
Embedded Studio for
ARM Reference Manual

Version: 7.32a

Copyright 2014-2023 SEGGER Microcontroller GmbH

Copyright 1997-2023 Rowley Associates Ltd.

Embedded Studio for ARM Reference Manual

2

Embedded Studio for ARM Reference Manual Contents

3

Contents
Introduction ... 11

What is SEGGER Embedded Studio for ARM? ... 12

What we don't tell you ... 14

Getting Started ... 15

Text conventions ... 16

SEGGER Embedded Studio User Guide .. 19

SEGGER Embedded Studio standard layout ... 20

Menu bar .. 21

Title bar ... 22

Status bar ... 23

Editing workspace .. 25

Docking windows ... 26

Dashboard .. 27

SEGGER Embedded Studio help and assistance .. 28

Creating and managing projects ... 30

Solutions and projects .. 31

Creating a project ... 34

Adding existing files to a project .. 35

Adding new files to a project .. 36

Removing a file, folder, project, or project link ... 37

Building your application .. 38

Creating variants using configurations .. 40

Project options ... 42

Embedded Studio for ARM Reference Manual Contents

4

Configurations and project options ... 44

Project macros ... 46

Dependencies and build order ... 48

Linking and section placement .. 49

Using source control .. 52

Source control capabilities ... 53

Configuring source-control providers ... 54

Connecting to the source-control system ... 55

File source-control status .. 56

Source-control operations .. 57

Adding files to source control .. 58

Updating files ... 59

Committing files .. 60

Reverting files ... 61

Locking files .. 62

Unlocking files .. 63

Removing files from source control ... 64

Showing differences between files ... 65

Source-control properties ... 66

Subversion provider .. 67

CVS provider ... 69

Package management .. 71

Exploring your application ... 75

Project explorer ... 76

Source navigator window ... 81

References window .. 83

Symbol browser window ... 84

Stack usage window .. 89

Memory usage window .. 90

Bookmarks window ... 93

Code Outline Window .. 94

Analyzing Source Code .. 95

Editing your code .. 96

Basic editing .. 97

Moving the insertion point .. 98

Adding text ... 100

Deleting text .. 101

Using the clipboard .. 102

Undo and redo .. 103

Drag and drop ... 104

Searching ... 105

Embedded Studio for ARM Reference Manual Contents

5

Advanced editing ... 106

Indenting source code ... 107

Commenting out sections of code ... 109

Adjusting letter case .. 110

Using bookmarks .. 111

Find and Replace window .. 113

Clipboard Ring window ... 115

Mouse-click accelerators ... 117

Regular expressions .. 119

Debugging windows ... 121

Locals window ... 121

Globals window .. 123

Watch window ... 125

Register window ... 128

Memory window ... 131

Breakpoints window ... 135

Call Stack window .. 139

Threads window ... 142

Execution Profile window ... 146

Execution Trace window ... 147

Debug file search editor .. 148

Debug Terminal window .. 150

Breakpoint expressions .. 151

Debug expressions ... 152

Utility windows .. 153

Terminal emulator window ... 153

Command-line options ... 155

-D (Define macro) ... 156

-noclang (Disable Clang support) .. 157

-noload (Disable loading of last project) ... 158

-packagesdir (Specify packages directory) .. 159

-permit-multiple-studio-instances (Permit multiple studio instances) ... 160

-rootuserdir (Set the root user data directory) .. 161

-save-settings-off (Disable saving of environment settings) ... 162

-set-setting (Set environment setting) .. 163

-templatesfile (Set project templates path) .. 164

Uninstalling SEGGER Embedded Studio for ARM ... 165

ARM target support ... 169

Target startup code ... 171

Startup code .. 173

Section Placement .. 176

Embedded Studio for ARM Reference Manual Contents

6

Using the SEGGER Assembler .. 179

Using the SEGGER Linker ... 181

Using the SEGGER Runtime Library .. 183

Utilities Reference ... 185

Compiler driver .. 186

File naming conventions .. 187

Command-line options .. 188

-allow-multiple-definition (Allow multiple symbol definition) .. 189

-ansi (Warn about potential ANSI problems) ... 190

-ar (Archive output) .. 191

-arch (ARM architecture) ... 192

-be (ARM Big Endian) ... 193

-builtins (Use Builtins) .. 194

-c (Compile to object code, do not link) .. 195

-clang (Use clang compiler/assembler) .. 196

-cmselib (ARM Create CMSE import library) .. 197

-codec (Set file codec) .. 198

-common (Allocate globals in common) ... 199

-cpu (ARM cpu core) ... 200

-d (Define linker symbol) .. 201

-debugio (ARM Define debugio implementation) ... 202

-depend (Generate dependency file) .. 203

-D (Define macro symbol) .. 204

-emit-relocs (Emit relocations) ... 205

-e (Set entry point symbol) .. 206

-exceptions (Enable C++ Exception Support) .. 207

-E (Preprocess) ... 208

-fill (Fill gaps) ... 209

-fabi (ARM Floating Point Code Generation) ... 210

-fpu (ARM FPU) ... 211

-framepointer (Enable generation of framepointer) .. 212

-F (Set output format) .. 213

-g (Generate debugging information) .. 214

-hascmse (ARM Generate cmse instructions) .. 215

-hascrc (ARM Generate crc instructions) .. 216

-hascrypto (ARM Generate crypto instructions) ... 217

-hasdsp (ARM Generate dsp instructions) .. 218

-hasidiv (ARM Generate integer divide instructions) ... 219

-hassmallmultiplier (ARM Do not generate multiply instructions) 220

-help (Display help information) ... 221

-instrument (Instrument functions) ... 222

Embedded Studio for ARM Reference Manual Contents

7

-I (Define user include directories) ... 223

-I- (Exclude standard include directories) ... 224

-J (Define system include directories) ... 225

-kasm (Keep assembly code) .. 226

-kldscript (Keep linker script) ... 227

-kpp (Keep preprocessor output) ... 228

-K (Keep linker symbol) ... 229

-l- (Do not link standard libraries) .. 230

-longcalls (ARM Generate long calling sequences) ... 231

-lto (Enable link time optimization) ... 232

-L (Set library directory path) ... 233

-memorymap (Memory map file) .. 234

-memorymapmacros (Memory map macros) .. 235

-M (Display linkage map) ... 236

-n (Dry run, no execution) .. 237

-nointerwork (ARM No interwork code for v4t) .. 238

-nowarn-mismatch (ARM No warning on architecture mismatch) 239

-nowarn-enumsize (ARM No warning on enum size mismatch) .. 240

-nowarn-wcharsize (ARM No warning on wide character size mismatch) 241

-nostderr (No stderr output) ... 242

-O (Optimize output) .. 243

-o (Set output file name) .. 244

-patch (Run patch command) ... 245

-placement (Section placement file) ... 246

-placementmacros (Section placement macros) .. 247

-placementsegments (Section placement segments) .. 248

-printf (Select printf capability) ... 249

-rtti (Enable C++ RTTI Support) ... 250

-R (Set section name) ... 251

-scanf (Select scanf capability) ... 252

-segger (Use SEGGER assembler/compiler/linker) ... 253

-shortenums (ARM Minimal sized enums) .. 254

-shortwchar (ARM 16-bit wide chars) .. 255

-simd (ARM Generate vector processing code) .. 256

-std (Select language standard) .. 257

-strip (Strip symbols from executable) ... 258

-symbols (Link symbols) ... 259

-thumb (ARM Generate thumb code) ... 260

-T (Supply linker script) ... 261

-U (Undefine macro symbol) ... 262

-unwindtables (Generate unwind tables) ... 263

Embedded Studio for ARM Reference Manual Contents

8

-v (Verbose execution) ... 264

-vectorize (ARM Generate vector processing code) .. 265

-w (Suppress warnings) ... 266

-we (Treat warnings as errors) ... 267

-W (Pass option to tool) .. 268

-x (Specify file types) .. 269

Command-Line Project Builder .. 270

Building with a SEGGER Embedded Studio project file ... 271

Building without a SEGGER Embedded Studio project file .. 273

Command-line options .. 274

-batch (Batch build) .. 275

-config (Select build configuration) ... 276

-clean (Remove output files) ... 277

-D (Define macro) .. 278

-echo (Show command lines) ... 279

-file (Build a named file) ... 280

-packagesdir (Specify packages directory) ... 281

-project (Specify project to build) .. 282

-property (Set project property) ... 283

-rebuild (Always rebuild) .. 284

-show (Dry run, don't execute) .. 285

-solution (Specify solution to build) .. 286

-studiodir (Specify SEGGER Embedded Studio directory) .. 287

-template (Specify project template) .. 288

-time (Time the build) .. 289

-threadnum (Specify number of build threads) .. 290

-type (Specify project type) ... 291

-verbose (Show build information) .. 292

Command-Line Simulator ... 293

Command-line options .. 294

file (Elf executable file) .. 295

-segments (Specify memory segments) ... 296

args (User arguments) ... 297

Command-Line Scripting .. 298

Command-line options .. 299

-define (Define global variable) ... 300

-help (Show usage) ... 301

-load (Load script file) .. 302

-define (Verbose output) .. 303

emScript classes .. 304

Example uses .. 305

Embedded Studio for ARM Reference Manual Contents

9

Embed .. 306

Command-Line License Manager .. 307

Linker script file generator ... 308

Command-line options .. 309

-check-section-overflow .. 310

-check-segment-overflow ... 311

-disable-missing-runin-error ... 312

-memory-map-macros ... 313

-no-check-unplaced-sections .. 314

-no-ctors ... 315

-no-dtors .. 316

-section-placement-file .. 317

-section-placement-macros ... 318

-symbols ... 319

Package generator ... 320

Package manager ... 322

Appendices ... 325

Technical ... 326

File formats ... 326

Memory Map file format ... 327

Section Placement file format .. 329

Project file format .. 331

Project Templates file format ... 332

Property Groups file format .. 334

Package Description file format .. 336

External Tools file format ... 340

Debugger Type Interpretation file format .. 343

Environment Options ... 345

Building Environment Options .. 345

Debugging Environment Options .. 347

IDE Environment Options .. 350

Programming Language Environment Options ... 356

Source Control Environment Options ... 360

Text Editor Environment Options ... 362

Windows Environment Options .. 374

Project Options ... 386

Code Options ... 386

Debug Options .. 415

Macros ... 423

System Macros .. 423

Build Macros ... 426

Embedded Studio for ARM Reference Manual Contents

10

Script classes .. 431

BinaryFile ... 431

CWSys .. 432

Debug .. 433

ElfFile ... 434

TargetInterface .. 435

WScript ... 437

Embedded Studio for ARM Reference Manual Introduction

11

Introduction
This guide is divided into a number of sections:

Introduction
Covers installing SEGGER Embedded Studio for ARM on your machine and verifying that it operates

correctly, followed by a brief guide to the operation of the SEGGER Embedded Studio integrated

development environment, debugger, and other software supplied in the product.

SEGGER Embedded Studio User Guide
Contains information on how to use the SEGGER Embedded Studio development environment to manage

your projects, build, and debug your applications.

ARM target support
Contains a description of system files used for startup and debugging of ARM applications.

Embedded Studio for ARM Reference Manual Introduction

12

What is SEGGER Embedded Studio for ARM?
SEGGER Embedded Studio for ARM is a complete C/C++ development system for ARM and Cortex,

microcontrollers and microprocessors that runs on Windows, Mac OS and Linux.

C/C++ Compiler

SEGGER Embedded Studio for ARM comes with pre-built versions of both GCC and Clang/LLVM C and C++

compilers and assemblers. The GNU linker and librarian are also supplied to enable you to immediately begin

developing applications for ARM.

SEGGER Embedded Studio for ARM C Library

SEGGER Embedded Studio for ARM has its own royalty-free ANSI and ISO C compliant C library that has been

specifically designed for use within embedded systems.

SEGGER Embedded Studio for ARM C++ Library

SEGGER Embedded Studio for ARM supplies a C++ library that implements STL containers, exceptions and RTTI.

SEGGER Embedded Studio IDE

SEGGER Embedded Studio for ARM is a streamlined integrated development environment for building, testing,

and deploying your applications. SEGGER Embedded Studio provides:

Source Code Editor:A powerful source code editor with multi-level undo and redo, makes editing your

code a breeze.

Project System:A complete project system organizes your source code and build rules.

Build System:With a single key press you can build all your applications in a solution, ready for them to be

loaded onto a target microcontroller.

Debugger and Flash Programming:You can download your programs directly into Flash and debug them

seamlessly from within the IDE using a wide range of target interfaces.

Help system:The built-in help system provides context-sensitive help and a complete reference to the

SEGGER Embedded Studio IDE and tools.

Core Simulator:As well as providing cross-compilation technology, SEGGER Embedded Studio for ARM

provides a PC-based fully functional simulation of the target microcontroller core so you can debug parts

of your application without waiting for hardware.

Embedded Studio for ARM Reference Manual Introduction

13

SEGGER Embedded Studio for ARM Tools

SEGGER Embedded Studio for ARM supplies command line tools that enable you to build your application on

the command line using the same project file that the IDE uses.

Embedded Studio for ARM Reference Manual Introduction

14

What we don't tell you
This documentation does not attempt to teach the C or assembly language programming; rather, you should

seek out one of the many introductory texts available. And similarly the documentation doesn't cover the ARM

architecture or microcontroller application development in any great depth.

We also assume that you're fairly familiar with the operating system of the host computer being used.

C programming guides

These are must-have books for any C programmer:

Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988). Prentice-Hall,

Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

The original C bible, updated to cover the essentials of ANSI C (1990 version).

Harbison, S.P. and Steele, G.L., C: A Reference Manual (second edition, 1987). Prentice-Hall, Englewood

Cliffs, NJ, USA. ISBN 0-13-109802-0.

A nice reference guide to C, including a useful amount of information on ANSI C. Co-authored by Guy

Steele, a noted language expert.

ANSI C reference

If you're serious about C programming, you may want to have the ISO standard on hand:

ISO/IEC 9899:1990, C Standard and ISO/IEC 9899:1999, C Standard. The standard is available from your

national standards body or directly from ISO at http://www.iso.ch/.

ARM microcontrollers

For ARM technical reference manuals, specifications, user guides and white papers, go to:

http://www.arm.com/Documentation.

GNU compiler collection

For the latest GCC documentation go to:

http://gcc.gnu.org/.

LLVM/Clang

For the latest LLVM/Clang documentation to to:

http://www.llvm.org

http://www.iso.ch/
http://www.arm.com/Documentation
http://gcc.gnu.org/
http://www.llvm.org

Embedded Studio for ARM Reference Manual Introduction

15

Getting Started
You will need to install a CPU support package:

Choose Tools > Package Manager

Choose the CPU support packages you wish to install and complete the dialog.

You will need to create a project:

Choose File > New Project

Select the appropriate Executable project type

Specify a location for the project

Complete the dialog selecting the appropriate Target Processor value

You will need to build the project:

Choose Build | Build 'Project'

To debug on the simulator

Choose Project | Options... to show the project options dialog

In the Search Options type in Simulator

Choose Simulator for the Target Connection option

To debug on hardware

Choose Project | Options... to show the project options dialog

In the Search Options type in J-Link

Choose J-Link for the Target Connection option

To start debugging

Choose Debug | Go

The debugger will stop the program at the main, you can now debug the application.

Embedded Studio for ARM Reference Manual Introduction

16

Text conventions

Menus and user interface elements

When this document refers to any user interface element, it will do so in bold font. For instance, you will often

see reference to the Project Explorer, which is taken to mean the project explorer window. Similarly, you'll see

references to the Standard toolbar which is positioned at the top of the SEGGER Embedded Studio window, just

below the menu bar on Windows and Linux.

When you are directed to select an item from a menu in SEGGER Embedded Studio, we use the form menu-

name > item-name. For instance, File > Save means that you need to click the File menu in the menu bar and

then select the Save item. This form extends to items in sub-menus, so File > Open With Binary Editor has the

obvious meaning.

Keyboard accelerators

Frequently-used commands are assigned keyboard accelerators to speed up common tasks. SEGGER Embedded

Studio uses standard Windows and Mac OS keyboard accelerators wherever possible.

Windows and Linux have three key modifiers which are Ctrl, Alt, and Shift. For instance, Ctrl+Alt+P means that

you should hold down the Ctrl and Alt buttons whilst pressing the P key; and Shift+F5 means that you should

hold down the Shift key whilst pressing F5.

Mac OS has four key modifiers which are (command), (option), (control), and (shift). Generally there is a one-

to-one correspondence between the Windows modifiers and the Mac OS modifiers: Ctrl is , Alt is , and Shift

is . SEGGER Embedded Studio on Mac OS has its own set of unique key sequences using (control) that have no

direct Windows equivalent.

SEGGER Embedded Studio on Windows and Linux also uses key chords to expand the set of accelerators. Key

chords are key sequences composed of two or more key presses. For instance, the key chord Ctrl+T, D means

that you should type Ctrl+T followed by D; and Ctrl+K, Ctrl+Z means that you should type Ctrl+T followed by

Ctrl+Z. Mac OS does not support accelerator key chords.

Code examples and human interaction

Throughout the documentation, text printed in this typeface represents verbatim communication with the

computer: for example, pieces of C text, commands to the operating system, or responses from the computer.

In examples, text printed in this typeface is not to be used verbatim: it represents a class of items, one of which

should be used. For example, this is the format of one kind of compilation command:

hcl source-file

This means that the command consists of:

The word hcl, typed exactly like that.

A source-file: not the text source-file, but an item of the source-file class, for example myprog.c.

Embedded Studio for ARM Reference Manual Introduction

17

Whenever commands to and responses from the computer are mixed in the same example, the commands

(i.e. the items which you enter) will be presented in this typeface. For example, here is a dialog with the

computer using the format of the compilation command given above:

c:\code\examples>hcl -v myprog.c

The user types the text hcl -v myprog.c and then presses the enter key (which is assumed and is not shown); the

computer responds with the rest.

Embedded Studio for ARM Reference Manual Introduction

18

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

19

SEGGER Embedded Studio User Guide
This is the user guide for the SEGGER Embedded Studio integrated development environment (IDE). The SEGGER

Embedded Studio IDE consists of:

a project system to organize your source files

a build system to build your applications

programmer aids to navigate and work effectively

a target programmer to download applications into RAM or flash

a debugger to pinpoint bugs

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

20

SEGGER Embedded Studio standard layout
SEGGER Embedded Studio's main window is divided into the following areas:

Title bar:Displays the name of the current solution.

Menu bar:Menus for editing, building, and debugging your program.

Toolbars:Frequently used actions are quickly accessible on toolbars below the menu bar.

Editing area:A tabbed view of any open editor windows and the HTML viewer.

Docked windows:SEGGER Embedded Studio has many windows that dock to the left, right, or below the

editing area. You can configure which windows will be visible, and their placement, when editing and

debugging.

Status bar At the bottom of the main window, the status bar contains useful information about the

current editor, build status, and debugging environment.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

21

Menu bar
The menu bar contains menus for editing, building, and debugging your program. You can navigate menus

using the keyboard or the mouse.

Navigating menus using the mouse

To navigate menus using the mouse:

1. Click a menu title in the menu bar to show the related menu.

2. Click the desired command in the menu to execute that command.

or

1. Click and hold the mouse on a menu title in the menu bar to show the related menu.

2. Drag the mouse to the desired command in the menu.

3. Release the mouse while it is over the command to execute that command.

Navigating menus with the keyboard

To navigate menus using the keyboard:

1. Tap the Alt key activate the menu bar.

2. Tap Return to display the menu.

3. Use the Left and Right keys to select the required menu.

4. Use the Up or Down key to select the required command or submenu.

5. Press Enter to execute the selected command.

6. Press Alt or Esc at any time to cancel menu selection.

After you press the Alt key once, each menu on the menu bar has one letter underlinedits shortcut key. So, to

activate a menu using the keyboard:

While holding down the Alt key, type the desired menu's shortcut key.

After the menu appears, you can navigate it using the cursor keys:

Use Up and Down to move up and down the list of menu items.

Use Esc to cancel a menu.

Use Right or Enter to open a submenu.

Use Left or Esc to close a submenu and return to the parent menu.

Type the underlined letter in a command's name to execute that command.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

22

Title bar
The first item shown in the title bar is SEGGER Embedded Studio's name. Because SEGGER Embedded Studio

can be used to target different processors, the name of the target processor family is also shown, to help you

distinguish between instances of SEGGER Embedded Studio when debugging multi-processor or multi-core

systems.

The filename of the active editor follows SEGGER Embedded Studio's name; you can configure the presentation

of this filename as described below.

After the filename, the title bar displays status information on SEGGER Embedded Studio's state:

[building] SEGGER Embedded Studio is building a solution, building a project, or compiling a file.

[run] An application is running under control of SEGGER Embedded Studio's debugger.

[break] The debugger is stopped at a breakpoint.

[autostep] The debugger is single stepping the application without user interaction (autostepping).

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

23

Status bar
At the bottom of the window, the status bar contains useful information about the current editor, build status,

and debugging environment. The status bar is divided into two regions: one contains a set of fixed panels and

the other is used for messages.

The message area

The leftmost part of the status bar is a message area used for things such as status tips, progress information,

warnings, errors, and other notifications.

Status bar panels

You can show or hide the following panels on the status bar:

Panel Description

Target device status

Displays the connected target interface. When
connected, this panel contains the selected target
interface's name and, if applicable, the processor to
which the target interface is connected. The LED icon
flashes green when a program is running, is solid red
when stopped at a breakpoint, and is yellow when
connected to a target but not running a program.
Double-clicking this panel displays the Targets pane,
and right-clicking it invokes the Target shortcut menu.

