

Parameter Description

p
Points to the base address of the memory area that should
be updated.

NumBytes
Number of bytes which have to be written from cache to
memory.

Additional information

Cleaning the data cache is needed, when data should be transferred by a DMA or other
BUS master that does not use the data cache. When the CPU writes data into a cacheable
area, the data might not be written into the memory immediately. When then a DMA cycle
is started to transfer the data from memory to any other location or peripheral, the wrong
data will be written.

Before starting a DMA transfer, a call of OS_ARM_DCACHE_CleanRange() ensures, that the
data is transferred from the data cache into the memory and the write buffers are drained.

The cache is cleaned line by line. Cleaning one cache line takes approximately 10 CPU
cycles. The total time to invalidate a range may be calculated as:

t = (NumBytes / Cache line size) * (10 [CPU clock cycles] + Memory write time).

The real time depends on the content of the cache. If data in the cache is marked as dirty,
the cache line has to be written to memory. The memory write time depends on the memory
BUS clock and memory speed. If data has to be written to memory, the required cycles
for this memory operation has to be added to the 10 CPU clock cycles for every cache line
to be cleaned.

Note

Unfortunately, only complete cache lines can be cleaned. Therefore, it is required,
that the base address of the memory area has to be located at a cache line size
byte boundary and the number of bytes to be cleaned has to be a multiple of the
cache line size. The debug version of embOS will call OS_Error() with error code
OS_ERR_NON_ALIGNED_INVALIDATE, if one of these restrictions is violated.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

82 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5.1.7 OS_ARM_DCACHE_InvalidateRange()

Description

OS_ARM_DCACHE_InvalidateRange() is used to invalidate a memory area in the data cache.
Invalidating means, mark all entries in the specified area as invalid. Invalida- tion forces re-
reading the data from memory into the cache, when the specified area is accessed again.

Prototype

void OS_ARM_DCACHE_InvalidateRange(void* p,
 unsigned int NumBytes);

Parameters

Parameter Description

p
Points to the base address of the memory area that should
be updated.

NumBytes
Number of bytes which have to be written from cache to
memory.

Additional information

This function is needed, when a DMA or other BUS master is used to transfer data into the
main memory and the CPU has to process the data after the transfer.

To ensure, that the CPU processes the updated data from the memory, the cache has to
be invalidated. Otherwise the CPU might read invalid data from the cache instead of the
memory.

Special care has to be taken, before the data cache is invalidated. Invalidating a data area
marks all entries in the data cache as invalid. If the cache contained data which was not
written into the memory before, the data gets lost. The cache is invalidated line by line.
Invalidating one cache line takes approximately 10 CPU cycles. The total time to invalidate a
range may be calculated as: t = (NumBytes / Cache line size) * 10 [CPU clock cycles]. Notes

Note

Unfortunately, only complete cache lines can be invalidated. Therefore, it is required,
that the base address of the memory area has to be located at a cache line size
byte boundary and the number of bytes to be invalidated has to be a multiple of the
cache line size. The debug version of embOS will call OS_Error() with error code
OS_ERR_NON_ALIGNED_INVALIDATE, if one of these restrictions is violated.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

83 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5.1.8 OS_ARM_CACHE_Sync()

Description

OS_ARM_CACHE_Sync() cleans the data cache and invalidates the instruction cache to to
ensure cache coherency.

Prototype

void OS_ARM_CACHE_Sync(void);

Additional information

This function is for example needed, when code is copied into RAM and code is then executed
from RAM.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

84 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5.1.9 OS_ARM_AddL2Cache()

Description

OS_ARM_AddL2Cache() is used to add.

Prototype

void OS_ARM_v7_AddL2Cache(const OS_ARM_L2CACHE_API* pCacheAPI,
 void* pParam);

Parameters

Parameter Description

pCacheAPI Pointer to 2nd level Cache API table.
pParam Additional parameter (e.g. base address or cache registers).

Additional information

This function s needed to enable the L2 cache. Nothing else is necessary to do since the
actual L2 cache routines are automatically called by the L1 cache routines. For example
OS_ARM_DCACHE_InvalidateRange() calls also internally the according L2 cache routine.

Example

#define L2CACHE_BASE_ADDR 0x3FFFF000u

//
// Set API functions and base address for L2 Cache
//
OS_ARM_AddL2Cache(&OS_L2CACHE_L2C310, (void*)L2CACHE_BASE_ADDR);

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

85 CHAPTER 7 Cache handling for ARMv5/ARMv7 CPUs

7.5.1.10 OS_ARM_CACHE_GetLineSize()

Description

OS_ARM_CACHE_GetLineSize() returns the cache line size of the specified cache level.

Prototype

OS_U32 OS_ARM_CACHE_GetLineSize(OS_U32 CIndex);

Parameters

Parameter Description

CIndex
Index of the cache level of which the cache line size shall be
returned.