Cycle count panel Displays the number of processor cycles used by the
executing program. This panel is only visible if the
connected target supports performance counters
that can report the total number of cycles executed.
Double-clicking this panel resets the cycle counter to
zero, and right-clicking it brings up the Cycle Count
shortcut menu.

Insert/overwrite status Indicates whether the current editor is in insert or
overwrite mode. In overwrite mode, the panel displays
"OVR"; in insert mode, the panel displays "INS".

Read-only status Indicates whether the editor is in read-only mode. If
the editor is editing a read-only file or is in read-only
mode, the panel display "R/O"; if the editor is in read-
write mode, the panel displays "R/W".

Build status Indicates the success or failure of the last build. If
the last build completed without errors or warnings,
the build status pane contains Built OK; otherwise, it
contains the number of errors and warnings reported.
If there were errors, double-clicking this panel displays
the Build Log in the Output pane.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

24

Caret position Indicates the insertion position position in the editor
window. For text files, the caret position pane displays
the line number and column number of the insertion
point in the active window; when editing binary files, it
displays the address being edited.

Time panel Displays the current time.

Configuring the status bar panels

To configure which panels are shown on the status bar:

Choose View > Status Bar.

From the status bar menu, select the panels to display and deselect the ones you want hidden.

or

Right-click the status bar.

From the status bar menu, select the panels to display and deselect the ones you want to hide.

To show or hide the status bar:

Choose View > Status Bar.

From the status bar menu, select or deselect the Status Bar item.

You can choose to hide or display the size grip when SEGGER Embedded Studio's main window is not maximized.

(The size grip is never shown in full-screen mode or when maximized.)

To show or hide the size grip

Choose View > Status Bar.

From the status bar menu, select or deselect the Size Grip item.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

25

Editing workspace
The main area of SEGGER Embedded Studio is the editing workspace. It contains any files being edited, the on-

line help system's HTML browser, and the Dashboard.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

26

Docking windows
SEGGER Embedded Studio has a flexible docking system you can use to position windows as you like them. You

can dock windows in the SEGGER Embedded Studio window or in the four head-up display windows. SEGGER

Embedded Studio will remember the position of the windows when you leave the IDE and will restore them

when you return.

Window groups

You can organize SEGGER Embedded Studio windows into window groups. A window group has multiple

windows docked in it, only one of which is active at a time. The window group displays the active window's title

for each of the windows docked in the group.

Clicking on the window icons in the window group's header changes the active window. Hovering over a

docked window's icon in the header will display that window's title in a tooltip.

To dock a window to a different window group:

Press and hold the left mouse button over the title of the window you wish to move.

As you start dragging, all window groups, including hidden window groups, become visible.

Drag the window over the window group to dock in.

Release the mouse button.

Holding Ctrl when moving the window will prevent the window from being docked. If you do not dock a

window on a window group, the window will float in a new window group.

Perspectives

SEGGER Embedded Studio remembers the dock position and visibility of each window in each perspective. The

most common use for this is to lay your windows out in the Standard perspective, which is the perspective

used when you are editing and not debugging. When SEGGER Embedded Studio starts to debug a program,

it switches to the Debug perspective. You can now lay out your windows in this perspective and SEGGER

Embedded Studio will remember how you laid them them out. When you stop debugging, SEGGER Embedded

Studio will revert to the Standard perspective and that window layout for editing; when you return to Debug

perspective on the next debug session, the windows will be restored to how you laid them out in that for

debugging.

SEGGER Embedded Studio remembers the layout of windows, in all perspectives, such that they can be restored

when you run SEGGER Embedded Studio again. However, you may wish to revert back to the standard docking

positions; to do this:

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

27

Dashboard
When SEGGER Embedded Studio starts, it presents the Dashboard, a collection of panels that provide useful

information, one-click loading of recent projects, and at-a-glance summaries of activity relevant to you.

Tasks

The Tasks panel indicates tasks you need to carry out before SEGGER Embedded Studio for ARM is fully

functionalfor instance, whether you need to activate SEGGER Embedded Studio for ARM, install packages, and so

on.

Updates

The Updates panel indicates whether any packages you have installed are now out of date because a newer

version is available. You can install each new package individually by clicking the Install button under each

notification, or install all packages by clicking the Install all updates link at the bottom of the panel.

Projects

The Projects panel contains links to projects you have worked on recently. You can load a project by clicking the

appropriate link, or clear the project history by clicking the Clear List button. To manage the contents of the list,

click the Manage Projects link and edit the list of projects in the Recent Projects window.

News

The News panel summarizes the activity of any RSS and Atom feeds you have subscribed to. Clicking a link will

display the published article in an external web browser. You can manage your feed subscriptions to by clicking

the Manage Feeds link at the end of the News panel and pinning the feeds in the Favorites windowyou are only

subscribed to the pinned feeds.

Links

The Links panel is a handy set of links to your favorite websites. If you pin a link in the Favorites window, it

appears in the Links panel.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

28

SEGGER Embedded Studio help and assistance
SEGGER Embedded Studio provides context-sensitive help in increasing detail:

Tooltips
When you position the pointer over a button and keep it still, a small window displays a brief description of

the button and its keyboard shortcut, if it has one.

Status tips
In addition to tooltips, SEGGER Embedded Studio provides a longer description in the status bar when you

hover over a button or menu item.

Online manual
SEGGER Embedded Studio has links from all windows to the online help system.

The browser

Documentation pages are shown in the Browser.

Help using SEGGER Embedded Studio

SEGGER Embedded Studio provides an extensive, HTML-based help system that is available at all times.

To view the help text for a particular window or other user-interface element:

Click to select the item with which you want assistance.

Choose Help > Help or press F1.

Help within the text editor

The text editor is linked to the help system in a special way. If you place the insertion point within a word and

press F1, the help-system page most likely to be useful is displayed in the HTML browser. This a great way to

quickly find the help text for functions provided in the library.

Browsing the documentation

The Contents window lists all the topics in the SEGGER Embedded Studio for ARM documentation and gives a

way to search through them.

The highlighted entry indicates the current help topic. When you click a topic, the corresponding page appears

in the Browser window.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

29

The Next Topic and Previous Topic items in the Help menu, or the buttons on the Contents window toolbar,

help navigate through topics.

To search the online documentation, type a search phrase into the Search box on the Contents window toolbar.

To search the online documentation:

Choose Help > Contents or press Ctrl+Alt+F1.

Enter your search phrase in the Search box and press Enter (or Return on Macs).

The search commences and the table of contents is replaced by links to pages matching your query, listed in

order of relevance. To clear the search and return to the table of contents, click the clear icon in the Search box.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

30

Creating and managing projects
A SEGGER Embedded Studio project is a container for everything required to build your applications. It contains

all the assorted resources and maintains the relationships between them.

A project is a convenient place to find every file and piece of information associated with your work. You place

projects into a solution, which can contain one or more projects.

This chapter introduces the various parts of a project, shows how to create projects, and describes how to

organize the contents of a project. It describes how to use the Project Explorer and Project Manager for project-

management tasks.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

31

Solutions and projects
To develop a product using SEGGER Embedded Studio, you must understand the concepts of projects and

solutions.

A project contains and organizes everything you need to create a single application or a library.

A solution is a collection of projects and configurations.

Organizing your projects into a solution allows you to build all the projects in a solution with a single keystroke,

and to load them onto the target ready for debugging.

In your SEGGER Embedded Studio for ARM project, you

organize build-system inputs for building a product.

add information about items in the project, and their relationships, to assist you in the development

process.

Projects in a solution can reside in the same or different directories. Project directories are always relative to the

directory of the solution file, which enables you to more-easily move or share project-file hierarchies.

The Project Explorer organizes your projects and files, and provides quick access to the commands that operate

on them. A toolbar at the top of the window offers quick access to commonly used commands.

Solutions

When you have created a solution, it is stored in a project file. Project files are text files, with the file extension

emProject, that contain an XML description of your project. See Project file format for a description of the

project-file format.

Projects

The projects you create within a solution have a project type SEGGER Embedded Studio uses to determine how

to build the project. The project type is selected when you use the New Project dialog. The available project

types depend on the SEGGER Embedded Studio for ARM variant you are using, but the following are present in

most SEGGER Embedded Studio for ARM variants:

Executable: a program that can be loaded and executed.

Externally Built Executable: an executable that is not built by the SEGGER Embedded Studio for ARM

internal build process.

Library: a group of object files collected into a single file (sometimes called an archive).

Externally Built Library: a library that is not built by the SEGGER Embedded Studio for ARM internal build

process.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

32

Object File: the result of a single compilation.

Staging: a project that will apply a user-defined command to each file in a project.

Combining: a project that can be used to apply a user-defined command when any files in a project have

changed.

Project options and configurations

Project options are attached to project nodes. They are usually used in the build process, for example, to define

C preprocessor symbols. You can assign different values to the same project option, based on a configuration:

for example, you can assign one value to a C preprocessor symbol for release build and a different value for a

debug build.

Folders and Dynamic Folders

Projects can contain folders, which are used to group related files. Automated grouping uses the files' extensions

to, for example, put all .c files in one folder, etc. Grouping also can be done manually by explicitly creating a

file within a folder. Note that these project folders do not map onto directories in the file system, they are used

solely to structure the display of content shown in the Project Explorer.

Projects can also contain dynamic folders which will can show the directories and files contained in the file

system in the project explorer. You can specify if the dynamic folder is recursive and use wildcards to include and

exclude files.

Source files

Source files are all the files used to build a product. These include source code files and also section-placement

files, memory-map files, and script files. All the source files you use for a particular product, or for a suite of

related products, are managed in a SEGGER Embedded Studio project. A project can also contain files that

are not directly used by SEGGER Embedded Studio to build a product but contain information you use during

development, such as documentation. You edit source files during development using SEGGER Embedded

Studio's built-in text editor, and you organize files into a target (described next) to define the build-system

inputs for creating the product.

The source files of your project can be placed in folders or directly in the project. Ideally, the paths to files

placed in a project should be relative to the project directory, but at times you might want to refer to a file in an

absolute location and this is supported by the project system.

When you add a file to a project, the project system detects whether the file is in the project directory. If a

file is not in the project directory, the project system tries to make a relative path from the file to the project

directory. If the file isn't relative to the project directory, the project system detects whether the file is relative to

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

33

the $(StudioDir) directory; if so, the filename is defined using $(StudioDir). If a file is not relative to the project

directory or to $(StudioDir), the full, absolute pathname is used.

The project system will allow (with a warning) duplicate files to be put into a project.

The project system uses a file's extension to determine the appropriate build action to perform on the file:

A file with the extension .c will be compiled by a C compiler.

A file with the extension .cpp or .cxx will be compiled by a C++ compiler.

A file with the extension .s or .asm will be compiled by an assembler.

A file with the object-file extension .o will be linked.

A file with the library-file extension .a will be linked.

A file with the extension .xml will be opened and its file type determined by the XML document type.

Files with other file extensions will not be compiled or linked.

You can modify this behavior by setting a file's File Type project option with the Common configuration

selected, which enables files with non-standard extensions to be compiled by the project system.

Externally Built Executables

You can use an external build process for Externally Built Executable project types by setting the Build

Command project option, for example to make target. Alternatively you can set command lines for specific

build steps to compile/assemble and link. When you create an Externally Built Executable project type

configurations will be created that create command lines for a variety of external tool chains.

Solution links

You can create links to existing project files from a solution, which enables you to create hierarchical builds. For

example, you could have a solution that builds a library together with a stub test driver executable. You can

link to that solution from your current solution by right-clicking the solution node of the Project Explorer and

selecting Add Existing Project. Your current solution can then use the library built by the other project.

Session files

When you exit SEGGER Embedded Studio for ARM, details of your current session are stored in a session file.

Session files are text files, with the file extension emSession, that contain details such as which files you have

opened in the editor and what breakpoints you have set in the Breakpoint window.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

34

Creating a project
You can create a new solution for each project or place multiple projects in an existing solution.

To create a new project in an existing solution:

1. Choose Project > Add New Project.

2. In the New Project wizard, select the type of project you wish to create and specify where it will be

placed.

3. Ensure that Add the project to current solution is checked.

4. Click OK to go to next stage or Cancel to cancel the project's creation.

The project name must be unique to the solution and, ideally, the project directory should be relative to the

solution directory. The project system will use the project directory as the current directory when it builds your

project. Once complete, the Project Explorer displays the new solution, project, and files contained in the

project. To add another project to the solution, repeat the above steps.

To create a new project in a new solution:

1. Choose File > New Project or press Ctrl+Shift+N.

2. Select the type of project you wish to create and where it will be placed.

3. Click OK.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

35

Adding existing files to a project
You can add existing files to a project in a number of ways.

To add existing files to the active project:

Choose Project > Add Existing File or press Ctrl+P, A.

Using the Open File dialog, navigate to the directory containing the files and select the ones you wish to add to

the project.

Click OK.

The selected files are added to the folders whose filter matches the extension of each of the files. If no filter

matches a file's extension, the file is placed underneath the project node.

To add existing files to a specific project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.

2. Choose Add Existing File.

To add existing files to a specific folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.

2. Choose Add Existing File.

The files are added to the specified folder without using filter matching.

To create a dynamic folder:

1. In the Project Explore, right click on the project to which you wish to add a new folder.

2. Choose New Folder....

3. Using the New Folder dialog name the folder and then show the dynamic folder options.

4. Specify the required Source Folder and the Filter Specification.

The files that match the filter specification in the source folder will appear in the newly created folder.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

36

Adding new files to a project
You can add new files to a project in a number of ways.

To add new files to the active project:

Choose Project > Add New File or press Ctrl+N.

To add a new file to a project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.

2. Choose Add New File.

When adding a new file, SEGGER Embedded Studio displays the New File dialog, from which you can choose

the type of file to add, its filename, and where it will be stored. Once created, the new file is added to the folder

whose filter matches the extension of the newly added file. If no filter matches the newly added file extension,

the new file is placed underneath the project node.

To add new files to a folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.

2. Choose Add New File.

The new file is added to the folder without using filter matching.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

37

Removing a file, folder, project, or project link
You can remove whole projects, folders, or files from a project, or you can remove a project from a solution,

using the Remove button on the Project Explorer toolbar. Note that removing a source file from a project does

not remove it from disk.

To remove an item from the solution:

1. In the Project Explorer, select the item to remove.

2. Choose Edit > Delete or press Del.

or

1. In the Project Explorer, right-click the item to remove.

2. Choose Remove.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

38

Building your application
SEGGER Embedded Studio builds your application using the resources and build rules it finds in your solution.

When SEGGER Embedded Studio builds your application, it tries to avoid building files that have not changed

since they were last built. It does this by comparing the modification dates of the generated files with the

modification dates of the dependent files together with the modification dates of the project options that

pertain to the build. But if you are copying files, sometimes the modification dates may not be updated when

the file is copiedin this instance, it is wise to use the Rebuild command rather than the Build command.

You can see the build rationale SEGGER Embedded Studio currently is using by setting the Environment

Options > Building > Show Build Information environment option. To see the build commands themselves, set

the Environment Options > Building > Echo Build Command environment option.

You may have a solution that contains several interdependent projects. Typically, you might have several

executable projects and some library projects. The Project Dependencies dialog specifies the dependencies

between projects and to see the effect of those dependencies on the solution build order. Note that

dependencies can be set on a per-configuration basis, but the default is for dependencies to be defined in the

Common configuration.

You will also notice that a new folder titled Dependencies has appeared in the Project Explorer. This folder

contains the list of newly generated files and the files from which they were generated. To see if one of files

can be decoded and displayed in the editor, right-click the file to see if the View command is available on the

shortcut menu.

If you have the Symbols window open, it will be updated with the symbol and section information of all

executable files built in the solution.

To generalize your builds, you can define macro values that are substituted when the project options are used.

These macro values can be defined globally at the solution and project level, and can be defined on a per-

configuration basis.

The combination of configurations, project options with inheritance, dependencies, and macros provides a

very powerful build-management system. However, such systems can become complicated. To understand the

implications of changing build settings, right-click a node in the Project Explorer and select Options to view a

dialog that shows which macros and project options apply to that project node.

To build all projects in the solution:

1. Choose Build > Build Solution or press Shift+F7.

or

1. Right-click the solution in the Project Explorer window.

2. Choose Build from the shortcut menu.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

39

To build a single project:

1. Select the required project in the Project Explorer.

2. Choose Build > Build or press F7.

or

1. Right-click the project in the Project Explorer.

2. Choose Build.

To compile a single file:

1. In the Project Explorer, click to select the source file to compile.

2. Choose Build > Compile or press Ctrl+F7.

or

1. In the Project Explorer, right-click the source file to compile.

2. Choose Compile from the shortcut menu.

Correcting errors after building

The results of a build are recorded in a Build Log that is displayed in the Output window. Errors are highlighted

in red, warnings are highlighted in yellow. Double-clicking an error, warning, or note will move the insertion

point to the line of source code that triggered that log entry.

You can move forward and backward through errors using Search > Next Location and Search > Next Location.

When you build a single project in a single configuration, the Transcript will display the memory used by the

application and a summary for each memory area.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

40

Creating variants using configurations
SEGGER Embedded Studio provides a facility to build projects in various configurations. Project configurations

are used to create different software builds for your projects.

A configuration defines a set of project options. For example, the output of a compilation can be put into

different directories, dependent upon the configuration. When you create a solution, some default project

configurations are created.

Build configurations and their uses

Configurations are typically used to differentiate debug builds from release builds. For example, the compiler

options for debug builds will differ from those of a release build: a debug build will set options so the project can

be debugged easily, whereas a release build will enable optimization to reduce program size or to increase its

speed. Configurations have other uses; for example, you can use configurations to produce variants of software,

such as custom libraries for several different hardware variants.

Configurations inherit project options from other configurations. This provides a single point of change for

definitions common to several configurations. A particular project option can be overridden in a particular

configuration to provide configuration-specific settings.

When a solution is created, two configurations are generated Debug and Release and you can create additional

configurations by choosing Build > Build Configurations. Before you build, ensure that the appropriate

configuration is set using Build > Set Active Build Configuration or, alternatively, the Active Configuration

combo box in the Project Explorer.

Selecting a configuration

To set the configuration that affects your building and debugging, use the combo box in the Project Explorer or

select Build > Set Active Build Configuration

Creating a configuration

To create your own configurations, select Build > Build Configurations to invoke the Configurations dialog. The

New button will produce a dialog allowing you to name your configuration. You can now specify the existing

configurations from which your new configuration will inherit values.

Deleting a configuration

You can delete a configuration by selecting it and clicking the Remove button. This deletion cannot be undone

or canceled, so beware.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

41

Private configurations

Some configurations are defined purely for inheriting and, as such, should not appear in the Build combo box.

When you select a configuration in the Configuration dialog, you can choose to hide that configuration.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

42

Project options
For solutions, projects, folders, and files, project options can be defined that are used by the project system in

the build process. These project options can be viewed and modified by using the Options dialog in conjunction

with the Project Explorer.

Some project options are only applicable to a given item type. For example, linker project options are only

applicable to a project that builds an executable file. However, other project options can be applied either at

the file, project, or solution project node. For example, a compiler project option can be applied to a solution,

project, or individual file. By setting a project option at the solution level, you enable all files of the solution to

use that project option's value.

Unique project options

A unique project option has one value. When a build is done, the value of a unique project option is the first one

defined in the project hierarchy. For example, the Treat Warnings As Errors project option could be set to Yes

at the solution level, which would then be applicable to every file in the solution that is compiled, assembled,

and linked. You can then selectively define project options for other project items. For example, a particular

source file may have warnings you decide are allowable, so you set the Treat Warnings As Errors to No for that

particular file.

solution Treat Warnings As Errors = Yes
 project1 Treat Warnings As Errors = Yes
 file1 Treat Warnings As Errors = Yes
 file2 Treat Warnings As Errors = No
 project2 Treat Warnings As Errors = No
 file1 Treat Warnings As Errors = No
 file2 Treat Warnings As Errors = Yes

In the above example, the files will be compiled with these values for Treat Warnings As Errors:

project1/file1 Yes

project1/file2 No

project2/file1 No

project2/file2 Yes

Aggregate project options

An aggregating project option collects all the values defined for it in the project hierarchy. For example, when a

C file is compiled, the Preprocessor Definitions project option will take all the values defined at the file, project,

and solution levels.

solution Preprocessor Definitions = SolutionDef

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

43

 project1 Preprocessor Definitions =
 file1 Preprocessor Definitions =
 file2 Preprocessor Definitions = File1Def
 project2 Preprocessor Definitions = ProjectDef
 file1 Preprocessor Definitions =
 file2 Preprocessor Definitions = File2Def

In the above example, the files will be compiled with these preprocessor definitions:

project1/file1 SolutionDef

project1/file2 SolutionDef, File1Def

project2/file1 SolutionDef, ProjectDef

project2/file2 SolutionDef, ProjectDef, File2Def

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

44

Configurations and project options
Project options are defined for a configuration so you can have different values for a project option for

different builds. A given configuration can inherit the project options of other configurations. When the project

system requires a project option value, it checks for the existence of the project option value in the current

configuration and then in the set of inherited configurations. You can specify the set of inherited configurations

using the Configurations dialog.

A special configuration named Common is always inherited by a configuration. The Common configuration

allows you to set project options that will apply to all configurations you create. If you are modifying a project

option of your project, you almost certainly want each configuration to inherit it, so ensure that the Common

configuration is selected.