Additional information

The returned cache line size can be used to calculate the alignment and number of bytes
passed to the OS_ARM_DCACHE_InvalidateRange() and OS_ARM_DCACHE_CleanRange()
functions.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

86 CHAPTER 7 MMU and cache handling program sample

7.6 MMU and cache handling program sample
The MMU and cache handling has to be set up before the data segments are initial- ized. Oth-
erwise a virtual address mapping would not work. The startup code must call a __low_lev-
el_init() function before sections are initialized.

It is a good idea to initialize memory access, the MMU table and the cache control during
__low_level_init() . The following sample is an excerpt from one __low_level_init()
function which is part of an RTOSInit.c file:

/***
*
* MMU and cache configuration
*
* The MMU translation table has to be aligned to 16KB boundary
* and has to be located in uninitialized data area
*/
#pragma data_alignment=16384
__no_init static unsigned int _TranslationTable [0x1000]; // OS_INTERWORK int
int __low_level_init(void) {
 //
 // Init MMU and caches
 //
 OS_ARM_MMU_InitTT (&_TranslationTable[0]);
 //
 // Internal SRAM, the first MB remapped to 0,
 // cacheable, bufferable, region not executable
 //
 OS_ARM_MMU_AddTTEntries (&_TranslationTable[0],
 OS_ARM_CACHEMODE_C_B | OS_ARM_MMU_EXECUTE_NEVER,
 0x000, 0x200, 0x001);
 //
 // Internal SRAM, original address, NON cachable, NON bufferable
 //
 OS_ARM_MMU_AddTTEntries (&_TranslationTable[0],
 OS_ARM_CACHEMODE_NC_NB,
 0x200, 0x200, 0x001);
 OS_ARM_MMU_Enable (&_TranslationTable[0]);
 OS_ARM_ICACHE_Enable();
 OS_ARM_DCACHE_Enable();
 return 1;
}

Other samples are included in the CPU specific RTOSInit*.c files delivered with embOS.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

87 CHAPTER 7 MPU and cache handling program sample

7.7 MPU and cache handling program sample

int __low_level_init(void) {
 //
 // Enable MPU, Caches and branch prediction unit
 //
 OS_ARM_DCACHE_Enable();
 OS_ARM_ICACHE_Enable();
 OS_ARM_MPU_Init();
 //
 // Add MPU regions to set cache settings for different memory sections
 //
 OS_ARM_MPU_AddEntry(0u, (void*)0x00000000, 0x00140000,
 OS_ARM_MPU_READONLY, OS_ARM_CACHEMODE_WRITE_BACK_ALLOC); // FLASH
 OS_ARM_MPU_AddEntry(1u, (void*)0x08000000, 0x00030000,
 OS_ARM_MPU_READWRITE, OS_ARM_CACHEMODE_WRITE_BACK_ALLOC); // RAM
 OS_ARM_MPU_Enable();

 return 1;
}

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

Chapter 8

VFP and NEON support

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

89 CHAPTER 8 Introduction

8.1 Introduction
Some ARM MCUs come with integrated Arm VFP and NEON units.

When activating the VFP or NEON support in the project options, the compiler and linker
will add efficient code which uses the VFP/NEON register bank and VFP/NEON instructions
where possible in the application.

With embOS, the VFP/NEON registers are automatically saved and restored when preemp-
tive or cooperative task switches are performed. embOS also automatically saves and re-
stores VFP/NEON registers for all embOS interrupt routines.

The VFP register bank consists of either 16 or 32 double-precision registers. The VFP register
bank is also shared between the VFP and NEON units. If a NEON unit is implemented the
VFP register bank consists of 32 64-bit double-precision registers. For a VFP unit with 32
double-precision registers or NEON unit all 32 double-precision registers are preserved,
while for a VFP unit with 16 double-precision registers only the 16 double-precision registers
need to be preserved.

embOS comes with libraries which preserve 16 double-precision registers D0-D15, 32 dou-
ble-precision registers D0-D31 or none. Please have a look in the chapter Libraries on
page 20 for more details.

Note

embOS ARM until V5.16.1.0 used task context extensions and ISR macros to preserve
VFP/NEON registers. These API functions and macros are kept for compatibility but
have no functionality anymore.

8.2 Using embOS libraries with VFP/NEON support
When VFP/NEON support is selected as project option, one of the embOS libraries with
VFP/NEON support have to be used in the project. The embOS libraries with VFP/NEON
support require that the VFP/NEON unit is switched on during startup and remains switched
on during program execution. When the VFP/NEON unit is not switched on, the embOS
scheduler will fail. Using your own startup code, ensure that the VFP/NEON unit is switched
on during startup.

The debug version of embOS checks in OS_Init() whether the VFP/NEON unit is switched
on. If not, embOS calls OS_Error() with the error code OS_ERR_HW_NOT_AVAILABLE.

8.3 Using the VFP/NEON unit in interrupt service
routines

Using the VFP/NEON unit in embOS interrupt service routines does not require any addi-
tional functions to save and restore the VFP/NEON registers. embOS automatically saves
and restores these registers.