If the project option is unique, the build system will use the one defined for the particular configuration. If

the project option isn't defined for this configuration, the build system uses an arbitrary one from the set of

inherited configurations.

If the option is still undefined, the build system uses the value for the Common configuration. If it is still

undefined, the build system tries to find the value in the next higher level of the project hierarchy.

solution [Common] Preprocessor Definitions = CommonSolutionDef

solution [Debug] Preprocessor Definitions = DebugSolutionDef

solution [Release] Preprocessor Definitions = ReleaseSolutionDef

 project1 - Preprocessor Definitions =

 file1 - Preprocessor Definitions =

 file2 [Common] Preprocessor Definitions = CommonFile1Def

 file2 [Debug] Preprocessor Definitions = DebugFile1Def

 project2 [Common] Preprocessor Definitions = ProjectDef

 file1 Preprocessor Definitions =

 file2 [Common] - Preprocessor Definitions = File2Def

In the above example, the files will be compiled with these preprocessor definitions when in Debug

configuration

File Setting

project1/file1 CommonSolutionDef, DebugSolutionDef

project1/file2 CommonSolutionDef,
DebugSolutionDef,CommonFile1Def, DebugFile1Def

project2/file1 CommonSolutionDef, DebugSolutionDef, ProjectDef

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

45

project2/file2 ComonSolutionDef, DebugSolutionDef, ProjectDef,
File2Def

and the files will be compiled with these Preprocessor Definitions when in Release configuration:

File Setting

project1/file1 CommonSolutionDef, ReleaseSolutionDef

project1/file2 CommonSolutionDef, ReleaseSolutionDef,
CommonFile1Def

project2/file1 CommonSolutionDef, ReleaseSolutionDef, ProjectDef

project2/file2 ComonSolutionDef, ReleaseSolutionDef, ProjectDef,
File2Def

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

46

Project macros
You can use macros to modify the way the project system refers to files.

Macros are divided into four classes:

System macros defined by SEGGER Embedded Studio relay information about the environment, such as

paths to common directories.

Global macros are saved in the environment and are shared across all solutions and projects. Typically,

you would set up paths to libraries and any external items here.

Project macros are saved as project options in the project file and can define values specific to the solution

or project in which they are defined.

Build macros are generated by the project system when you build your project.

System macros

System macros are defined by SEGGER Embedded Studio itself and as such are read-only. System macros can be

used in project options, environment settings and to refer to files. See System macros list for the list of System

macros.

Global macros

Global macros are store in the environment option Build Macros.

To define a global macro:

1. Use Tools > Options to show the environment options dialog.

2. In the Environment Options dialog's Building group, select the Build Macros option.

3. Click the ellipsis button on the right.

4. Set the macro using the syntax name = replacement text.

Project macros

To define a project macro:

To set the project macros:

1. Select the appropriate solution/project in the Project Explorer.

2. Use Project > Options to show the project options dialog.

3. In the Project Options dialog's General Options group, select the Macros option.

4. Click the ellipsis button on the right.

5. Set the macro using the syntax name = replacement text.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

47

Build macros

Build macros are defined by the project system for a build of a given project node. See Build macros list for the

list of build macros.

Using macros

You can use a macro for a project option or environment setting by using the $(macro) syntax. For example, the

Object File Name option has a default value of $(IntDir)/$(InputName)$(OBJ).

You can also specify a default value for a macro if it is undefined using the $(macro:default) syntax. For example,

$(MyMacro:0) would expand to 0 if the macro MyMacro has not been defined.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

48

Dependencies and build order
You can set up dependency relationships between projects using the Project Dependencies dialog. Project

dependencies make it possible to build solutions in the correct order and, where the target permits, to load

and delete applications and libraries in the correct order. A typical usage of project dependencies is to make

an executable project dependent upon a library executable. When you elect to build the executable, the build

system will ensure that the library it depends upon is up to date. In the case of a dependent library, the output

file of the library build is supplied as an input to the executable build, so you don't have to worry about it.

Project dependencies are stored as project options and, as such, can be defined differently based upon the

selected configuration. You almost always want project dependencies to be independent of the configuration,

so the Project Dependencies dialog selects the Common configuration by default.

To make one project dependent upon another:

1. Choose Project > Project Dependencies.

2. From the Project dropdown, select the target project that depends upon other projects.

3. In the Depends Upon list box, select the projects the target project depends upon and deselect the

projects it does not depend upon.

Some items in the Depends Upon list box may be dimmed, indicating that a circular dependency would result

if any of those projects were selected. In this way, SEGGER Embedded Studio prevents you from constructing

circular dependencies using the Project Dependencies dialog.

If your target supports loading multiple projects, the Build Order also reflects the order in which projects are

loaded onto the target. Projects will load, in order, from top to bottom. Generally, libraries need to be loaded

before the applications that use them, and you can ensure this happens by making the application dependent

upon the library. With this dependency set, the library gets built and loaded before the application does.

Applications are deleted from a target in reverse of their build order; in this way, applications are removed

before the libraries on which they depend.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

49

Linking and section placement
Executable programs consist of a number of sections. Typically, there are program sections for code, initialized

data, and zeroed data. There is often more than one code section and they must be placed at specific addresses

in memory.

To describe how the program sections of your program are positioned in memory, the SEGGER Embedded

Studio for ARM project system uses memory-map files and section-placement files. These XML-formatted

files are described in Memory Map file format and Section Placement file format. They can be edited with

the SEGGER Embedded Studio for ARM text editor. The memory-map file specifies the start address and size

of target memory segments. The section-placement file specifies where to place program sections in the

target's memory segments. Separating the memory map from the section-placement scheme enables a single

hardware description to be shared across projects and also enables a project to be built for a variety of hardware

descriptions.

For example, a memory-map file representing a device with two memory segments called FLASH and SRAM

could look something like this in the memory-map editor.

<Root name="Device1">
 <MemorySegment name="FLASH" start="0x10000000" size="0x10000" />
 <MemorySegment name="SRAM" start="0x20000000" size="0x1000" />

A corresponding section-placement file will refer to the memory segments of the memory-map file and will

list the sections to be placed in those segments. This is done by using a memory-segment name in the section-

placement file that matches the corresponding memory-segment name in the memory-map file.

For example, a section-placement file that places a section called .stack in the SRAM segment and the .vectors

and .text sections in the FLASH segment would look like this:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH" >
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 </MemorySegment>
 <MemorySegment name="SRAM" >
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

Note that the order of section placement within a segment is top down; in this example .vectors is placed at

lower addresses than .text. The order memory segments are processed is bottom up; so in this example the

sections in the SRAM segment will be placed prior to the sections in the FLASH segment.

Multiple memory segments can be specified by separating them with a semicolon. In the following example, the

.stack section will be placed in the SRAM2 memory segment if it exists in the memory map, otherwise it will be

placed in the SRAM memory segment. Sections can only be placed in one segment, they will not be placed in a

second segment when the first is full.

<Root name="Flash Section Placement">

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

50

 <MemorySegment name="FLASH" >
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 </MemorySegment>
 <MemorySegment name="SRAM2;SRAM" >
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

The memory-map file and section-placement file to use for linkage can be included as a part of the project or,

alternatively, they can be specified in the project's linker options.

You can create a new program section using either the assembler or the compiler. For the C/C++ compiler, this

can be achieved using __attribute__ on declarations. For example:

void foobar(void) __attribute__ ((section(".foo")));

This will allocate foobar in the section called .foo. Alternatively, you can specify the names for the code,

constant, data, and zeroed-data sections of an entire compilation unit by using the Section Options options.

You can now place the section into the section placement file using the editor so that it will be located after the

vectors sections as follows:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH">
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".foo" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 </MemorySegment>
 <MemorySegment name="SRAM">
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

If you are modifying a section-placement file that is supplied in the SEGGER Embedded Studio for ARM

distribution, you will need to import it into your project using the Project Explorer.

Sections containing code and constant data should have their load project option set to Yes. Some sections

don't require any loading, such as stack sections and zeroed-data sections; such sections should have their load

project option set to No.

Some sections that are loaded then need to be copied to sections that aren't yet loaded. This is required for

initialized data sections and to copy code from slow memory regions to faster ones. To do this, the runin

attribute should contain the name of a section in the section-placement file to which the section will be copied.

For example, initialized data is loaded into the .data section and then is copied into the .data_run section using:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH">
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 <ProgramSection name=".data" load="Yes" runin=".data_run" />
 </MemorySegment>

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

51

 <MemorySegment name="SRAM">
 <ProgramSection name=".data_run" load="No" />
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

The startup code will copy the contents of the .data section to the .data_run section. To enable this, symbols

named __section-name_start__, __section-name_end__, __section-name_load_start__ and __section-

name_load_end__ are generated marking the section start, end, load start and load end addresses of each

section. The startup code uses these symbols to copy the sections from their load positions to their run

positions.

You can also create your own load and run section, for example the following placement file adds a .mydata

section:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH">
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 <ProgramSection name=".data" load="Yes" runin=".data_run" />
 <ProgramSection name=".mydata" load="Yes" runin=".mydata_run" />
 </MemorySegment>
 <MemorySegment name="SRAM">
 <ProgramSection name=".data_run" load="No" />
 <ProgramSection name=".mydata_run" load="No" />
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

As the startup code doesn't know about this section, the following code will need to be added to the program to

initialise the section:

/* Section image located in flash */
extern const unsigned char __mydata_load_start__[];
extern const unsigned char __mydata_load_end__[];

/* Where to locate the section image in RAM. */
extern unsigned char __mydata_start__[];
extern unsigned char __mydata_end__[];

...

/* Copy image from flash to RAM. */
memcpy(__mydata_start__,
 __mydata_load_start__,
 __mydata_end__ - __mydata_start__);

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

52

Using source control
Source control is an essential tool for individuals or development teams. SEGGER Embedded Studio integrates

with several popular source-control systems to provide this feature for files in your SEGGER Embedded Studio for

ARM projects.

Source-control capability is implemented by a number of third-party providers, but the set of functions provided

by SEGGER Embedded Studio for ARM aims to be provider independent.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

53

Source control capabilities
The source-control integration capability provides:

Connecting to the source-control repository and mapping files in the SEGGER Embedded Studio for ARM

project to those in source control.

Showing the source-control status of files in the project.

Adding files in the project to source control.

Fetching files in the project from source control.

Optionally locking and unlocking files in the project for editing.

Comparing a file in the project with the latest version in source control.

Updating a file in the project by merging changes from the latest version in source control.

Committing changes made to project files into source control.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

54

Configuring source-control providers
SEGGER Embedded Studio supports Subversion, Git, and Mercurial as source-control systems. To enable

SEGGER Embedded Studio to utilize source-control features, you need to install, on your operating system, the

appropriate command line client for the source-control systems that you will use.

Once you have installed the command line client, you must configure SEGGER Embedded Studio to use it.

To configure Subversion:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable environment option of the Subversion Options group to point to Subversion svn

command. On Windows operating systems, the Subversion command is svn.exe.

To configure Git:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable environment option of the Git Options group to point to Git git command. On

Windows operating systems, the Git command is git.exe.

To configure Mercurial:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable environment option of the Mercurial Options group to point to Git hg command. On

Windows operating systems, the Git command is hg.exe.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

55

Connecting to the source-control system
When SEGGER Embedded Studio loads a project, it examines the file system folder that contains the project to

determine the source-control system the project uses. If SEGGER Embedded Studio cannot determine, from the

file system, the source-control system in use, it disables source-control integration.

That is, if you have not set up the paths to the source-control command line clients, even if a working copy exists

and the appropriate command line client is installed, SEGGER Embedded Studio cannot establish source-control

integration for the project.

User credentials

You can set the credentials that the source-control system uses, for commands that require credentials, using

VCS > Options > Configure. From here you can set the user name and password. These details are saved to the

session file (the password is encrypted) so you won't need to specify this information each time the project is

loaded.

Note

SEGGER Embedded Studio has no facility to create repositories from scratch, nor to clone, pull, or checkout

repositories to a working copy: it is your responsibility to create a working copy outside of SEGGER Embedded

Studio using your selected command-line client or Windows Explorer extension.

The "Tortoise" products are a popular set of tools to provide source-control facilities in the Windows shell. Use

Google to find TortoiseSVN, TortoiseGit, and TortoiseHG and see if you like them.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

56

File source-control status
Determining the source-control status of a file can be expensive for large repositories, so SEGGER Embedded

Studio for ARM updates the source-control status in the background. Priority is given to items that are displayed.

A file will be in one of the following states:

Clean:The file is in source control and matches the tip revision.

Not Controlled:The file is not in source control.

Conflicted:The file is in conflict with changes made to the repository.

Locked:The file is locked.

Update Available:The file is older than the most-recent version in source control.

Added:The file is scheduled to be added to the repository.

Removed:The file is scheduled to be removed from the repository.

If the file has been modified, its status is displayed in red in the Project Explorer. Note that if a file is not under

the local root, it will not have a source-control status.

You can reset any stored source-control file status by choosing VCS > Refresh.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

57

Source-control operations
Source-control operations can be performed on single files or recursively on multiple files in the Project

Explorer hierarchy. Single-file operations are available on the Source Control toolbar and on the text editor's

shortcut menu. All operations are available using the VCS menu. The operations are described in terms of the

Project Explorer shortcut menu.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

58

Adding files to source control

To add files to the source-control system:

1. In the Project Explorer, select the file to add. If you select a folder, project, or solution, any eligible child

items will also be added to source control.

2. choose Source Control > Add or press Ctrl+R, A.

3. The dialog will list the files that can be added.

4. In that dialog, you can deselect any files you don't want to add to source control.

5. Click Add.

Note

Files are scheduled to be added to source control and will only be committed to source control (and seen by

others) when you commit the file.

Enabling the VCS > Options > Add Immediately option will bypass the dialog and immediately add (but not

commit) the files.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

59

Updating files

To update files from source control:

1. In the Project Explorer, select the file to update. If you select a folder, project, or solution, any eligible

child items will also be updated from source control.

2. choose Source Control > Update or press Ctrl+R, U.

3. The dialog will list the files that can be updated.

4. In that dialog, you can deselect any files you don't want to update from source control.

5. Click Update.

Note

Enabling the VCS > Options > Update Immediately option will bypass the dialog and immediately update the

files.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

60

Committing files

To commit files:

1. In the Project Explorer, select the file to commit. If you select a folder, project, or solution, any eligible

child items will also be committed.

2. Choose Source Control > Commit or press Ctrl+R, C.

3. The dialog will list the files that can be committed.

4. In that dialog, you can deselect any files you don't want to commit and enter an optional comment.

5. Click Commit.

Note

Enabling the VCS > Options > Commit Immediately option will bypass the dialog and immediately commit the

files without a comment.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

61

Reverting files

To revert files:

1. In the Project Explorer, select the file to revert. If you select a folder, project, or solution, any eligible child

items will also be reverted.

2. Choose Source Control > Revert or press Ctrl+R, V.

3. The dialog will list the files that can be reverted.

4. In that dialog, you can deselect any files you don't want to revert.

5. Click Revert.

Note

Enabling the VCS > Options > Revert Immediately option will bypass the dialog and immediately revert files.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

62

Locking files

To lock files:

1. In the Project Explorer, select the file to lock. If you select a folder, project, or solution, any eligible child

items will also be locked.

2. Choose Source Control > Lock or press Ctrl+R, L.

3. The dialog will list the files that can be locked.

4. In that dialog, you can deselect any files you don't want to lock and enter an optional comment.

5. Click Lock.

Note

Enabling the VCS > Options > Lock Immediately option will bypass the dialog and immediately lock files

without a comment.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

63

Unlocking files

To unlock files:

1. In the Project Explorer, select the file to lock. If you select a folder, project, or solution, any eligible child

items will also be unlocked.

2. Choose Source Control > Unlock or press Ctrl+R, N.

3. The dialog will list the files that can be unlocked.

4. In that dialog, you can deselect any files you don't want to unlock.

5. Click Unlock.

Note

Enabling the VCS > Options > Unlock Immediately option will bypass the dialog and immediately unlock files.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

64

Removing files from source control

To remove files from source control:

1. In the Project Explorer, select the file to remove. If you select a folder, project, or solution, any eligible

child items will also be removed.

2. choose Source Control > Remove or press Ctrl+R, R.

3. The dialog will list the files that can be removed.

4. In that dialog, you can deselect any files you don't want to remove.

5. Click Remove.

Note

Files are scheduled to be removed from source control and will still be and seen by others, giving you the

opportunity to revert the removal. When you commit the file, the file is removed from source control.

Enabling the VCS > Options > Remove Immediately option will bypass the dialog and immediately remove (but

not commit) files.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

65

Showing differences between files
To show the differences between the file in the project and the version checked into source control, do the

following:

1. In the Project Explorer, right-click the file.

2. From the shortcut menu, choose Source Control > Show Differences.

You can use an external diff tool in preference to the built-in SEGGER Embedded Studio for ARM diff tool. To

define the diff command line SEGGER Embedded Studio for ARM generates, choose Tools > Options > Source

Control > Diff Command Line. The command line is defined as a list of strings to avoid problems with spaces in

arguments. The diff command line can contain the following macros:

$(localfile):The filename of the file in the project.

$(remotefile):The filename of the latest version of the file in source control.

$(localname):A display name for $(localfile).

$(remotename):A display name for $(remotefile).

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

66

Source-control properties
When a file in the project is in source control, the Properties window shows the following properties in the

Source Control Options group:

Property Description

SEGGER Embedded Studio Status
The source-control status of working copy as viewed
by SEGGER Embedded Studio.

last Author The author of the file's head revision.

Path: Relative The item's path relative to the repository root.

Path: Repository The pathname of the file in the source-control system,
typically a URL.

Path: Working Copy The pathname of the file in the working copy.

Provider The name of the source-control system managing this
file.

Provider Status The status of the file as reported by the source-control
provider.

Revision: Local The revision number/name of the local file.

Revision: Remote The revision number/name of the most-recent version
in source control.

Status: In Conflict? If Yes, updates merged into the file using Update
conflict with the changes you made locally; if No,
the file is not locked. When conflicted, must resolve
the conflicts and mark them Resolved before
committing the file.

Status: Locked? If Yes, the file is lock by you; if No, the file is not locked.

Status: Modified? If Yes, the checked-out file differs from the version in
the source control system; if No, they are identical.

Status: Update Available? If Yes, the file in the project location is an old version
compared to the latest version in the source-control
systemuse Update to merge in the latest changes.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

67

Subversion provider
The Subversion source-control provider has been tested with SVN 1.4.3.

Provider-specific options

The following environment options are supported:

Property Description

Executable The path to the svn executable.

Lock Supported If Yes, check out and undo check out operations
are supported. Check out will issue the svn lock
command; check in and undo check out will issue the
svn unlock command.

Authentication Selects whether authentication (user name and
password) is sent with every command.

Show Updates Selects whether the update (-u flag) is sent with
status requests in order to show that new versions are
available in the repository. Note that this requires a
live connection to the repository: if you are working
without a network connection to your repository, you
can disable this switch and continue to enjoy source
control status information in the Project Explorer and
Pending Changes windows.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in SVN control. If this is the case, the

local and remote root will be set accordingly. If the local root is not in SVN control after you have set the remote

root, a svn checkout -N command will be issued to make the local root SVN controlled. This command will

also copy any files in the remote root to the local root.

The user name and password you enter will be supplied with each svn command the provider issues.

Source control operations

The SEGGER Embedded Studio for ARM source-control operations are implemented using Subversion

commands. Mapping SEGGER Embedded Studio for ARM source-control operations to Subversion source-

control operations is straightforward:

Operation Command

Commit svn commit for the file, with optional comment.

Update svn update for each file.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

68

Revert svn revert for each file.

Resolved svn resolved for each file.

Lock svn lock for each file, with optional comment.

Unlock svn unlock for each file.

Add svn add for each file.

Remove svn remove for each file.

Source Control Explorer svn list with a remote root. svn mkdir to create
directories in the repository.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

69

CVS provider
The CVS source-control provider has been tested with CVSNT 2.5.03. The CVS source-control provider uses the

CVS rls command to browse the repositorythis command is implemented in CVS 1.12 but usage of . as the root

of the module name is not supported.

Provider-specific options

The following environment options are supported:

Property Description

CVSROOT The CVSROOT value to access the repository.

Edit/Unedit Supported If Yes, Check Out and Undo Check Out commands
are supported. Any check-out operation will issue the
cvs edit command; any check-in or undo-check-
out operation will issue the cvs unedit command;
the status operation will issue the cvs ss command.

Executable The path to the cvs executable.

Login/Logout Required If Yes, Connect will issue the cvs login command.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in CVS control. If this is the case, the

local and remote root will be set accordingly. If the local root is not in CVS control after you have set the remote

root, a cvs checkout -l -d command will be issued to make the local root CVS controlled. This command

will also copy any files in the remote root to the local root.

Source-control operations

The SEGGER Embedded Studio for ARM source-control operations have been implemented using CVS

commands. There are no multiple-file operations, each operation is done on a single file and committed as part

of the operation.

Operation Command

Get Status
cvs status and optional cvs editors for local
directories in CVS control. cvs rls -e for directories
in the repository.

Add To Source Control cvs add for each directory not in CVS control.
cvs add for the file. cvs commit for the file and
directories.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

70

Get Latest cvs update -l -d for each directory not in CVS
control. cvs update to merge the local file. cvs
update -C to overwrite the local file.

Check Out Optional cvs update -C to get the latest version.
cvs edit to lock the file.

Undo Check Out cvs unedit to unlock the file. Optional cvs
update to get the latest version.

Check In cvs commit for the file.

Source Control Explorer cvs rls -e with a remote root starting with .. cvs
import to create directories in the repository.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

71

Package management
Additional target-support functions can be added to, and removed from, SEGGER Embedded Studio for ARM

with packages.

A SEGGER Embedded Studio for ARM package is an archive file containing a collection of target-support files.

Installing a package involves copying the files it contains to an appropriate destination directory and registering

the package with SEGGER Embedded Studio for ARM's package system. Keeping target-support files separate

from the main SEGGER Embedded Studio for ARM installation allows us to support new hardware and issue bug

fixes for existing hardware-support files between SEGGER Embedded Studio for ARM releases, and it allows third

parties to develop their own support packages.

Installing packages

Use the Package Manager to automate the download, installation, upgrade and removal of packages.

To activate the Package Manager:

Choose Tools > Manage Packages.

In some situations, such as using SEGGER Embedded Studio for ARM on a computer without Internet access or

when you want to install packages that are not on the website, you cannot use the Package Manager to install

packages and it will be necessary to manually install them.

To manually install a package:

1. Choose Tools > Manually Install Packages.

2. Select one or more package files you want to install.

3. Click Open to install the packages.

Choose Tools > Show Installed Packages to see more information on the installed packages.

The Package Manager window will remove manually installed packages.

The package manager

The Package Manager manages the support packages installed on your system. It lists the available packages,

shows the installed packages, and allows you to install, update, reinstall, and remove them.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

72

To activate the Package Manager:

Choose Tools > Manage Packages.

Filtering the package list

By default, the Package Manager lists all available and installed packages. You can filter the displayed packages

in a number of ways.

To filter by package status:

Click on the disclosure icon near the top-right corner of the dialog.

Use the pop-up menu to choose how to filter the list of packages.

The list-filter choices are:

Display All Show all packages irrespective of their status.

Display Not Installed Show packages that are available but are not currently installed.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

73

Display Installed Only show packages that are installed.

Display Updates Only show packages that are installed but are not up-to-date because a newer version is

available.

You can also filter the list of packages by the text in the package's title and documentation.

To filter packages by keyword:

Type the keyword into the Search Packages box at the top-left corner of the dialog.

Installing a package

The package-installation operation downloads a package to $(PackagesDir)/downloads, if it has not been

downloaded already, and unpacks the files contained within the package to their destination directory.

To install a package:

1. Choose Tools > Package Manager and set the status filter to Display Not Installed.

2. Select the package or packages you wish to install.

3. Right-click the selected packages and choose Install Selected Packages from the shortcut menu.

4. Click Next; you will be see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will install the selected packages.

6. When installation is complete, click Finish to close the Package Manager.

Updating a package

The package-update operation first removes existing package files, then it downloads the updated package to

$(PackagesDir)/downloads and unpacks the files contained within the package to their destination directory.

To update a package:

1. Choose Tools > Package Manager and set the status filter to Display Updates.

2. Select the package or packages you wish to update.

3. Right-click the selected packages and choose Update Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will update the package(s).

6. When the update is complete, click Finish to close the Package Manager.

Removing a package

The package-remove operation removes all the files that were extracted when the package was installed.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

74

To remove a package:

1. Choose Tools > Package Manager and set the status filter to Display Installed.

2. Select the package or packages you wish to remove.

3. Right-click the selected packages and choose Remove Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will remove the package(s).

6. When the operation is complete, click Finish to close the Package Manager.

Reinstalling a package

The package-reinstall operation carries out a package-remove operation followed by a package-install

operation.

To reinstall a package:

1. Choose Tools > Package Manager and set the status filter to Display Installed.

2. Select the package or packages you wish to reinstall.

3. Right-click the packages to reinstall and choose Reinstall Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will reinstall the packages.

6. When the operation is complete, click Finish to close the Package Manager.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

75

Exploring your application
In this section, we discuss the SEGGER Embedded Studio tools that help you examine how your application is

built.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

76

Project explorer
The Project Explorer is the user interface of the SEGGER Embedded Studio for ARM project system. It organizes

your projects and files and provides access to the commands that operate on them. A toolbar at the top of the

window offers quick access to commonly used commands for the selected project node or the active project.

Right-click to reveal a shortcut menu with a larger set of commands that will work on the selected project node,

ignoring the active project.

The selected project node determines what operations you can perform. For example, the Compile operation

will compile a single file if a file project node is selected; if a folder project node is selected, each of the files in

the folder are compiled.

You can select project nodes by clicking them in the Project Explorer. Additionally, as you switch between files

in the editor, the selection in the Project Explorer changes to highlight the file you're editing.

To activate the Project Explorer:

Choose View > Project Explorer or press Ctrl+Alt+P.

Left-click operations

The following operations are available in the Project Explorer with a left-click of the mouse:

Action Description

Single click
Select the node. If the node is already selected and
is a solution, project, or folder node, a rename editor
appears.

Double click Double-clicking a solution node or folder node will
reveal or hide the node's children. Double-clicking a
project node selects it as the active project. Double-
clicking a file opens the file with the default editor for
that file's type.

Toolbar commands

The following buttons are on the toolbar:

Button Description

Add a new file to the active project using the New File
dialog.

Add existing files to the active project.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

77

Remove files, folders, projects, and links from the
project.

Create a new folder in the active project.

Menu of build operations.

Disassemble the active project.

Menu of Project Explorer options.

Display the properties dialog for the selected item.

Shortcut menu commands

The shortcut menu, displayed by right-clicking, contains the commands listed below.

For solutions:

Item Description

Build and Batch Build
Build all projects under the solution in the current or
batch build configuration.

Rebuild and Batch Rebuild Rebuild all projects under the solution in the current or
batch build configuration.

Clean and Batch Clean Remove all output and intermediate build files for the
projects under the solution in the current or batch
build configuration.

Export Build and Batch Export Build Create an editor with the build commands for the
projects under the solution in the current or batch
build configuration.

Add New Project Add a new project to the solution.

Add Existing Project Create a link from an existing solution to this solution.

Paste Paste a copied project into the solution.

Remove Remove the link to another solution from the solution.

Rename Rename the solution node.

Source Control Operations Source-control operations on the project file and
recursive operations on all files in the solution.

Edit Solution As Text Create an editor containing the project file.

Save Solution As Change the filename of the project filenote that the
saved project file is not reloaded.

Properties Show the Properties dialog with the solution node
selected.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

78

For projects:

Item Description

Build and Batch Build
Build the project in the current or batch build
configuration.

Rebuild and Batch Rebuild Reuild the project in the current or batch build
configuration.

Clean and Batch Clean Remove all output and intermediate build files for the
project in the current or batch build configuration.

Export Build and Batch Export Build Create an editor with the build commands for the
project in the current or batch build configuration.

Link Perform the project node build operation: link for an
Executable project type, archive for a Library project
type, and the combine command for a Combining
project type.

Set As Active Project Set the project to be the active project.

Debugging Commands For Executable and Externally Built Executable project
types, the following debugging operations are
available on the project node: Start Debugging, Step
Into Debugging, Reset And Debug, Start Without
Debugging, Attach Debugger, and Verify.

Memory-Map Commands For Executable project types that don't have memory-
map files in the project and have the memory-map file
project option set, there are commands to view the
memory-map file and to import it into the project.

Section-Placement Commands For Executable project types that don't have section-
placement files in the project but have the section-
placement file project option set, there are commands
to view the section-placement file and to import it into
the project.

Target Processor For Executable and Externally Built Executable project
types that have a Target Processor option group, the
selected target can be changed.

Add New File Add a new file to the project.

Add Existing File Add an existing file to the project.

New Folder Create a new folder in the project.

Cut Cut the project from the solution.

Copy Copy the project from the solution.

Paste Paste a copied folder or file into the project.

Remove Remove the project from the solution.

Rename Rename the project.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

79

Source Control Operations Source-control, recursive operations on all files in the
project.

Find in Project Files Run Find in Files in the project directory.

Properties Show the Project Manager dialog and select the
project node.

For folders:

Item Description

Add New File Add a new file to the folder.

Add Existing File Add an existing file to the folder.

New Folder Create a new folder in the folder.

Cut Cut the folder from the project or folder.

Copy Copy the folder from the project or folder.

Paste Paste a copied folder or file into the folder.

Remove Remove the folder from the project or folder.

Rename Rename the folder.

Source Control Operations Source-control recursive operations on all files in the
folder.

Compile Compile each file in the folder.

Properties Show the properties dialog with the folder node
selected.

For files:

Item Description

Open Edit the file with the default editor for the file's type.

Open With Edit the file with a selected editor. You can choose
from the Binary Editor, Text Editor, and Web Browser.

Select in File Explorer Create a operating system file system window with the
file selected.

Compile Compile the file.

Export Build Create an editor window containing the commands to
compile the file in the active build configuration.

Exclude From Build Set the Exclude From Build option to Yes for this
project node in the active build configuration.

Disassemble Disassemble the output file of the compile into an
editor window.

Preprocess Run the C preprocessor on the file and show the
output in an editor window.

Cut Cut the file from the project or folder.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

80

Copy Copy the file from the project or folder.

Remove Remove the file from the project or folder.

Import Import the file into the project.

Source Control Operations Source-control operations on the file.

Properties Show the properties dialog with the file node selected.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

81

Source navigator window
One of the best ways to find your way around your source code is using the Source Navigator. It parses the

active project's source code and organizes classes, functions, and variables in various ways.

To activate the Source Navigator:

Choose View > Source Navigator or press Ctrl+Alt+N.

The main part of the Source Navigator window provides an overview of your application's functions, classes,

and variables.

SEGGER Embedded Studio displays these icons to the left of each object:

Icon Description

A C or C++ structure or a C++ namespace.

A C++ class.

A C++ member function declared private or a
function declared with static linkage.

A C++ member function declared protected.

A C++ member function declared public or a
function declared with extern linkage.

A C++ member variable declared private or a
variable declared with static linkage.

A C++ member variable declared protected.

A C++ member variable declared public or a variable
declared with extern linkage.

Re-parsing after editing

The Source Navigator does not update automatically, only when you ask it to. To parse source files manually,

click the Refresh button on the Source Navigator toolbar.

SEGGER Embedded Studio re-parses all files in the active project, and any dependent project, and updates the

Source Navigator with the changes. Parsing progress is shown as a progress bar in the in the Source Navigator

window. Errors and warnings detected during parsing are sent to the Source Navigator Log in the Output

windowyou can show the log quickly by clicking the Show Source Navigator Log tool button on the Source

Navigator toolbar.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

82

Sorting and grouping

You can group objects by their type; that is, whether they are classes, functions, namespaces, structures, or

variables. Each object is placed into a folder according to its type.

To group objects by type:

1. On the Source Navigator toolbar, click the arrow to the right of the Cycle Grouping button.

2. Choose Group By Type

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

83

References window
The References window shows the results of the last Find References operation. The Find References facility

is closely related to the Source Navigator in that it indexes your project and searches for references within the

active source code regions.

To activate the References window:

If you have hidden the References window and want to see it again:

Choose View > References or press Ctrl+Alt+R.

To find all references in a project:

1. Open a source file that is part of the active project, or one of its dependent projects.

2. In the editor, move the insertion point within the name of the function, variable, method, or macro to

find.

3. Choose Navigate > Find References or press Alt+R.

4. SEGGER Embedded Studio shows the References window, without moving focus, and searches your

project in the background.

You can also find references directly from the text editor's context menu: right-click the item to find and choose

Find References. As a convenience, SEGGER Embedded Studio is configured to also run Find References when

you Alt+Right-click in the text editorsee Mouse-click accelerators.

To search within the results:

Type the text to search for in the Reference window's search box. As you type, the search results are

narrowed.

Click the close button to clear the search text and show all references.

To replace within the results:

Type the replacement text in the Reference window's replace box.

Use the buttons to navigate and replace the text.

The documents that have had replaced text will appear unsaved in the text editor.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

84

Symbol browser window
The Symbol Browser shows useful information about your linked application and complements the information

displayed in the Project Explorer window. You can select different ways to filter and group the information in

the Symbol Browser to provide an at-a-glance overview of your application. You can use the Symbol Browser to

drill down to see the size and location of each part of your program. The way symbols are sorted and grouped is

saved between runs; so, when you rebuild an application, SEGGER Embedded Studio automatically updates the

Symbol Browser so you can see the effect of your changes on the memory layout of your program.

User interface

Button Description

Group symbols by source filename.

Group symbols by symbol type (equates, functions,
labels, sections, and variables).

Group symbols by the section where they are defined.

Move the insertion point to the statement that defined
the symbol.

Select columns to display.

The main part of the Symbol Browser displays each symbol (both external and static) that is linked into an

application. SEGGER Embedded Studio displays the following icons to the left of each symbol:

Icon Description

Private Equate A private symbol not defined relative to
a section.

Public Equate A public symbol that is not defined
relative to a section.

Private Function A private function symbol.

Public Function A public function symbol.

Private Label A private data symbol, defined relative to
a section.

Public Label A public data symbol, defined relative to a
section.

Section A program section.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

85

Choosing what to show

To activate the Symbol Browser window:

Choose View > Symbol Browser or press Ctrl+Alt+Y.

You can choose to display the following fields for each symbol:

Value:The value of the symbol. For labels, code, and data symbols, this will be the address of the symbol.

For absolute or symbolic equates, this will be the value of the symbol.

Range:The range of addresses the code or data item covers. For code symbols that correspond to high-

level functions, the range is the range of addresses used for that function's code. For data addresses that

correspond to high-level static or extern variables, the range is the range of addresses used to store that

data item. These ranges are only available if the corresponding source file was compiled with debugging

information turned on: if no debugging information is available, the range will simply be the first address

of the function or data item.

Size:The size, in bytes, of the code or data item. The Size column is derived from the Range of the symbol:

if the symbol corresponds to a high-level code or data item and has a range, Size is calculated as the

difference between the start and end addresses of the range. If a symbol has no range, the size column is

blank.

Section:The section in which the symbol is defined. If the symbol is not defined within a section, the

Section column is blank.

Type:The high-level type for the data or code item. If the source file that defines the symbol is compiled

with debugging information turned off, type information is not available and the Type column is blank.

Frame Size:The amount of stack space used by a call to the function symbol. If the source file that defines

the symbol is compiled with debugging information turned off, frame size information is not available

and the Type column is blank.

Initially the Range and Size columns are shown in the Symbol Browser. To select which columns to display, use

the Field Chooser button on the Symbol Browser toolbar.

To select the fields to display:

1. Click the Field Chooser button on the Symbol Browser toolbar.

2. Select the fields you wish to display and deselect the fields you wish to hide.

Organizing and sorting symbols

When you group symbols by section, each symbol is grouped underneath the section in which it is defined.

Symbols that are absolute or are not defined within a section are grouped beneath (No Section).

To group symbols by section:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

86

2. From the pop-up menu, choose Group By Section.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by section.

When you group symbols by type, each symbol is classified as one of the following:

An Equate has an absolute value and is not defined as relative to, or inside, a section.

A Function is defined by a high-level code sequence.

A Variable is defined by a high-level data declaration.

A Label is defined by an assembly language module. Label is also used when high-level modules are

compiled with debugging information turned off.

When you group symbols by source file, each symbol is grouped underneath the source file in which it is

defined. Symbols that are absolute, are not defined within a source file, or are compiled without debugging

information, are grouped beneath (Unknown).

To group symbols by type:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Type from the pop-up menu.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by type.

To group symbols by source file:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Source File.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by source file.

When you sort symbols alphabetically, all symbols are displayed in a single list in alphabetical order.

To list symbols alphabetically:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Sort Alphabetically.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols alphabetically.

Filtering and finding symbols

When you're dealing with big projects with hundreds, or even thousands, of symbols, a way to filter those

symbols in order to isolate just the ones you need is very useful. The Symbol Browser's toolbar provides an

editable combobox} you can use to specify the symbols you'd like displayed. You can type * to match a sequence

of zero or more characters and ? to match exactly one character.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

87

The symbols are filtered and redisplayed as you type into the combo box. Typing the first few characters of a

symbol name is usually enough to narrow the display to the symbol you need. Note: the C compiler prefixes all

high-level language symbols with an underscore character, so the variable extern int u or the function

void fn(void) have low-level symbol names _u and _fn. The Symbol Browser uses the low-level symbol

name when displaying and filtering, so you must type the leading underscore to match high-level symbols.

To display symbols that start with a common prefix:

Type the desired prefix text into the combo box, optionally followed by a "*".

For instance, to display all symbols that start with "i2c_", type "i2c_" and all matching symbols are displayedyou

don't need to add a trailing "*" in this case, because it is implied.

To display symbols that end with a common suffix:

Type * into the combo box, followed by the required suffix.

For instance, to display all symbols that end in _data, type *_data and all matching symbols are displayedin this

case, the leading * is required.

When you have found the symbol you're interested in and your source files have been compiled with debugging

information turned on, you can jump to a symbol's definition using the Go To Definition button.

To jump to the definition of a symbol:

1. Select the symbol from the list of symbols.

2. On the Symbol Browser toolbar, click Go To Definition.

or

1. Right-click the symbol in the list of symbols.

2. Choose Go To Definition from the shortcut menu.

Watching symbols

If a symbol's range and type is known, you can add it to the most recently opened Watch window or Memory

window.

To add a symbol to the Watch window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Watch window.

2. On the shortcut menu, choose Add To Watch.

To add a symbol to the Memory window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Memory window.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

88

2. Choose Locate Memory from the shortcut menu.

Using size information

Here are a few common ways to use the Symbol Browser:

What function uses the most code space? What requires the most data space?

1. Choose View > Symbol Browser or press Ctrl+Alt+Y.

2. In the Grouping button menu on the Symbol Browser toolbar, select Group By Type.

3. Ensure the Size field is checked in the Field Chooser button's menu.

4. Ensure that the filter on the Symbol Browser toolbar is empty.

5. Click on the Size field in the header to sort by data size.

6. The sizes of variables and of functions are shown in separate lists.

What's the overall size of my application?

1. Choose View > Symbol Browser or press Ctrl+Alt+Y.

2. In the Grouping button menu on the Symbol Browser toolbar, select Group By Section.

3. Ensure the Range and Size fields are checked in the Field Chooser button's menu.

4. Read the section sizes and ranges of each section in the application.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

89

Stack usage window
The Stack Usage Window finds the call paths of your linked application and displays them as a call tree

together with their minimal stack requirements. A call path of your application is any function that has been

linked in but has no direct call made to it but will make calls to other functions. The main function is the most

obvious example of a call path, an interrupt handler or a function that is called only as a function pointer are

other examples. To use the stack usage window your linked application must be compiled with debugging

information enabled.

User interface

Button Description

Move the insertion point to the statement that defined
the symbol.

Collapse the selected open call tree.

Open the selected open call tree.

Show only the deepest call path through the selected
call tree.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

90

Memory usage window
The Memory Usage window displays a graphical summary of how memory has been used in each memory

segment of a linked application.

Each bar represents an entire memory segment. Green represents the area of the segment that contains code or

data.

To activate the Memory Usage window:

Choose View > Memory Usage or press Ctrl+Alt+Z.

The memory-usage graph will only be visible if your active project's target is an executable file and the file exists.

If the executable file has not been linked by SEGGER Embedded Studio, memory-usage information may not be

available.

Displaying section information

The Memory Usage window can also be used to visualize how program sections have been placed in memory.

To display the program sections, simply click the memory segment to expand it; or, alternatively, right-click and

choose Show Memory Sections from the shortcut menu.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

91

Each bar represents an entire memory segment. Green represents the area of the segment that contains the

program section.

Displaying segment overflow

The Memory Usage window also displays segment overflows when the total size of the program sections placed

in a segment is larger than the segment size. When this happens, the segment and section bars represents the

total memory used, green areas represent the code or data within the segment, and red areas represent code or

data placed outside the segment.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

92

Getting more-detailed information

If you require more-detailed information than that provided by the Memory Usage window, such as the location

of specific objects within memory, use the Symbol browser window.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

93

Bookmarks window
The Bookmarks window contains a list of bookmarks that are set in the project. The bookmarks are stored in the

session file associated with the project and persist across runs of SEGGER Embedded Studioif you remove the

session file, the bookmarks associated with the project are lost.

User interface

Button Description

Toggle a bookmark at the insertion point in the active
editor. Equivalent to choosing Edit > Bookmarks >
Toggle Bookmark or pressing Ctrl+F2.

Go to the previous bookmark in the bookmark list.
Equivalent to choosing Edit > Bookmarks > Previous
Bookmark or pressing Alt+Shift+F2.

Go to the next next bookmark in the bookmark list.
Equivalent to choosing Edit > Bookmarks > Next
Bookmark or pressing Alt+F2.

Clear all bookmarksyou confirm the action using a
dialog. Equivalent to choosing Edit > Bookmarks >
Clear All Bookmarks or pressing Ctrl+K, Alt+F2.

Selects the fill color for newly created bookmarks.

Double-clicking a bookmark in the bookmark list moves focus to the the bookmark.