VFP/NEON registers are not automatically saved and restored in zero latency interrupts.
If the VFP/NEON unit is used in zero latency interrupts, it is the user’s responsibility to
preserve these registers.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

Chapter 9

RTT and SystemView

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

91 CHAPTER 9 SEGGER Real Time Transfer

9.1 SEGGER Real Time Transfer
With SEGGER’s Real Time Transfer (RTT) it is possible to output information from the target
microcontroller as well as sending input to the application at a very high speed without
affecting the target’s real time behavior. SEGGER RTT can be used with any J-Link model
and any supported target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application’s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

9.2 SEGGER SystemView
SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemView, is not shipped with embOS. Instead, the most recent version of that applica-
tion is available for download from our website.

SystemView is initialized by calling SEGGER_SYSVIEW_Conf() on the target microcontroller.
This call is performed within OS_InitHW() of the respective RTOSInit*.c file. As soon as
this function was called, the connection of the SystemView desktop application to the target
can be started. In order to remove SystemView from the target application, remove the
SEGGER_SYSVIEW_Conf() call, the SEGGER_SYSVIEW.h include directive as well as any other
reference to SEGGER_SYSVIEW_* like SEGGER_SYSVIEW_TickCnt.

For more information on SEGGER SystemView and the download of the SystemView desktop
application, refer to segger.com/systemview.

Note

SystemView uses embOS timing API to get at start the current system time. This re-
quires that OS_TIME_ConfigSysTimer() was called before SEGGER_SYSVIEW_Start()
is called or the SystemView PC application is started.

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt
https://www.segger.com/systemview

Chapter 10

Technical data

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

93 CHAPTER 10 Resource Usage

10.1 Resource Usage
The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS
library mode OS_LIBMODE_XR.

Module Memory type Memory requirements

embOS kernel ROM ~1700 bytes
embOS kernel RAM ~136 bytes
Task control block RAM 36 bytes
Software timer RAM 20 bytes
Task event RAM 0 bytes
Event object RAM 12 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLock RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 12 bytes
Fixed Block Size Memory Pool RAM 32 bytes

embOS for ARM and IAR © 2010-2024 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	IAR C-Spy stack check warning
	IAR C-Spy RTOS plugin
	Interrupt and thread safety
	Enabling thread-safe IAR system libraries

	Thread-Local Storage TLS
	API functions
	OS_TLS_Set()
	OS_TLS_SetTaskContextExtension()

	Debug output

	Stacks
	Task stack
	System stack
	Interrupt stack
	Stack specifics

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt handling without vectored interrupt controller
	Interrupt handling with vectored interrupt controller
	API functions
	OS_ARM_InstallISRHandler()
	OS_ARM_EnableISR()
	OS_ARM_DisableISR()
	OS_ARM_ISRSetPrio()
	OS_ARM_ClearPendingFlag()
	OS_ARM_IsPending()
	OS_ARM_AssignISRSource()
	OS_ARM_EnableISRSource()
	OS_ARM_DisableISRSource()
	OS_ARM_SetISRCfg()
	OS_ARM_SetVBAR()

	Interrupt-stack switching
	Fast Interrupt (FIQ)

	MMU/MPU and cache support
	Introduction
	MMU and cache handling for ARM720 CPUs
	API functions
	OS_ARM720_MMU_InitTT()
	OS_ARM720_MMU_AddTTEntries()
	OS_ARM720_MMU_Enable()
	OS_ARM720_MMU_GetVirtualAddr()
	OS_ARM720_MMU_v2p()
	OS_ARM720_CACHE_Enable()
	OS_ARM720_CACHE_CleanRange()
	OS_ARM720_CACHE_InvalidateRange()

	MMU handling for ARMv5/ARMv7-A CPUs
	API functions
	OS_ARM_MMU_InitTT()
	OS_ARM_MMU_AddTTEntries()
	OS_ARM_MMU_Enable()
	OS_ARM_MMU_GetVirtualAddr()
	OS_ARM_MMU_v2p()

	MPU handling for ARMv7-R CPUs
	API functions
	OS_ARM_MPU_AddEntry()
	OS_ARM_MPU_Enable()
	OS_ARM_MPU_GetMinRegionSize()
	OS_ARM_MPU_GetNumRegions()
	OS_ARM_MPU_Init()

	Cache handling for ARMv5/ARMv7 CPUs
	API functions
	OS_ARM_ICACHE_Enable()
	OS_ARM_ICACHE_Invalidate()
	OS_ARM_DCACHE_Enable()
	OS_ARM_DCACHE_Invalidate()
	OS_ARM_DCACHE_Clean()
	OS_ARM_DCACHE_CleanRange()
	OS_ARM_DCACHE_InvalidateRange()
	OS_ARM_CACHE_Sync()
	OS_ARM_AddL2Cache()
	OS_ARM_CACHE_GetLineSize()

	MMU and cache handling program sample
	MPU and cache handling program sample

	VFP and NEON support
	Introduction
	Using embOS libraries with VFP/NEON support
	Using the VFP/NEON unit in interrupt service routines

	RTT and SystemView
	SEGGER Real Time Transfer
	SEGGER SystemView

	Technical data
	Resource Usage