You can set bookmarks with the mouse or using keystrokessee Using bookmarks.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

94

Code Outline Window
The Code Outline window shows the structure of the text of the focused code editor. For C and C++ documents

the top level symbols and types are displayed, for XML documents the nodes are displayed. For C and C+

+ documents the Preview tab can display documentation on the top level symbols and types. The defacto

standard doxygen commands are supported for example:

/**
 * \brief Convert a given full parsed comment to an XML document.
 *
 * A Relax NG schema for the XML can be found in comment-xml-schema.rng file
 * inside clang source tree.
 *
 * \param Comment a \c CXComment_FullComment AST node.
 *
 * \returns string containing an XML document.
 */
CINDEX_LINKAGE CXString clang_FullComment_getAsXML(CXComment Comment);

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

95

Analyzing Source Code
The Analyze action is available on the context menu of the project explorer at project, folder and file level. The

analyze action will run the https://clang.llvm.org/extra/clang-tidy linter tool on the C/C++ files selected by the

project explorer node and display warnings in the output window. The default checks will be the same as the

clang analyzer. You can enable additional checks by setting the Clang Tidy Checks project option. For example

you can enable the bugprone code constructs check and disable a specific clang analyzer diagnostic check as

follows

bugprone-*
-clang-diagnostic-parentheses-equality

You can also set the project option Analyze After Compile which will run the analyzer each time the compiler is

run.

https://clang.llvm.org/extra/clang-tidy

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

96

Editing your code
SEGGER Embedded Studio has a built-in editor that allows you to edit text, but some features make it particularly

well suited to editing code.

You can open multiple code editors to browse or edit project source code, and you can copy and paste among

them. The Windows menu contains a list of all open code editors.

The code editor supports the language of the source file it is editing, showing code with syntax highlighting and

offering smart indenting.

You can open a code editor in several ways, some of which are:

By double-clicking a file in the Project Explorer or by right-clicking a file and selecting Open from the

shortcut menu.

Using the File > New File or File > Open commands.

Elements of the code editor

The code editor is composed of several elements, which are described here.

Code pane:The area where you edit code. You can set options that affect the code pane's text indents,

tabs, drag-and-drop behavior, and so forth.

Margin gutter:A gray area on the left side of the code editor where margin indicators such as breakpoints,

bookmarks, and shortcuts are displayed. Clicking this area sets a breakpoint on the corresponding line of

code.

Horizontal and vertical scroll bars:You can scroll the code pane horizontally and vertically to view code that

extends beyond the edges of the pane.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

97

Basic editing
This section is a whirlwind tour of the basic editing features SEGGER Embedded Studio's code editor provides.

Whether you are editing code, HTML, or plain text, the code editor is just like many other text editors or word

processors. For code that is part of a project, the project's programming language support provides syntax

highlighting (colorization), indentation, and so on.

This section is not a reference for everything the code editor provides; for that, look in the following sections.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

98

Moving the insertion point
The most common way to navigate through text is to use use the mouse or the keyboard's cursor keys.

Using the mouse

You can move the insertion point within a document by clicking the mouse inside the editor window.

Using the keyboard

The keystrokes most commonly used to navigate through a document are:

Keystroke Description

Up Move the insertion point up one line

Down Move the insertion point down one line

Left Move the insertion point left one character

Right Move the insertion point right one character

Home Move the insertion point to the first non-whitespace
character on the line pressing Home a second time
moves the insertion point to the leftmost column

End Move the insertion point to the end of the line

PageUp Move the insertion point up one page

PageDown Move the insertion point down one page

Ctrl+Home Move the insertion point to the start of the document

Ctrl+End Move the insertion point to the end of the document

Ctrl+Left Move the insertion point left one word

Ctrl+Right Move the insertion point right one word

SEGGER Embedded Studio offers additional movement keystrokes, though most users are more comfortable

using repeated simple keystrokes to accomplish the same thing:

Keystroke Description

Alt+Up Move the insertion point up five lines

Alt+Down Move the insertion point down five lines

Alt+Home Move the insertion point to the top of the window

Alt+End Move the insertion point to the bottom of the window

Ctrl+Up Scroll the document up one line in the window
without moving the insertion point

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

99

Ctrl+Down Scroll the document down one line in the window
without moving the insertion point

If you are editing source code, the are source-related keystrokes too:

Keystroke Description

Ctrl+PgUp
Move the insertion point backwards to the previous
function or method.

Ctrl+PgDn Move the insertion point forwards to the next function
or method.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

100

Adding text
The editor has two text-input modes:

Insertion mode:As you type on the keyboard, text is entered at the insertion point and any text to the right

of the insertion point is shifted along. A visual indication of insertion mode is that the cursor is a flashing

line.

Overstrike mode:As you type on the keyboard, text at the insertion point is replaced with your typing. A

visual indication of insertion mode is that the cursor is a flashing block.

Insert and overstrike modes are common to all editors: if one editor is in insert mode, all editors are in insert

mode. To configure the cursor appearance, choose Tools > Options.

To toggle between insertion and overstrike mode:

Click Insert.

When overstrike mode is enabled, the mode indicator changes from INS to OVR and the cursor will change to

the overstrike cursor.

To add or insert text:

1. Move the insertion point to the place text is to be inserted.

2. Enter the text using the keyboard.

To overwrite characters in an existing line, press the Insert key to place the editor into overstrike mode.

To add or insert text on multiple lines:

1. Hold down the Alt key and use block selection to mark the place text is to be inserted.

2. Enter the text using the keyboard.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

101

Deleting text
The text editor supports the following common editing keystrokes:

Keystroke Description

Backspace Delete the character before the insertion point

Delete Delete the character after the insertion point

Ctrl+Backspace Delete one word before the insertion point

Ctrl+Delete Delete one word after the insertion point

To delete characters or words:

1. Place the insertion point before the word or letter you want to delete.

2. Press Delete as many times as needed.

or

1. Place the insertion point after the letter or word you want to delete.

2. Press Backspace as many times as needed.

To delete text that spans more than a few characters:

1. Select the text you want to delete.

2. Press Delete or Backspace to delete it.

To delete a text block:

1. Hold down the Alt key and use block selection to mark the text you want to delete.

2. Press Delete or Backspace to delete it.

To delete characters on multiple lines:

1. Hold down the Alt key and use block selection to mark the lines.

2. Press Delete or Backspace as many times as needed to delete the characters.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

102

Using the clipboard
You can select text by using the keyboard or the mouse.

To select text with the keyboard:

Hold down the Shift key while using the cursor keys.

To select text with the mouse:

1. Click the start of the selection.

2. Drag the mouse to mark the selection.

3. Release the mouse to end selecting.

To select a block of text with the keyboard:

Hold down the Shift+Alt keys while using the cursor keys.

To select a block of text with the mouse:

1. Hold down the Alt key.

2. Click the start of the selection.

3. Drag the mouse to mark the selection.

4. Release the mouse to end selecting.

To copy selected text to the clipboard:

Choose Edit > Copy or press Ctrl+C.

The standard Windows key sequence Ctrl+Ins also copies text to the clipboard.

To cut selected text to the clipboard:

Choose Edit > Cut or press Ctrl+X.

The standard Windows key sequence Shift+Del also cuts text to the clipboard.

To insert the clipboard content at the insertion point:

Choose Edit > Paste or press Ctrl+V.

The standard Windows key sequence Shift+Ins also inserts the clipboard content at the insertion point.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

103

Undo and redo
The editor has an undo facility to undo previous editing actions. The redo feature can be used to re-apply

previously undone actions.

To undo one editing action:

Choose Edit > Undo or press Ctrl+Z.

The standard Windows key sequence Alt+Backspace also undoes an edit.

To undo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Undo button.

2. Select the editing operations to undo.

To undo all edits:

Choose Edit > Others > Undo All or press Ctrl+K, Ctrl+Z.

To redo one editing action:

Choose Edit > Redo or press Ctrl+Y.

The standard Windows key sequence Alt+Shift+Backspace also redoes an edit.

To redo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Redo tool button.

2. From the pop-up menu, select the editing operations to redo.

To redo all edits:

Choose Edit > Others > Redo All or press Ctrl+K, Ctrl+Y.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

104

Drag and drop
You can select text, then drag it to another location. You can drop the text at a different location in the same

window or in another one.

To drag and drop text:

1. Select the text you want to move.

2. Press and hold the mouse button to drag the selected text to where you want to place it.

3. Release the mouse button to drop the text.

Dragging text moves it to the new location. To copy it to a new location, hold down the Ctrl key while dragging

the text: the mouse pointer changes to indicate a copy operation. Press the Esc key while dragging text to cancel

the drag-and-drop edit.

By default, drag-and drop-editing is disabled and you must enable it if you want to use it.

To enable or disable drag-and-drop editing:

1. Choose Tools > Options or press Alt+,.

2. Click Text Editor.

3. Set Allow Drag and Drop Editing to Yes to enable or to No to disable drag-and-drop editing.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

105

Searching

To find text in the current file:

1. Press Ctrl+F.

2. Enter the string to search for.

As you type, the editor searches the file for a match. The pop-up shows how many matches are in the current file.

To move through the matches while the Find box is still active, press Tab or F3 to move to the next match and

Shift+Tab or Shift+F3 to move to the previous match.

If you press Ctrl+F a second time, SEGGER Embedded Studio pops up the standard Find dialog to search the file.

If you wish to bring up the Find dialog without pressing Ctrl+F twice, choose Search > Find.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

106

Advanced editing
You can do anything using its basic code-editing features, but the SEGGER Embedded Studio text editor has a

host of labor-saving features that make editing programs a snap.

This section describes the code-editor features intended to make editing source code easier.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

107

Indenting source code
The editor uses the Tab key to increase or decrease the indentation level of the selected text.

To increase indentation:

Select the text to indent.

Choose Selection > Increase Line Indent or press Tab.

To decrease indentation:

Select the text to indent.

Choose Selection > Decrease Line Indent or press Shift+Tab.

The indentation size can be changed in the Language Properties pane of the editor's Properties window, as can

all the indent-related features listed below.

To change indentation size:

Choose Tools > Options or press Alt+,.

Select the Languages page.

Set the Indent Size environment option for the required language.

You can choose to use spaces or tab tab characters to fill whitespace when indenting.

To set tab or space fill when indenting:

Choose Tools > Options or press Alt+,.

Select the Languages page.

Set the Use Tabs environment option for the required language. Note: changing this setting does not add

or remove existing tabs from files, the change will only affect new indents.

The editor can assist with source code indentation while inserting text. There are three levels of indentation

assistance:

None:The indentation of the source code is left to the user.

Indent:This is the default. The editor maintains the current indentation level. When you press Return or

Enter, the editor moves the insertion point down one line and indented to the same level as the now-

previous line.

Smart:The editor analyzes the source code to compute the appropriate indentation level for each line.

You can change how many lines before the insertion point will be analyzed for context. The smart-indent

mode can be configured to indent either open and closing braces or the lines following the braces.

Changing indentation options:

To change the indentation mode:

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

108

Set the Indent Mode environment option for the required language.

To change whether opening braces are indented in smart-indent mode:

Set the Indent Opening Brace environment option for the required language.

To change whether closing braces are indented in smart-indent mode:

Set the Indent Closing Brace environment option for the required language.

To change the number of previous lines used for context in smart-indent mode:

Set the Indent Context Lines environment option for the required language.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

109

Commenting out sections of code

To comment selected text:

Choose Selection > Comment or press Ctrl+/.

To uncomment selected text:

Choose Selection > Uncomment or press Ctrl+Shift+/.

You can also toggle the commenting of a selection by typing /. This has no menu equivalent.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

110

Adjusting letter case
The editor can change the case of the current word or the selection. The editor will change the case of the

selection, if there is a selection, otherwise it will change the case of word at the insertion point.

To change text to uppercase:

Choose Selection > Make Uppercase or press Ctrl+K, U.

This changes, for instance, Hello to HELLO.

To change text to lowercase:

Choose Selection > Make Lowercase or press Ctrl+U.

This changes, for instance, Hello to hello.

To switch between uppercase and lowercase:

Choose Selection > Switch Case.

This changes, for instance, Hello to hELLO.

With large software teams or imported source code, sometimes identifiers don't conform to your local coding

style. To assist in conversion between two common coding styles for identifiers, SEGGER Embedded Studio's

editor offers the following two shortcuts:

To change from split case to camel case:

Choose Selection > Camel Case or press Ctrl+K, Ctrl+Shift+U.

This changes, for instance, this_is_wrong to thisIsWrong.

To change from camel case to split case:

Choose Selection > Split Case or press Ctrl+K, Ctrl+U.

This changes, for instance, thisIsWrong to this_is_wrong.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

111

Using bookmarks
To edit a document elsewhere and then return to your current location, add a bookmark. The Bookmarks

window maintains a list of the bookmarks set in source files see Bookmarks window.

To place a bookmark:

1. Move the insertion point to the line you wish to bookmark.

2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

A bookmark symbol appears next to the line in the indicator margin to show the bookmark is set.

To place a bookmark using the mouse:

1. Right-click the margin gutter where the bookmark should be set.

2. Choose Toggle Bookmark.

The default color to use for new bookmarks is configured in the Bookmarks window. You can choose a specific

color for the bookmark as follows:

1. Press and hold the Alt key.

2. Click the margin gutter where the bookmark should be set.

3. From the palette, click the bookmark color to use for the bookmark.

To navigate forward through bookmarks:

1. Choose Edit > Bookmarks > Next Bookmark In Document or press F2.

2. The editor moves the insertion point to the next bookmark in the document.

If there is no following bookmark, the insertion point moves to the first bookmark in the document.

To navigate backward through bookmarks:

1. Choose Edit > Bookmarks > Previous Bookmark In Document or press Shift+F2.

2. The editor moves the insertion point to the previous bookmark in the document.

If there is no previous bookmark, the insertion point moves to the last bookmark in the document.

To remove a bookmark:

1. Move the insertion point to the line containing the bookmark.

2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

The bookmark symbol disappears, indicating the bookmark is no longer set.

To remove all bookmarks in a document:

Choose Edit > Bookmarks > Clear Bookmarks In Document or press Ctrl+K, F2.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

112

Quick reference for bookmark operations

Keystroke Menu Description

Ctrl+F2
Edit > Bookmarks > Toggle
Bookmark

Toggle a bookmark at the insertion
point.

Ctrl+K, 0 Clear the bookmark at the insertion
point.

F2 Edit > Bookmarks > Next
Bookmark In Document

Move the insertion point to next
bookmark in the document.

Shift+F2 Edit > Bookmarks > Previous
Bookmark In Document

Move the insertion point to
previous bookmark in the
document.

Ctrl+Q, F2 Edit > Bookmarks > First
Bookmark In Document

Move the insertion point to the first
bookmark in the document.

Ctrl+Q, Shift+F2 Edit > Bookmarks > Last Bookmark
In Document

Move the insertion point to the last
bookmark in the document.

Ctrl+K, F2 Edit > Bookmarks > Clear
Bookmarks In Document

Clear all bookmarks in the
document.

Alt+F2 Edit > Bookmarks > Next
Bookmark

Move the insertion point to the next
bookmark in the Bookmarks list.

Alt+Shift+F2 Edit > Bookmarks > Previous
Bookmark

Move the insertion point to
the previous bookmark in the
Bookmarks list.

Ctrl+Q, Alt+F2 Edit > Bookmarks > First
Bookmark

Move the insertion point to the first
bookmark in the Bookmarks list.

Ctrl+Q, Alt+Shift+F2 Edit > Bookmarks > Last Bookmark Move the insertion point to the last
bookmark in the Bookmarks list.

Ctrl+K, Alt+F2 Edit > Bookmarks > Clear All
Bookmarks

Clear all bookmarks in all
documents.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

113

Find and Replace window
The Find and Replace window allows you to search for and replace text in the current document or in a range of

specified files.

To activate the Find and Replace window:

Choose Search > Replace in Files or press Ctrl+Alt+F.

To find text in a single file:

Select Current Document in the context combo box.

Enter the string to be found in the text edit input.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Whole word option.

If the search string is a regular expression, set the Use regexp option.

Click the Find button to find all occurrences of the string in the current document.

To find and replace text in a single file:

Click the Replace button on the toolbar.

Enter the string to search for into the Find what input.

Enter the replacement string into the Replace with input. If the search string is a regular expression, the n

back-reference can be used in the replacement string to reference captured text.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Find Next button to find next occurrence of the string, then click the Replace button to replace

the found string with the replacement string; or click Replace All to replace all occurrences of the search

string without prompting.

To find text in multiple files:

Click the Find In Files button on the toolbar.

Enter the string to search for into the Find what input.

Select the appropriate option in the Look in input to select whether to carry out the search in all open

documents, all documents in the current project, all documents in the current solution, or all files in a

specified folder.

If you have specified that you want to search in a folder, select the folder you want to search by entering

its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

114

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Find All button to find all occurrences of the string in the specified files, or click the Bookmark

All button to bookmark all the occurrences of the string in the specified files.

To replace text in multiple files:

Click the Replace In Files button on the toolbar.

Enter the string to search for into the Find what input.

Enter the replacement string into the Replace with input. If the search string is a regular expression, the n

back-reference can be used in the replacement string to reference captured text.

Select the appropriate option in the Look in input to select whether you want to carry out the search and

replace in the current or in all open documents.

If you have specified that you want to search in a folder, select the folder you want to search by entering

its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Replace All button to replace all occurrences of the string in the specified files.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

115

Clipboard Ring window
The code editor captures all cut and copy operations, and stores the cut or copied item on the clipboard ring. The

clipboard ring stores the last 20 cut or copied text items, but you can configure the maximum number by using

the environment options dialog. The clipboard ring is an excellent place to store scraps of text when you're

working with many documents and need to cut and paste between them.

To activate the clipboard ring:

Choose Edit > Clipboard Ring > Clipboard Ring or press Ctrl+Alt+C.

To paste from the clipboard ring:

1. Cut or copy some text from your code. The last item you cut or copy into the clipboard ring is the current

item for pasting.

2. Press Ctrl+Shift+V to paste the clipboard ring's current item into the current document.

3. Repeatedly press Ctrl+Shift+V to cycle through the entries in the clipboard ring until you get to the one

you want to permanently paste into the document. Each time you press Ctrl+Shift+V, the editor replaces

the last entry you pasted from the clipboard ring, so you end up with just the last one you selected. The

item you stop on then becomes the current item.

4. Move to another location or cancel the selection. You can use Ctrl+Shift+V to paste the current item

again or to cycle the clipboard ring to a new item.

Clicking an item in the clipboard ring makes it the current item.

To paste a specific item from the clipboard ring:

1. Move the insertion point to the position to paste the item in the document.

2. Click the arrow at the right of the item to paste.

3. Choose Paste from the pop-up menu.

or

1. Click the item to paste to make it the current item.

2. Move the insertion point to the position to paste the item in the document.

3. Press Ctrl+Shift+V.

To paste all items into a document:

To paste all items on the clipboard ring into the current document, move the insertion point to where you want

to paste the items and do one of the following:

Choose Edit > Clipboard Ring > Paste All.

or

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

116

On the Clipboard Ring toolbar, click the Paste All button.

To remove an item from the clipboard ring:

1. Click the arrow at the right of the item to remove.

2. Choose Delete from the pop-up menu.

To remove all items from the clipboard ring:

Choose Edit > Clipboard Ring > Clear Clipboard Ring.

or

On the Clipboard Ring toolbar, click the Clear Clipboard Ring button.

To configure the clipboard ring:

1. Choose Tools > Options or press Alt+,.

2. Click the Windows category to show the Clipboard Ring Options group.

3. Select Preserve Contents Between Runs to save the content of the clipboard ring between runs, or

deselect it to start with an empty clipboard ring.

4. Change Maximum Items Held In Ring to configure the maximum number of items stored on the

clipboard ring.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

117

Mouse-click accelerators
SEGGER Embedded Studio provides a number of mouse-click accelerators in the editor that speed access to

commonly used functions. The mouse-click accelerators are user configurable using Tools > Options.

Default mouse-click assignments

Click Default

Left Not configurable start selection.

Shift+Left Not configurable extend selection.

Ctrl+Left Select word.

Alt+Left Execute Go To Definition.

Middle No action.

Shift+Middle Display Go To Include menu.

Ctrl+Middle No action.

Alt+Middle Display Go To Method menu.

Right Not configurable show context menu.

Shift+Right No action.

Ctrl+Right No action.

Alt+Right Execute Find References.

Each accelerator can be assigned one of the following actions:

Default:The system default for that click.

Go To Definition:Go to the definition of the item clicked, equivalent to choosing Navigate > Go To

Definition or pressing Alt+G.

Find References:Find references to the item clicked, equivalent to choosing Navigate > Find References or

pressing Alt+R.

Find in Solution:Textually find the item clicked in all the files in the solution, equivalent to choosing Search

> Find Extras > Find in Solution or pressing Alt+U.

Find Help:Use F1-help on the item clicked, equivalent to choosing Help > Help or pressing F1.

Go To Method:Display the Go To Method menu, equivalent to choosing Navigate > Find Method or

pressing Ctrl+M.

Go To Include:Display the Go To Include menu, equivalent to choosing Navigate > Find Include or

pressing Ctrl+Shift+M.

Paste:Paste the clipboard at the position clicked, equivalent to choosing Edit > Paste or pressing Ctrl+V.

Configuring Mac OS X

On Mac OS X you must configure the mouse to pass middle clicks and right clicks to the application if you wish

to use mouse-click accelerators in SEGGER Embedded Studio. Configure the mouse preferences in the Mouse

control panel in Mac OS X System Preferences to the following:

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

118

Right mouse button set to Secondary Button.

Middle mouse button set to Button 3.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

119

Regular expressions
The editor can search and replace text using regular expressions. A regular expression is a string that uses

special characters to describe and reference patterns of text. The regular expression system used by the editor

is modeled on Perl's regexp language. For more information on regular expressions, see Mastering Regular

Expressions, Jeffrey E F Freidl, ISBN 0596002890.

Summary of special characters

The following table summarizes the special characters the SEGGER Embedded Studio editor supports

Pattern Description

\d Match a numeric character.

\D Match a non-numeric character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\w Match a word character.

\W Match a non-word character.

[c] Match set of characters; e.g., [ch] matches characters
c or h. A range can be specified using the - character;
e.g., [0-27-9] matches if the character is 0, 1, 2, 7 8, or
9. A range can be negated using the ^ character; e.g.,
[^a-z] matches if the character is anything other than a
lowercase alphabetic character.

\c Match the literal character c. For example, you would
use * to match the character *.

\a Match ASCII bell character (ASCII code 7).

\f Match ASCII form feed character (ASCII code 12).

\t Match ASCII horizontal tab character (ASCII code 9).

\v Match ASCII vertical tab character.

\xhhhh Match Unicode character specified by hexadecimal
number hhhh.

. Match any character.

* Match zero or more occurrences of the preceding
expression.

+ Match one or more occurrences of the preceding
expression.

? Match zero or one occurrences of the preceding
expression.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

120

{n} Match n occurrences of the preceding expression.

{n,} Match at least n occurrences of the preceding
expression.

{,m} Match at most m occurrences of the preceding
expression.

{n,m} Match at least n and at most m occurrences of the
preceding expression.

^ Beginning of line.

$ End of line.

\b Word boundary.

\B Non-word boundary.

(e) Capture expression e.

\n Back-reference to nth captured text.

Examples

The following regular expressions can be used with the editor's search-and-replace operations. To use the

regular expression mode, the Use regular expression checkbox must be set in the search-and-replace dialog.

Once enabled, regular expressions can be used in the Find what search string. The Replace With strings can use

the "n" back-reference string to reference any captured strings.

"Find what" "Replace With" Description

u\w.d

Search for any-length string
containing one or more word
characters beginning with the
character u and ending in the
character d.

^.*;$ Search for any lines ending in a
semicolon.

(typedef.+\s+)(\S+); \1TEST_\2; Find C type definition and insert the
string TEST onto the beginning of
the type name.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

121

Locals window
The Locals window displays a list of all variables that are in scope of the selected stack frame in the Call Stack.

The Locals window has a toolbar and a main data display.

Button Description

Display the selected item in binary.

Display the selected item in octal.

Display the selected item in decimal.

Display the selected item in hexadecimal.

Display the selected item as a signed decimal.

Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Sort variables alphabetically by name.

Sort variables numerically by address or register
number (default).

Using the Locals window

The Locals window shows the local variables of the active function when the debugger is stopped. The contents

of the Locals window changes when you use the Debug Location toolbar items or select a new frame in the Call

Stack window. When the program stops at a breakpoint, or is stepped, the Locals window updates to show the

active stack frame. Items that have changed since they were previously displayed are highlighted in red.

To activate the Locals window:

Choose View > Locals or press Ctrl+Alt+L.

When you select a variable in the main part of the display, the display-format button highlighted on the Locals

window toolbar changes to show the selected item's display format.

To change the display format of a local variable:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

122

or

Click the item to change.

On the Locals window toolbar, select the desired display format.

To modify the value of a local variable:

Click the value of the local variable to modify.

Enter the new value for the local variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

or

Right-click the value of the local variable to modify.

From the shortcut menu, select one of the commands to modify the local variable's value.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

123

Globals window
The Globals window displays a list of all variables that are global to the program. The operations available on the

entries in this window are the same as the Watch window, except you cannot add or delete variables from the

Globals window.

Globals window user interface

The Globals window consists of a toolbar and main data display.

Globals toolbar

Button Description

Display the selected item in binary.

Display the selected item in octal.

Display the selected item in decimal.

Display the selected item in hexadecimal.

Display the selected item as a signed decimal.

Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Sort variables alphabetically by name.

Sort variables numerically by address or register
number (default).

Using the Globals window

The Globals window shows the global variables of the application when the debugger is stopped. When the

program stops at a breakpoint, or is stepped, the Globals window updates to show the active stack frame and

new variable values. Items that have changed since they were previously displayed are highlighted in red.

To activate the Globals window:

Choose View > Globals or press Ctrl+Alt+G.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

124

Changing the display format

When you select a variable in the main part of the display, the display-format button highlighted on the Globals

window toolbar changes to show the item's display format.

To change the display format of a global variable:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

or

Click the item to change.

On the Globals window toolbar, select the desired display format.

To modify the value of a global variable:

Click the value of the global variable to modify.

Enter the new value for the global variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

125

Watch window
The Watch window provides a means to evaluate expressions and to display the results of those expressions.

Typically, expressions are just the name of a variable to be displayed, but they can be considerably more

complex; see Debug expressions. Note: expressions are always evaluated when your program stops, so the

expression you are watching is the one that is in scope of the stopped program position.

The Watch window is divided into a toolbar and the main data display.

Button Description

Display the selected item in binary.

Display the selected item in octal.

Display the selected item in decimal.

Display the selected item in hexadecimal.

Display the selected item as a signed decimal.

Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Remove the selected watch item.

Remove all the watches.

Right-clicking a watch item shows a shortcut menu with commands that are not available from the toolbar.

Button Description

View pointer or array as a null-terminated string.

View pointer or array as an array.

View pointer value.

Set watch value to zero.

Set watch value to one.

Increment watched variable by one.

Decrement watched variable by one.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

126

Negated watched variable.

Invert watched variable.

View the properties of the watch value.

You can view details of the watched item using the Properties dialog.

Filename
The filename context of the watch item.

Line number
The line number context of the watch item.

(Name)
The name of the watch item.

Address
The address or register of the watch item.

Expression
The debug expression of the watch item.

Previous Value
The previous watch value.

Size In Bytes
The size of the watch item in bytes.

Type
The type of the watch item.

Value
The value of the watch item.

Using the Watch window

Each expression appears as a row in the display. Each row contains the expression and its value. If the value of an

expression is structured (for example, an array), you can open the structure to see its contents.

The display updates each time the debugger locates to source code. So it will update each time your program

stops on a breakpoint, or single steps, and whenever you traverse the call stack. Items that have changed since

they were previously displayed are highlighted in red.

To activate the Watch window:

Choose View > Watch > Watch 1 or press Ctrl+T, W, 1.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

127

You can show other Watch windows similarly.

You can add a new expression to be watched by clicking and typing into the last entry in the Watch window.

You can change an expression by clicking its entry and editing its contents.

When you select a variable in the main part of the display, the display format button highlighted on the Watch

window toolbar changes to show the item's display format.

To change the display format of an expression:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

or

Click the item to change.

On the Watch window toolbar, select the desired display format.

The selected display format will then be used for all subsequent displays and will be preserved after the debug

session stops.

For C programs, the interpretation of pointer types can be changed by right-clicking and selecting from the

shortcut menu. A pointer can be interpreted as:

a null-terminated ASCII string

an array

an integer

dereferenced

To modify the value of an expression:

Click the value of the local variable to modify.

Enter the new value of the local variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

or

Right-click the value of the local variable to modify.

From the shortcut menu, choose one of the commands to modify the variable's value.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

128

Register window
The Register windows show the values of both CPU registers and the processor's special function or peripheral

registers. Because microcontrollers are becoming very highly integrated, it's not unusual for them to have

hundreds of special function registers or peripheral registers, so SEGGER Embedded Studio provides four

register windows. You can configure each register window to display one or more register groups for the

processor being debugged.

A Register window has a toolbar and a main data display.

Button Description

Display the CPU, special function register, and
peripheral register groups.

Display the CPU registers.

Hide the CPU registers.

Force-read a register, ignoring the access attribute of
the register.

Update the selected register group.

Set the active memory window to the address and size
of the selected register group.

Using the registers window

Both CPU registers and special function registers are shown in the main part of the Registers window. When the

program stops at a breakpoint, or is stepped, the Registers windows update to show the current values of the

registers. Items that have changed since they were previously displayed are highlighted in red.

To activate the first register window:

Choose View > Registers > Registers 1 or press Ctrl+T, R, 1.

Other register windows can be similarly activated.

Displaying CPU registers

The values of the CPU registers displayed in the Registers window depend up upon the selected context. The

selected context can be:

The register state the CPU stopped in.

The register state when a function call occurred using the Call Stack window.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

129

The register state of the currently selected thread using the the Threads window.

The register state you supplied with the Debug > Locate operation.

To display a group of CPU registers:

On the Registers window toolbar, click the Groups button.

From the pop-up menu, select the register groups to display and deselect the ones to hide.

You can deselect all CPU register groups to allow more space in the display for special function registers or

peripheral registers. So, for instance, you can have one register window showing the CPU registers and other

register windows showing different peripheral registers.

Displaying special function or peripheral registers

The Registers window shows the set of register groups defined in the memory-map file the application was built

with. If there is no memory-map file associated with a project, the Registers window will show only the CPU

registers.

To display a special function or peripheral register:

On the Registers toolbar, click the Groups button.

From the pop-up menu, select the register groups to display and deselect the ones to hide.

Changing display format

When you select a register in the main part of the display, the display-format button highlighted on the

Registers window toolbar changes to show the item's display format.

To change the display format of a register:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

or

Click the item to change.

On the Registers window toolbar, select the desired display format.

Modifying register values

To modify the value of a register:

Click the value of the register to modify.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

130

Enter the new value for the register. Prefix hexadecimal numbers with 0x, binary numbers with 0b, and

octal numbers with 0.

or

Right-click the value of the register to modify.

From the shortcut menu, choose one of the commands to modify the register value.

Modifying the saved register value of a function or thread may not be supported.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

131

Memory window
The Memory window shows the contents of the connected target's memory areas and allows the memory to be

edited. SEGGER Embedded Studio provides four memory windows, you can configure each memory window to

display different memory ranges.

The Memory window has a toolbar and a data display/edit area

Field/Button Description

Address
Address to display. This can be a numeric value or a
debug expression.

Size Number of bytes to display. This can be a number or
a debug expression. If unspecified, the number of
bytes required to fill the window will be automatically
calculated.

Columns Number of columns to display. If unspecified, the
number of columns required to fill the window will be
automatically calculated.

Select binary display.

Select octal display.

Select unsigned decimal display.

Select signed decimal display.

Select hexadecimal display (default).

Select byte display (default).

Select 2-byte display.

Select 4-byte display.

Display both data and text (default).

Display data only.

Display text only.

Display an incrementing address range that starts from
the selected address (default).

Display a decrementing address range that starts from
the selected address.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

132

Display an incrementing address range that ends at
the selected address.

Display a decrementing address range that ends at the
selected address.

Evaluate the address and size expressions, and update
the Memory window.

Using the memory window

The memory window does not show the complete address space of the target, instead you must enter both the

address and the number of bytes to display. You can specify the address and size using numeric values or debug

expressions which enable you to position the memory display at the address of a variable or at the value of a

register. You can also specify whether you want the expressions to be evaluated each time the memory window

is updated, or you can re-evaluate them yourself with the press of a button. Memory windows update each time

your program stops on a breakpoint, after a single step and whenever you traverse the call stack. If any values

that were previously displayed have changed, they are highlighted in red.

To activate the first Memory window:

Choose View > Memory > Memory 1 or press Ctrl+T, M, 1.

Other register windows can be similarly activated.

Using the mouse

You can move the memory window's edit cursor by clicking on a data or text entry.

The vertical scroll bar can be used to modify the address being viewed by clicking the up and down buttons, the

page up and down areas or using the vertical scroll wheel when the scroll bar is at it's furthest extent. Holding

down the Shift key while scrolling will prevent the address being modified.

Using the keyboard

Keystroke Description

Up
Move the cursor up one line, or if the cursor is on the
first line, move the address up one line.

Down Move the cursor down one line, or if the cursor is on
the last line, move the address down line line.

Left Move the cursor left one character.

Right Move the cursor right one character.

Home Move the cursor to the first entry.

End Move the cursor to the last entry.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

133

PageUp Move the cursor up one page, or if the cursor is on first
page, move the address up one page.

PageDown Move the cursor down one page, or if the cursor is on
the last page, move the address down one page.

Ctrl+E Toggle the cursor between data and text editing.

Editing memory

To edit memory, simply move the cursor to the data or text entry you want to modify and start typing. The

memory entry will be written and read back as you type.

Shortcut menu commands

The shortcut menu contains the following commands:

Action Description

Access Memory By Display Width Access memory in terms of the display width.

Address Order Specify whether the address range shown uses
Address as the start or end address and whether
addresses should increment or decrement.

Auto Evaluate Re-evaluate Address and Size each time the Memory
window is updated.

Auto Refresh Specify how frequently the memory window should
automatically refresh.

Export To Binary Editor Create a binary editor with the current Memory
window contents.

Save As Save the current Memory window contents to a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Load From Load the current Memory window from a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Display formats

You can set the Memory window to display 8-bit, 16-bit, and 32-bit values that are formatted as hexadecimal,

decimal, unsigned decimal, octal, or binary. You can also specify how many columns to display.

Saving memory contents

You can save the displayed contents of the memory window to a file in various formats. Alternatively, you can

export the contents to a binary editor to work on them.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

134

You can save the displayed memory values as a binary file, Motorola S-record file, Intel hex file, or a Texas

Instruments TXT file.

To save the current state of memory to a file:

Select the start address and number of bytes to save by editing the Start Address and Size fields in the

Memory window toolbar.

Right-click the main memory display.

From the shortcut menu, select Save As, then choose the format from the submenu.

To export the current state of memory to a binary editor:

Select the start address and number of bytes to save by editing the Start Address and Size fields in the

Memory window toolbar.

Right-click the main memory display.

Choose Export to Binary Editor from the shortcut menu.

Note that subsequent modifications in the binary editor will not modify memory in the target.

Copying to clipboard

You can copy the contents of the memory window to the clipboard as text. If an address range is selected, the

data or text of the selected range will be copied to the clipboard depending on whether the selection has been

made in the data or text view. If no address range is selected, the current memory window view will be copied to

the clipboard.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

135

Breakpoints window
The Breakpoints window manages the list of currently set breakpoints on the solution. Using the Breakpoints

window, you can:

Enable, disable, and delete existing breakpoints.

Add new breakpoints.

Show the status of existing breakpoints.

Breakpoints are stored in the session file, so they will be remembered each time you work on a particular

project. When running in the debugger, you can set breakpoints on assembly code addresses. These low-level

breakpoints appear in the Breakpoints window for the duration of the debug run but are not saved when you

stop debugging.

When a breakpoint is reached, the matching breakpoint is highlighted in the Breakpoints window.

Breakpoints window layout

The Breakpoints window has a toolbar and a main breakpoint display.

Button Description

Create a new breakpoint using the New Breakpoint
dialog.

Toggle the selected breakpoint between enabled and
disabled states.

Remove the selected breakpoint.

Move the insertion point to the statement where the
selected breakpoint is set.

Delete all breakpoints.

Disable all breakpoints.

Enable all breakpoints.

Create a new breakpoint group and makes it active.

The main part of the Breakpoints window shows what breakpoints are set and the state they are in. You can

organize breakpoints into folders, called breakpoint groups.

SEGGER Embedded Studio displays these icons to the left of each breakpoint:

Icon Description

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

136

Enabled breakpoint An enabled breakpoint will stop
your program running when the breakpoint condition
is met.

Disabled breakpoint A disabled breakpoint will not
stop the program when execution passes through it.

Invalid breakpoint An invalid breakpoint is one
where the breakpoint cannot be set; for example, no
executable code is associated with the source code
line where the breakpoint is set or the processor does
not have enough hardware breakpoints.

Showing the Breakpoints window

To activate the Breakpoints window:

Choose Breakpoints > Breakpoints or press Ctrl+Alt+B.

Managing single breakpoints

You can manage breakpoints in the Breakpoint window.

To delete a breakpoint:

In the Breakpoints window, click the breakpoint to delete.

From the Breakpoints window toolbar, click the Delete Breakpoint} button.

To edit a breakpoint:

In the Breakpoints window, right-click the breakpoint to edit.

Choose Edit Breakpoint from the shortcut menu.

Edit the breakpoint in the New Breakpoint dialog.

To toggle the enabled state of a breakpoint:

In the Breakpoints window, right-click the breakpoint to enable or disable.

Choose Enable/Disable Breakpoint from the shortcut menu.

or

In the Breakpoints window, click the breakpoint to enable or disable.

Press Ctrl+F9.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

137

Breakpoint groups

Breakpoints are divided into breakpoint groups. You can use breakpoint groups to specify sets of breakpoints

that are applicable to a particular project in the solution or for a particular debug scenario. Initially, there is a

single breakpoint group, named Default, to which all new breakpoints are added.

To create a new breakpoint group:

From the Breakpoints window toolbar, click the New Breakpoint Group button.

or

From the Debug menu, choose Breakpoints then New Breakpoint Group.

or

Right-click anywhere in the Breakpoints window.

Choose New Breakpoint Group from the shortcut menu.

In the New Breakpoint Group dialog, enter the name of the breakpoint group.

When you create a breakpoint, it is added to the active breakpoint group.

To make a group the active group:

In the Breakpoints window, right-click the breakpoint group to make active.

Choose Set as Active Group from the shortcut menu.

To delete a breakpoint group:

In the Breakpoints window, right-click the breakpoint group to delete.

Choose Delete Breakpoint Group from the shortcut menu.

You can enable all breakpoints within a group at once.

To enable all breakpoints in a group:

In the Breakpoints window, right-click the breakpoint group to enable.

Choose Enable Breakpoint Group from the shortcut menu.

You can disable all breakpoints within a group at once.

To disable all breakpoints in a group:

In the Breakpoints window, right-click the breakpoint group to disable.

Choose Disable Breakpoint Group from the shortcut menu.

Managing all breakpoints

You can delete, enable, or disable all breakpoints at once.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

138

To delete all breakpoints:

Choose Breakpoints > Clear All Breakpoints or press Ctrl+Shift+F9.

or

On the Breakpoints window toolbar, click the Delete All Breakpoints button.

To enable all breakpoints:

Choose Breakpoints > Enable All Breakpoints or press Ctrl+B, N.

or

On the Breakpoints window toolbar, click the Enable All Breakpoints button.

To disable all breakpoints:

Choose Breakpoints > Disable All Breakpoints or press Ctrl+B, X.

or

On the Breakpoints window toolbar, click the Disable All Breakpoints button.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

139

Call Stack window
The Call Stack window displays the list of function calls (stack frames) that were active when program execution

halted. When execution halts, SEGGER Embedded Studio populates the call-stack window from the active

(currently executing) task. For simple, single-threaded applications not using the SEGGER Embedded Studio for

ARM tasking library, there is only a single task; but for multi-tasking programs that use the SEGGER Embedded

Studio for ARM Tasking Library, there may be any number of tasks. SEGGER Embedded Studio updates the Call

Stack window when you change the active task in the Threads window.

The Call Stack window has a toolbar and a main call-stack display.

Button Description

Move the insertion point to where the call was made
to the selected frame.

Set the debugger context to the selected stack frame.

Move the debugger context down one stack to the
called function.

Move the debugger context up one stack to the calling
function.

Select the fields to display for each entry in the call
stack.

Set the debugger context to the most recent stack
frame and move the insertion point to the currently
executing statement.

The main part of the Call Stack window displays each unfinished function call (active stack frame) at the point

when program execution halted. The most recent stack frame is displayed at the bottom of the list and the

oldest is displayed at the top of the list.

SEGGER Embedded Studio displays these icons to the left of each function name:

Icon Description

Indicates the stack frame of the current task.

Indicates the stack frame selected for the debugger
context.

Indicates that a breakpoint is active and when the
function returns to its caller.

These icons can be overlaid to show, for instance, the debugger context and a breakpoint on the same stack

frame.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

140

Showing the call-stack window

To activate the Call Stack window:

Choose View > Call Stack or press Ctrl+Alt+S.

Configuring the call-stack window

Each entry in the Call Stack window displays the function name and, additionally, parameter names, types, and

values. You can configure the Call Stack window to show varying amounts of information for each stack frame.

By default, SEGGER Embedded Studio displays all information.

To show or hide a field:

1. On the Call Stack toolbar, click the Options button on the far right.

2. Select the fields to show, and deselect the ones that should be hidden.

Changing the debugger context

You can select the stack frame for the debugger context from the Call Stack window.

To move the debugger context to a specific stack frame:

In the Call Stack window, double-click the stack frame to move to.

or

In the Call Stack window, select the stack frame to move to.

On the Call Stack window's toolbar, click the Switch To Frame button.

or

In the Call Stack window, right-click the stack frame to move to.

Choose Switch To Frame from the shortcut menu.

The debugger moves the insertion point to the statement where the call was made. If there is no debug

information for the statement at the call location, SEGGER Embedded Studio opens a disassembly window at the

instruction.

To move the debugger context up one stack frame:

On the Call Stack window's toolbar, click the Up One Stack Frame button.

or

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

141

On the Debug Location toolbar, click the Up One Stack Frame button.

or

Press Alt+-.

The debugger moves the insertion point to the statement where the call was made. If there is no debug

information for the statement at the call location, SEGGER Embedded Studio opens a disassembly window at the

instruction.

To move the debugger context down one stack frame:

On the Call Stack window's toolbar, click the Down One Stack Frame button.

or

On the Debug Location toolbar, click the Down One Stack Frame button.

or

Press Alt++.

The debugger moves the insertion point to the statement where the call was made. If there is no debug

information for the statement at the call location, SEGGER Embedded Studio opens a disassembly window at the

instruction.

Setting a breakpoint on a return to a function

To set a breakpoint on return to a function:

In the Call Stack window, click the stack frame on the function to stop at on return.

On the Build toolbar, click the Toggle Breakpoint button.

or

In the Call Stack window, click the stack frame on the function to stop at on return.

Press F9.

or

In the Call Stack window, right-click the function to stop at on return.

Choose Toggle Breakpoint from the shortcut menu.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

142

Threads window
The Threads window displays the set of executing contexts on the target processor structured as a set of

queues.

To activate the Threads window:

Choose View > More Debug Windows > Threads or press Ctrl+Alt+H.

The window is populated using the threads script, which is a JavaScript program store in a file whose file-type

project option is "Threads Script" (or is called threads.js) and is in the project that is being debugged.

When debugging starts, the threads script is loaded and the function init() is called to determine which columns

are displayed in the Threads window.

When the application stops on a breakpoint, the function update() is called to create entries in the Threads

window corresponding to the columns that have been created together with the saved execution context

(register state) of the thread. By double-clicking one of the entries, the debugger displays its saved execution

contextto put the debugger back into the default execution context, use Show Next Statement.

Writing the threads script

The threads script controls the Threads window with the Threads object.

The methods Threads.setColumns, Threads.setSortByNumber and Threads.setColor can be called from the

function init().

function init()
{
 Threads.setColumns("Name", "Priority", "State", "Time");
 Threads.setSortByNumber("Time");
 Threads.setColor("State", "Ready", "Executing", "Waiting");
}

The above example creates the named columns Name, Priority, State, and Time in the Threads window, with

the Time column sorted numerically rather than alphabetically. The states Ready, Executing and Waiting will

have yellow, green and red colored pixmaps respectively.

If you don't supply the function init() in the threads script, the Threads window will create the default columns

Name, Priority, and State.

The methods Threads.clear(), Threads.newqueue(), and Threads.add() can be called from the function

update().

The Threads.clear() method clears the Threads window.

The Threads.newqueue() function takes a string argument and creates a new, top-level entry in the Threads

window. Subsequent entries added to this window will go under this entry. If you don't call this, new entries will

all be at the top level of the Threads window.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

143

The Threads.add() function takes a variable number of string arguments, which should correspond to the

number of columns displayed by the Threads window. The last argument to the Threads.add() function

should be an array (possibly empty) containing the registers of the thread or, alternatively, a handle that can

be supplied a call to the threads script function getregs(handle), which will return an array when the thread is

selected in the Threads window. The array containing the registers should have elements in the same order in

which they are displayed in the CPU Registers displaytypically this will be in register-number order, e.g., r0, r1,

and so on.

function update()
{
 Threads.clear();
 Threads.newqueue("My Tasks");
 Threads.add("Task1", "0", "Executing", "1000", [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]);
 Threads.add("Task2", "1", "Waiting", "2000", [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]);
}

The above example will create a fixed output on the Threads window and is here to demonstrate how to call the

methods.

To get real thread state, you need to access the debugger from the threads script. To do this, you can use

the JavaScript method Debug.evaluate("expression"), which will evaluate the string argument as a debug

expression and return the result. The returned result will be an object if you evaluate an expression that denotes

a structure or an array. If the expression denotes a structure, each field can be accessed by using its field name.

So, if you have structs in the application as follows

struct task {
 char *name;
 unsigned char priority;
 char *state;
 unsigned time;
 struct task *next;
 unsigned registers[17];
 unsigned thread_local_storage[4];
};

struct task task2 =
{
 "Task2",
 1,
 "Waiting",
 2000,
 0,
 { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 },
 { 0,1,2,3 }
};

struct task task1 =
{
 "Task1",
 0,
 "Executing",
 1000,
 &task2,
 { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 },

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

144

 { 0,1,2,3 }
};

you can update() the Threads window using the following:

task1 = Debug.evaluate("task1");
Threads.add(task1.name, task1.priority, task1.state, task1.time, task1.registers);

You can use pointers and C-style cast to enable linked-list traversal.

var next = Debug.evaluate("&task1");
while (next)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, xt.registers);
 next = xt.next;
 }

Note that, if the threads script goes into an endless loop, the debuggerand consequently SEGGER Embedded

Studiowill become unresponsive and you will need to kill SEGGER Embedded Studio using a task manager.

Therefore, the above loop is better coded as follows:

var next = Debug.evaluate("&task1");
var count = 0;
while (next && count < 10)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, xt.registers);
 next = xt.next;
 count++;
 }

You can speed up the Threads window update by not supplying the registers of the thread to the Threads.add()

function. To do this, you should supply a handle/pointer to the thread as the last argument to the Threads.add()

function. For example:

var next = Debug.evaluate("&task1");
var count = 0;
while (next && count < 10)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, next);
 next=xt.next;
 count++;
 }

When the thread is selected, the Threads window will call getregs(x) in the threads script. That function should

return the array of registers, for example:

function getregs(x)
{
 return Debug.evaluate("((struct task*)"+x+")->registers");
}

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

145

If you use thread local storage, implementing the gettls(x) function enables you to return the base address of

the thread local storage, for example:

function gettls(x)
{
 return Debug.evaluate("((struct task*)"+x+")->thread_local_storage");
}

The gettls(x) function can also be called with null as a parameter. In this case you will have to evaluate an

expression that returns the current thread local storage, for example:

function gettls(x)
{
 if (x==null)
 x = Debug.evaluate("¤tTask");
 return Debug.evaluate("((struct task*)"+x+")->thread_local_storage");
}

The debugger may require the name of a thread which you can provide by implementing the getname(x)

function, for example:

function getname(x)
{
 return Debug.evaluate("((struct task*)"+x+")->name");
}

Adding extra queues to the threads window

You can add extra information to the threads window to display other RTOS queues. In the function init() you

can use Threads.setColumns2 to create an additional display in the threads window, for example:

function init()
{
 ...
 Threads.setColumns2("Timers", "Id(Timers)", "Name", "Hook", "Timeout", "Period", "Active");

The first argument is identifier of the queue which is also supplied to Threads.add2 in the function update() as

follows

function update()
{
 ...
 Threads.add2("Timers", "0x1FF0A30", "MyTimer", "0x46C8 (Timer50)", "50(550)", "50", "1");

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

146

Execution Profile window
The Execution Profile window shows a list of source locations and the number of times those source locations

have been executed. This window is only available for targets that support the collection of jump trace

information.

To activate the Execution Profile window:

Choose View > More Debug Windows > Execution Profile or press Ctrl+T, P.

The count value displayed is the number of times the first instruction of the source code location has been

executed. The source locations displayed are target dependent: they could represent each statement of the

program or each jump target of the program. If however the debugger is in intermixed or disassembly mode

then the count values will be displayed on a per instruction basis.

The execution counts window is updated each time your program stops and the window is visible so if you have

this window displayed then single stepping may be slower than usual.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

147

Execution Trace window
The trace window displays historical information on the instructions executed by the target.

To activate the Trace window:

Choose View > More Debug Windows > Execution Trace or press Ctrl+T, T.

The type and number of the trace entries depends upon the target that is connected when gathering trace

information. Some targets may trace all instructions, others may trace jump instructions, and some may trace

modifications to variables. You'll find the trace capabilities of your target on the shortcut menu.

Each entry in the trace window has a unique number, and the lower the number the earlier the trace. You can

click on the header to show earliest to latest or the latest to earliest trace entries. If a trace entry can have source

code located to it then double-clicking the trace entry will show the appropriate source display.

Some targets may provide timing information which will be displayed in the ticks column.

The trace window is updated each time the debugger stops when it is visible so single stepping is likely to be

slower if you have this window displayed.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

148

Debug file search editor
When a program is built with debugging enabled, the debugging information contains the paths and filenames

of all the source files for the program in order to allow the debugger to find them. If a program or library linked

into the program is on a different machine than the one on which it was compiled, or if the source files were

moved after the program was compiled, the debugger will not be able to find the source files.

In this situation, the simplest way to help SEGGER Embedded Studio find the source files is to add the directory

containing the source files to one of its source-file search paths. Alternatively, if SEGGER Embedded Studio

cannot find a source file, it will prompt you for its location and will record its new location in the source-file map.

Debug source-file search paths

Debug's source-file search paths can be used to help the debugger locate source files that are no longer located

where they were at compile time. When a source file cannot be found, the search-path directories will be

checked, in turn, to see if they contain the source file. SEGGER Embedded Studio maintains two debug source-

file search paths:

Project-session search path:This path is for the current project session and does not apply to all projects.

The global search path:This system-wide path applies to all projects.

The project-session search path is checked before the global search path.

To edit the debug search paths:

Choose Debug > Options > Search Paths.

Debug source file map

If a source file cannot be found while debugging and the debugger has to prompt the user for its location,

the results are stored in the debug source file map. The debug source file map simply correlates, or maps, the

original pathnames to the new locations. When a file cannot be found at its original location or in the debug

search paths, the debug source file map is checked to see if a new location has been recorded for the file or if the

user has specified that the file does not exist. Each project session maintains its own source file map, the map is

not shared by all projects.

To view the debug source file map:

Choose Debug > Options > Search Paths.

To remove individual entries from the debug source file map:

Choose Debug > Options > Search Paths.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

149

Right-click the mapping to delete.

Choose Delete Mapping from the shortcut menu.

To remove all entries from the debug source file map:

Choose Debug > Options > Search Paths.

Right-click any mapping.

Choose Delete All Mappings from the shortcut menu.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

150

Debug Terminal window
The Debug Terminal window displays debug output from the target application and can also be used to be

provide debug input to the target application.

To activate the Debug Terminal window:

Choose View > Debug Terminal or press Ctrl+Alt+D.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

151

Breakpoint expressions
The debugger can set breakpoints by evaluating simple C-like expressions. Note that the exact capabilities

offered by the hardware to assist in data breakpointing will vary from target to target; please refer to the

particular target interface you are using and the capabilities of your target silicon for exact details. The simplest

expression supported is a symbol name. If the symbol name is a function, a breakpoint occurs when the first

instruction of the symbol is about to be executed. If the symbol name is a variable, a breakpoint occurs when the

symbol has been accessed; this is termed a data breakpoint. For example, the expression x will breakpoint when

x is accessed. You can use a debug expression (see Debug expressions) as a breakpoint expression. For example,

x[4] will breakpoint when element 4 of array x is accessed, and @sp will breakpoint when the sp register is

accessed.

Data breakpoints can be specified, using the == operator, to occur when a symbol is accessed with a specific

value. The expression x == 4 will breakpoint when x is accessed and its value is 4. The operators <, >=, >;, >=,

==, and != can be used similarly. For example, @sp <= 0x1000 will breakpoint when register sp is accessed

and its value is less than or equal to 0x1000.

You can use the operator & to mask the value you wish to break on. For example, (x & 1) == 1 will

breakpoint when x is accessed and has an odd value.

You can use the operator && to combine comparisons. For example

(x >= 2) && (x <= 14)

will breakpoint when x is accessed and its value is between 2 and 14.

You can specify an arbitrary memory range using an array cast expression. For example, (char[256])

(0x1000) will breakpoint when the memory region 0x10000x10FF is accessed.

You can specify an inverse memory range using the ! operator. For example !(char[256])(0x1000) will

breakpoint when memory outside the range 0x10000x10FF is accessed.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

152

Debug expressions
The debugger can evaluate simple expressions that can be displayed in the Watch window or as a tool-tip in the

code editor.

The simplest expression is an identifier the debugger tries to interpret in the following order:

an identifier that exists in the scope of the current context.

the name of a global identifier in the program of the current context.

Numbers can be used in expressions. Hexadecimal numbers must be prefixed with 0x.

Registers can be referenced by prefixing the register name with @.

The standard C and C++ operators !, ~, *, /, %, +, -, >>, <<, <, <=, >, >=, ==, |, &, ^, &&, and || are supported

on numeric types.

The standard assignment operators =, +=, -=, *=, /=, %=, >>, >>=, <<=, &=, |=, ^= are supported on numeric

types.

The array subscript operator [] is supported on array and pointer types.

The structure access operator . is supported on structured types (this also works on pointers to structures), and -

> works similarly.

The dereference operator (prefix *) is supported on pointers, the address-of (prefix &) and sizeof operators are

supported.

The addressof(filename, linenumber) operator will return the address of the specified source code line

number.

Function calling with parameters and return results.

Casting to basic pointer types is supported. For example, (unsigned char *)0x300 can be used to display the

memory at a given location.

Casting to basic array types is supported. For example, (unsigned char[256])0x100 can be used to reference a

memory region.

Arrays can be sliced using [a:b] where a is the first element and b is the last element to display.

Operators have the precedence and associativity one expects of a C-like programming language.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

153

Terminal emulator window
The Terminal Emulator window contains a basic serial-terminal emulator that allows you to receive and transmit

data over a serial interface.

To activate the Terminal Emulator window:

Choose Tools > Terminal Emulator > Terminal Emulator or press Ctrl+Alt+M.

To use the terminal emulator:

1. Set the required terminal emulator properties.

2. Connect the terminal emulator to the communications port by clicking the button on the toolbar or by

selecting Connect from the shortcut menu.

Once connected, any input in the Terminal Emulator window is sent to the communications port and any data

received from the communications port is displayed on the terminal.

Connection may be refused if the communication port is in use by another application or if the port doesn't

exist.

To disconnect the terminal emulator:

1. Disconnect the communications port by clicking the Disconnect icon on the toolbar or by right-clicking

to select Disconnect from the shortcut menu.

This will release the communications port for use in other applications.

Supported control codes

The terminal supports a limited set of control codes:

Control code Description

<BS> Backspace

<CR> Carriage return

<LF> Linefeed

<ESC>[{attr1};...;{attrn}m Set display attributes. The attributes 2-Dim, 5-Blink, 7-
Reverse, and 8-Hidden are not supported.

Embedded Studio for ARM Reference Manual SEGGER Embedded Studio User Guide

154

Embedded Studio for ARM Reference Manual Command-line options

155

Command-line options
This section describes the command-line options accepted by SEGGER Embedded Studio.

Usage

emStudio [options] [files]

Embedded Studio for ARM Reference Manual Command-line options

156

-D (Define macro)

Syntax

-D macro=value

Description

Define a SEGGER Embedded Studio for ARM macro value.

Embedded Studio for ARM Reference Manual Command-line options

157

-noclang (Disable Clang support)

Syntax

-noclang

Description

Disable Clang support.

Embedded Studio for ARM Reference Manual Command-line options

158

-noload (Disable loading of last project)

Syntax

-noload

Description

Disable loading of last project on startup.

Embedded Studio for ARM Reference Manual Command-line options

159

-packagesdir (Specify packages directory)

Syntax

-packagesdir dir

Description

Override the default value of the $(PackagesDir) macro.

Embedded Studio for ARM Reference Manual Command-line options

160

-permit-multiple-studio-instances (Permit multiple
studio instances)

Syntax

-permit-multiple-studio-instances

Description

Allow multiple instances of SEGGER Embedded Studio to run at the same time. This behaviour can also be

enabled using the Environment > Startup Options > Allow Multiple SEGGER Embedded Studios environment

option.

Embedded Studio for ARM Reference Manual Command-line options

161

-rootuserdir (Set the root user data directory)

Syntax

-rootuserdir dir

Description

Set the SEGGER Embedded Studio for ARM root user data directory.

Embedded Studio for ARM Reference Manual Command-line options

162

-save-settings-off (Disable saving of environment
settings)

Syntax

-save-settings-off

Description

Disable the saving of modified environment settings.

Embedded Studio for ARM Reference Manual Command-line options

163

-set-setting (Set environment setting)

Syntax

-set-setting environment_setting=value

Description

Sets an environment setting to a specified value. For example:

 -set-setting "Environment/Build/Show Command Lines=Yes"

Embedded Studio for ARM Reference Manual Command-line options

164

-templatesfile (Set project templates path)

Syntax

-templatesfile path

Description

Sets the search path for finding project template files.

Embedded Studio for ARM Reference Manual Uninstalling SEGGER Embedded Studio for ARM

165

Uninstalling SEGGER Embedded Studio for

ARM
This section describes how to completely uninstall SEGGER Embedded Studio for ARM for each supported

operating system:

Uninstalling SEGGER Embedded Studio for ARM from Windows

Uninstalling SEGGER Embedded Studio for ARM from Mac OS X

Uninstalling SEGGER Embedded Studio for ARM from Linux

Uninstalling SEGGER Embedded Studio for ARM from
Windows

Removing user data and settings

The uninstaller does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used SEGGER Embedded

Studio for ARM on your system.

To remove user data using SEGGER Embedded Studio:

1. Start SEGGER Embedded Studio.

Embedded Studio for ARM Reference Manual Uninstalling SEGGER Embedded Studio for ARM

166

2. Click Tools > Admin > Remove All User Data...

Alternatively, if SEGGER Embedded Studio for ARM has already been uninstalled you can manually remove the

user data as follows:

1. Click the Windows Start button.

2. Type %LOCALAPPDATA% in the search field and press enter to open the local application data folder.

3. Open the SEGGER folder.

4. Open the SEGGER Embedded Studio for ARM folder.

5. Delete the v7 folder.

6. If you want to delete user data for all versions of the software, delete the SEGGER Embedded Studio for ARM

folder as well.

Uninstalling SEGGER Embedded Studio for ARM

To uninstall SEGGER Embedded Studio for ARM:

1. If SEGGER Embedded Studio is running, click File > Exit to shut it down.

2. Click the Start Menu and select Control Panel. The Control Panel window will open.

3. In the Control Panel window, click the Uninstall a program link under the Programs section.

4. From the list of currently installed programs, select SEGGER Embedded Studio for ARM 7.32a.

5. To begin the uninstall, click the Uninstall button at the top of the list.

Uninstalling SEGGER Embedded Studio for ARM from Mac OS
X

Removing user data and settings

Uninstalling does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used SEGGER Embedded

Studio for ARM on your system.

To remove user data using SEGGER Embedded Studio:

1. Start SEGGER Embedded Studio.

2. Click Tools > Admin > Remove All User Data...

Alternatively, if SEGGER Embedded Studio for ARM has already been uninstalled you can manually remove the

user data as follows:

1. Open Finder.

2. Go to the $HOME/Library/SEGGER/SEGGER Embedded Studio for ARM directory.

Embedded Studio for ARM Reference Manual Uninstalling SEGGER Embedded Studio for ARM

167

3. Drag the v7 folder to the Trash.

4. If you want to delete user data for all versions of the software, drag the SEGGER Embedded Studio for ARM

folder to the Trash as well.

Uninstalling SEGGER Embedded Studio for ARM

To uninstall SEGGER Embedded Studio for ARM:

1. If SEGGER Embedded Studio is running, shut it down.

2. Open the Applications folder in Finder.

3. Drag the SEGGER Embedded Studio for ARM 7.32a folder to the Trash.

Uninstalling SEGGER Embedded Studio for ARM from Linux

Removing user data and settings

The uninstaller does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used SEGGER Embedded

Studio for ARM on your system.

To remove user data using SEGGER Embedded Studio:

1. Start SEGGER Embedded Studio.

2. Click Tools > Admin > Remove All User Data...

Alternatively, if SEGGER Embedded Studio for ARM has already been uninstalled you can manually remove the

user data as follows:

1. Open a terminal window or file browser.

2. Go to the $HOME/.segger/SEGGER Embedded Studio for ARM directory.

3. Delete the v7 directory.

4. If you want to delete user data for all versions of the software, delete the SEGGER Embedded Studio for ARM

directory as well.

Uninstalling SEGGER Embedded Studio for ARM

To uninstall SEGGER Embedded Studio for ARM:

1. If SEGGER Embedded Studio is running, click File > Exit to shut it down.

2. Open a terminal window.

3. Go to the SEGGER Embedded Studio for ARM bin directory (this is /usr/share/

segger_embedded_studio_for_arm_7.32a/bin by default).

4. Run sudo ./uninstall to start the uninstaller.

Embedded Studio for ARM Reference Manual Uninstalling SEGGER Embedded Studio for ARM

168

Embedded Studio for ARM Reference Manual ARM target support

169

ARM target support
When a target-specific executable project is created using the New Project Wizard, the following default files are

added to the project:

Target_Startup.s The target-specific startup code. See Target startup code.

crt0.s/thumb_crt0.s The SEGGER Embedded Studio for ARM standard C runtime. See Startup

code.

Target_MemoryMap.xml The target-specific memory map file for the board. See Section Placement. Note

that, for some targets, a general linker placement file may not be suitable. In these cases, there will be two

memory-map files: one for a flash build and one for a RAM build.

flash_placement.xml The linker placement file for a flash build.

sram_placement.xml The linker placement file for a RAM build.

Initially, shared versions of these files are added to the project. If you want to modify any these shared files,

select the file in the Project Explorer and then click the Import option from the shortcut menu. This will copy a

writable version of the file into your project directory and change the path in the Project Explorer to that of the

local version. You can then make changes to the local file without affecting the shared copy of it.

The following list describes the typical flow of a C program created with SEGGER Embedded Studio's project

templates:

The processor jumps to the reset_handler label in the target-specific startup code, which configures the

target (see Target startup code).

When the target is configured, the target-specific startup code jumps to the _start entry point in the C

runtime code, which sets up the C runtime environment (see Startup code).

Embedded Studio for ARM Reference Manual ARM target support

170

When the C runtime environment has been set up, the C runtime code jumps to the C entry-point

function, main.

When the program returns from main, it re-enters the C runtime code, executes the destructors and

enters an endless loop.

Embedded Studio for ARM Reference Manual ARM target support

171

Target startup code
The following section describes the role of the target-specific startup code.

When you create a new project to produce an executable file using a target-specific project template, a file

containing the default startup code for the target will be added to the project. Initially, a shared version of this

file will be added to the project; if you want to modify this file, select the file in the Project Explorer and select

Import to copy the file to your project directory.

ARM and Cortex-A/Cortex-R startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

_vectors This is the exception vector table. It is put into its own .vectors section in order to ensure that it

is can be placed at a specific address which is usually 0x00000000 or the start of Flash memory. The vector

table contains jump instructions to the particular exception handlers. It is recommended that absolute

jump instructions are used ldr pc, =handler_address rather than relative branch instructions b

handler_address since many devices shadow the memory at address zero to start execution but the

program will be linked to run at a different address.

reset_handler The reset handler will usually carry out any target-specific initialization and then will jump

to the _start entry point. In a C system, the _start entry point is in the crt0.s file. During development it

is usual to replace the reset handler with an endless loop which will stop the device running potentially

dangerous in-development code directly out of reset. In development the debugger will start the device

from the specified debug entry point.

undef_handler This is the default, undefined-instruction exception handler.*

swi_handler This is the default, software-interrupt exception handler.*

pabort_handler This is the default, prefetch-abort exception handler.*

dabort_handler This is the default, data-abort exception handler.*

irq_handler This is the default, IRQ-exception handler.*

fiq_handler This is the default, FIQ-exception handler.*

* Declared as a weak symbol to allow the user to override the implementation.

Note that ARM and Cortex-A/Cortex-R exception handlers must be written in ARM assembly code. The CPU

or board support package of the project you have created will typically supply an ARM assembly-coded

irq_handler implementation that will enable you to write interrupt service routines as C functions.

Cortex-M startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

Embedded Studio for ARM Reference Manual ARM target support

172

_vectors This is the exception vector table. It is put into its own .vectors section in order to ensure that it

can be placed at a specific address which is usually 0x00000000 or the start of Flash memory.

The vector table is structured as follows:

The first entry is the initial value of the stack pointer.

The second entry is the address of the reset handler function. The reset handler will usually carry out any

target-specific initialization and then jump to the _start entry point. In a C system, the _start entry point

is in the thumb_crt0.s file. During development it is usual to replace this jump with an endless loop

which will stop the device running potentially dangerous in-development code directly out of reset. In

development the debugger will start the device from the specified debug entry point.

The following 15 entries are the addresses of the standard Cortex-M exception handlers ending with the

SysTick_ISR entry.

Subsequent entries are addresses of device-specific interrupt sources and their associated handlers.

For each exception handler, a weak symbol is declared that will implement an endless loop. You can

implement your own exception handler as a regular C function. Note that the name of the C function

must match the name in the startup code e.g. void SysTick_ISR(void). You can use the C preprocessor to

rename the symbol in the startup code if you have existing code with different exception handler names e.g.

SysTick_ISR=SysTick_Handler.

Embedded Studio for ARM Reference Manual ARM target support

173

Startup code
The following section describes the role of the C runtime-startup code, crt0.s (and the Cortex-M/Thumb

equivalent thumb_crt0.s).

When you create a new project to produce an executable file using a target-specific project template, the crt0.s/

thumb_crt0.s file is added to the project. Initially, a shared version of this file is added to the project. If you want

to modify this file, right-click it in the Project Explorer and then select Import from the shortcut menu to copy

the file to your project directory.

The entry point of the C runtime-startup code is _start. In a typical system, this will be called by the target-

specific startup code after it has initialized the target.

The C runtime carries out the following actions:

Initialize the stacks.

If required, copy the contents of the .data (initialized data) section from non-volatile memory.

If required, copy the contents of the .fast section from non-volatile memory to SRAM.

Initialize the .bss section to zero.

Initialize the heap.

Call constructors.

If compiled with FULL_LIBRARY, get the command line from the host using debug_getargs and set

registers to supply argc and argv to main.

Call the main entry point.

On return from main or when exit is called

If compiled with FULL_LIBRARY, call destructors.

If compiled with FULL_LIBRARY, call atexit functions.

If compiled with FULL_LIBRARY, call debug_exit while supplying the return result from main.

Wait in exit loop.

Program sections

The following program sections are used for the C runtime in section-placement files:

Section name Description

.vectors The exception vector table.

.init Startup code that runs before the call to the
application's main function.

.ctors Static constructor function table.

.dtors Static destructor function table.

.text The program code.

Embedded Studio for ARM Reference Manual ARM target support

174

.fast Code to copy from flash to RAM for fast execution.

.data The initialized static data.

.bss The zeroed static data.

.rodata The read-only constants and literals of the program.

.ARM.exidx The C++ exception table.

.tbss Thread local storage zero'd data followed by

.tdata Thread local storage initialised data.

Stacks

ARM and Cortex-A/Cortex-R devices have six separate stacks. The position and size of these stacks are specified

in the project's section-placement or memory-map file by the following program sections:

Section name Linker size symbol Description

.stack __STACKSIZE__ System and User mode stack.

.stack_svc __STACKSIZE_SVC__ Supervisor mode stack

.stack_irq __STACKSIZE_IRQ__ IRQ mode stack

.stack_fiq __STACKSIZE_FIQ__ FIQ mode stack

.stack_abt __STACKSIZE_ABT__ Abort mode stack

.stack_und __STACKSIZE_UND__ Undefined mode stack

Cortex-M devices have the following stacks and linker symbol stack sizes are defined:

Section name Linker size symbol Description

.stack __STACKSIZE__ Main stack.

.stack_process __STACKSIZE_PROCESS__ Process stack.

The crt0.s/thumb_crt0.s startup code references these sections and initializes each of the stack-pointer registers

to point to the appropriate location. To change the location in memory of a particular stack, the section should

be moved to the required position in the section-placement or memory-map file.

Should your application not require one or more of these stacks, you can remove those sections from the

memory-map file or set the size to 0 and remove the initialization code from the crt0.s/thumb_crt0.s file.

The .data section

The .data section contains the initialized data. If the run address is different from the load address, as it would

be in a flash-based application in order to allow the program to run from reset, the crt0.s/thumb_crt0.s

startup code will copy the .data section from the load address to the run address before calling the main entry

point.

Embedded Studio for ARM Reference Manual ARM target support

175

The .fast section

For performance reasons, it is a common requirement for embedded systems to run critical code from fast

memory; the .fast section can be used to simplify this. If the .fast section's run address is different from the load

address, the crt0.s/thumb_crt0.s startup code will copy the .fast section from the load address to the run

address before calling the main entry point.

The .bss Section

The .bss section contains the zero-initialized data. The startup code in crt0.s/thumb_crt0.s references the

.bss section and sets its contents to zero.

The heap

The position and size of the heap is specified in the project's section-placement or memory-map file by the

.heap program section.

The startup code in crt0.s/thumb_crt0.s references this section and initializes the heap. To change the

position of the heap, the section should be moved to the required position in the section-placement or memory-

map file.

There is a Heap Size linker project option you can modify in order to alter the heap size. For compatibility with

earlier versions of SEGGER Embedded Studio, you can also specify the heap size using the heap section's Size

attribute in the section-placement or memory-map file.

Should your application not require the heap functions, you can remove the heap section from the memory-

map file or set the size to zero and remove the heap-initialization code from the crt0.s/thumb_crt0.s file.

Embedded Studio for ARM Reference Manual ARM target support

176

Section Placement
Section placement files map program sections used in your program into the memory spaces defined in the

memory map or in the Memory Segments project option. For instance, it's common for code and read-only data

to be programmed into non-volatile flash memory, whereas read-write data needs to be mapped onto either

internal or external RAM.

Memory map files are provided in the CPU support package you are using and are referenced in executable

projects by the Memory Map File project option. Section-placement files are provided in the base SEGGER

Embedded Studio for ARM distribution.

The memory segments defined in the section placement files have macro-expandable names which can be

defined using the Section Placement Macros project option.

Some of the section placement files have a macro-expandable start attribute in the first program section. You

can use this to reserve space at the beginning of the memory segment.

ARM section placement

The following placement files are supplied for ARM targets:

File Description

flash_placement.xml
Single FLASH segment with internal RAM segment and
optional external RAM segment.

flash_run_text_from_ram_placement.xml Single FLASH segment with internal RAM segment
and optional external RAM segments. Text section is
copied from FLASH to RAM.

internal_sram_placement.xml Single internal RAM segment.

multi_flash_placement.xml Two FLASH segments with internal RAM segment and
optional external RAM segment.

sram_placement.xml Internal RAM segment and optional external RAM
segment.

tcm_placement.xml Data and Instruction tightly coupled memory
segments.

Cortex-M section placement

The following placement files are supplied for Cortex-M targets:

File Description

flash_placement.xml Two FLASH segments and two RAM segments.

flash_placement_tcm.xml One FLASH segments, two RAM segments, Data and
Instruction tightly coupled memory segments.

Embedded Studio for ARM Reference Manual ARM target support

177

flash_placement2.xml One FLASH segment and two RAM segments.

flash_to_ram_placement.xml One FLASH segment and one RAM segment. Text
section is copied from FLASH to RAM.

flash_to_ram_placement_tcm.xml One FLASH segment, two RAM segments, Data and
Instruction tightly coupled memory segments. Text
section is copied from FLASH to RAM.

flash_to_ram_placement2.xml One FLASH segment and two RAM segments. Text
section is copied from FLASH to RAM.

flash_to_tcm_placement.xml Two FLASH segments, two RAM segments, Data and
Instruction tightly coupled memory segments.

ram_placement.xml Two RAM segments.

tcm_placement.xml Data and Instruction tightly coupled memory
segments.

Embedded Studio for ARM Reference Manual ARM target support

178

Embedded Studio for ARM Reference Manual Using the SEGGER Assembler

179

Using the SEGGER Assembler
You can use the SEGGER assembler by setting the project option Assembler to SEGGER.

Embedded Studio for ARM Reference Manual Using the SEGGER Assembler

180

Embedded Studio for ARM Reference Manual Using the SEGGER Linker

181

Using the SEGGER Linker
You can create a new project that builds using the SEGGER linker by choosing the project template

A C executable for a Cortex-M processor

from the New Project wizard. Alternatively you can modify an existing project as follows:

Set the project option Linker to SEGGER.

Set the project option Linker Script File to $(StudioDir)/samples/SEGGER_Flash.icf.

Set the project option Supply Memory Segments To Linker to Yes.

Set the project option Exclude From Build on the thumb_crt0.s file in your project.

Add the startup file $(StudioDir)/samples/SEGGER_THUMB_Startup.s to your project.

Embedded Studio for ARM Reference Manual Using the SEGGER Linker

182

Embedded Studio for ARM Reference Manual Using the SEGGER Runtime Library

183

Using the SEGGER Runtime Library
You can create a new project that builds using the SEGGER Runtime Library by choosing the project template

A C executable for a Cortex-M processor

from the New Project wizard. Alternatively you can modify an existing project as follows:

Set the project option Run Time Library to SEGGER.

Set the project option Compiler to SEGGER.

Embedded Studio for ARM Reference Manual Using the SEGGER Runtime Library

184

Embedded Studio for ARM Reference Manual Utilities Reference

185

Utilities Reference

Embedded Studio for ARM Reference Manual Utilities Reference

186

Compiler driver
This section describes the switches accepted by the compiler driver, cc. The compiler driver is capable of

controlling compilation by all supported language compilers and the final link by the linker. It can also construct

libraries automatically.

In contrast to many compilation and assembly language development systems, with SEGGER Embedded Studio

for ARM you don't invoke the assembler or compiler directly. Instead you'll normally use the compiler driver cc as

it provides an easy way to get files compiled, assembled, and linked. This section will introduce you to using the

compiler driver to convert your source files to object files, executables, or other formats.

We recommend that you use the compiler driver rather than use the assembler or compiler directly because

there the driver can assemble multiple files using one command line and can invoke the linker for you too. There

is no reason why you should not invoke the assembler or compiler directly yourself, but you'll find that typing in

all the required options is quite tedious-and why do that when cc will provide them for you automatically?

Embedded Studio for ARM Reference Manual Utilities Reference

187

File naming conventions
The compiler driver uses file extensions to distinguish the language the source file is written in. The compiler

driver recognizes the extension .c as C source files, .cpp, .cc or .cxx as C++ source files, .s and .asm as assembly

code files.

The compiler driver recognizes the extension .o as object files, .a as library files, .ld as linker script files and .xml

as special-purpose XML files.

We strongly recommend that you adopt these extensions for your source files and object files because you'll find

that using the tools is much easier if you do.

C language files

When the compiler driver finds a file with a .c extension, it runs the C compiler to convert it to object code.

C++ language files

When the compiler driver finds a file with a .cpp extension, it runs the C++ compiler to convert it to object code.

Assembly language files

When the compiler driver finds a file with a .s or .asm extension, it runs the C preprocessor and then the

assembler to convert it to object code.

Object code files

When the compiler driver finds a file with a .o or .a extension, it passes it to the linker to include it in the final

application.

Embedded Studio for ARM Reference Manual Utilities Reference

188

Command-line options
This section describes the command-line options accepted by the SEGGER Embedded Studio for ARM compiler

driver.

Embedded Studio for ARM Reference Manual Utilities Reference

189

-allow-multiple-definition (Allow multiple symbol
definition)

Syntax

-allow-multiple-definition

Description

Do not generate an error when linking multiple symbols of the same name.

Embedded Studio for ARM Reference Manual Utilities Reference

190

-ansi (Warn about potential ANSI problems)

Syntax

-ansi

Description

Warn about potential problems that conflict with the relevant ANSI or ISO standard for the files that are

compiled.

Embedded Studio for ARM Reference Manual Utilities Reference

191

-ar (Archive output)

Syntax

-ar

Description

This switch instructs the compiler driver to archive all output files into a library. Using -ar implies -c.

Example

The following command compiles file1.c, file2.asm, and file3.c to object code and archives them into the library

file libfunc.a together with the object file file4.o.

cc -ar file1.c file2.asm file3.c file4.o -o libfunc.a

Embedded Studio for ARM Reference Manual Utilities Reference

192

-arch (ARM architecture)

Syntax

-arch=a

-arch=list

Description

Specifies the ARM architecture to generate code for and the library variants to link with.

Example

To force compilation for V7A architecture you would use:

cc -arch=v7A

To list supported architectures:

cc -arch=list

Embedded Studio for ARM Reference Manual Utilities Reference

193

-be (ARM Big Endian)

Syntax

-be

-be8

Description

Generate code for a big endian (word or byte) target. Default generates little endian code.

Embedded Studio for ARM Reference Manual Utilities Reference

194

-builtins (Use Builtins)

Syntax

-builtins

Description

Use builtin compiler functions, for example memcpy. Default does not use builtin compiler functions.

Embedded Studio for ARM Reference Manual Utilities Reference

195

-c (Compile to object code, do not link)

Syntax

-c

Description

All named files are compiled to object code modules, but are not linked. You can use the -o option to name the

output if you just supply one input filename.

Example

The following command compiles file1.c and file4.c to produce the object files file1.o and file4.o.

cc -c file1.c file4.c

The following command compiles file1.c and produces the object file obj/file1.o.

cc -c file.c -o obj/file1.o

Embedded Studio for ARM Reference Manual Utilities Reference

196

-clang (Use clang compiler/assembler)

Syntax

-clang

Description

Use the clang compiler and assembler. Default is to use the GNU compiler and assembler.

Embedded Studio for ARM Reference Manual Utilities Reference

197

-cmselib (ARM Create CMSE import library)

Syntax

-cmselib=l

Description

Create an import library (an object file) containing the symbols that represent the addresses of secure gateways

to the entry functions of the linked executable.

Embedded Studio for ARM Reference Manual Utilities Reference

198

-codec (Set file codec)

Syntax

-codec=c

-codec=list

Description

Set the file codec to use for the source file.

Example

To set the codec for a utf-8 encoded file:

cc -codec=utf-8

To list supported codecs:

cc -codec=list

Embedded Studio for ARM Reference Manual Utilities Reference

199

-common (Allocate globals in common)

Syntax

-common

Description

Allocate declarations of zero initialized variables. This enables variables that have been declared (perhaps

multiple times) but not defined to be allocated. The default requires a single definition of each zero initialized

variable.

Embedded Studio for ARM Reference Manual Utilities Reference

200

-cpu (ARM cpu core)

Syntax

-cpu=c

-cpu=list

Description

Specifies the cpu core to generate code for and the libraries to link against.

Example

To force compilation for Cortex-M3 core you would use:

cc -cpu=Cortex-M3

To list supported cores:

cc -cpu=list

Embedded Studio for ARM Reference Manual Utilities Reference

201

-d (Define linker symbol)

Syntax

-dname=value

Description

You can define linker symbols using the -d option. The symbol definitions are passed to linker.

Example

The following defines the symbol, STACK_SIZE with a value of 512.

-dSTACK_SIZE=512

Embedded Studio for ARM Reference Manual Utilities Reference

202

-debugio (ARM Define debugio implementation)

Syntax

-debugio=bkpt

-debugio=dcc

-debugio=mempoll

Description

Specifies the debugio implementation to link with. The default for architectures that have the ARM instruction

set will use dcc and architectures that have only the Thumb-2 instruction set will use mempoll.

Example

The following selects the breakpoint debugio implementation for a cortex-m3 cpu

cc -cpu=Cortex-M3 -debugio=bkpt

Embedded Studio for ARM Reference Manual Utilities Reference

203

-depend (Generate dependency file)

Syntax

-depend file

Description

Create a dependency file in file (suitable for inclusion into a makefile) when compiling a source file.

cc -c main.c -depend main.d

Embedded Studio for ARM Reference Manual Utilities Reference

204

-D (Define macro symbol)

Syntax

-Dname

-Dname=value

Description

You can define preprocessor macros using the -D option. The macro definitions are passed on to the respective

language compiler which is responsible for interpreting the definitions and providing them to the programmer

within the language.

The first form above defines the macro name but without an associated replacement value, and the second

defines the same macro with the replacement value value.

Example

The following defines two macros, SUPPORT_FLOAT with a value of 1 and LITTLE_ENDIAN with no replacement

value.

-DSUPPORT_FLOAT=1 -DLITTLE_ENDIAN

Embedded Studio for ARM Reference Manual Utilities Reference

205

-emit-relocs (Emit relocations)

Syntax

-emit-relocs

Description

Keep relocations in the executable file

Embedded Studio for ARM Reference Manual Utilities Reference

206

-e (Set entry point symbol)

Syntax

-ename

Description

Linker option to set the entry point symbol to be name. The debugger will start execution from this symbol.

Embedded Studio for ARM Reference Manual Utilities Reference

207

-exceptions (Enable C++ Exception Support)

Syntax

-exceptions

Description

Enables C++ exceptions to be compiled.

Embedded Studio for ARM Reference Manual Utilities Reference

208

-E (Preprocess)

Syntax

-E

Description

This option preprocesses the supplied file and outputs the result to the standard output.

Example

The following preprocesses the file file.c supplying the macros, SUPPORT_FLOAT with a value of 1 and

LITTLE_ENDIAN.

-E -DSUPPORT_FLOAT=1 -DLITTLE_ENDIAN file.c

Embedded Studio for ARM Reference Manual Utilities Reference

209

-fill (Fill gaps)

Syntax

-fill=b

Description

Specify the byte value b to fill gaps in the output file produced by the linker.

Embedded Studio for ARM Reference Manual Utilities Reference

210

-fabi (ARM Floating Point Code Generation)

Syntax

-fabi=softfp

-fabi=hard

Description

Specifies the type of floating point code generation. The default is to use the software floating point

implementation. If you use softfp then FPU instructions are generated, floating point arguments to functions

are supplied in CPU registers. If you use hard then FPU instructions are generated, floating point arguments to

functions are supplied in FPU registers.

Embedded Studio for ARM Reference Manual Utilities Reference

211

-fpu (ARM FPU)

Syntax

-fpu=a

-fpu=list

Description

Specifies the floating point unit to generate code for when the fpabi option has been supplied.

Example

The following selects the fpu for a Cortex-M4

cc -cpu=Cortex-M4 -fpu=FPv4-SP-D16

To list supported cores:

cc -fpu=list

Embedded Studio for ARM Reference Manual Utilities Reference

212

-framepointer (Enable generation of framepointer)

Syntax

-framepointer

Description

The -framepointer option instructs the compiler to store the stack frame pointer in a register.

Embedded Studio for ARM Reference Manual Utilities Reference

213

-F (Set output format)

Syntax

-Ffmt

Description

The -F option instructs the compiler driver to generate an additional output file in the format fmt. The compiler

driver supports the following formats:

-Fbin Create a .bin file

-Fhex Create a .hex file

-Fsrec Create a .srec file

The compiler driver will always output a .elf file as specified with the -o option. The name of the additional

output file is the same as the .elf file with the file extension changed.

For example

cc file.c -o file.elf -Fbin

will generate the files file.elf and file.bin.

Embedded Studio for ARM Reference Manual Utilities Reference

214

-g (Generate debugging information)

Syntax

-g

-g1

-g2

-g3

Description

The -g option instructs the compiler and assembler to generate source level debugging information.

The -g1 option instructs the compiler to generate backtrace and line number debugging information.

The -g2 option instructs the compiler to generate backtrace, line number and variable display debugging

information.

The -g3 option instructs the compiler to generate backtrace, line number, variable display and macro display

debugging information.

The default is to not generate any debugging information.

Embedded Studio for ARM Reference Manual Utilities Reference

215

-hascmse (ARM Generate cmse instructions)

Syntax

-hascmse

Description

The -hascmse option allows the compiler to generate code for the secure state of the v8m architecture.

Embedded Studio for ARM Reference Manual Utilities Reference

216

-hascrc (ARM Generate crc instructions)

Syntax

-hascrc

Description

The -hascrc option allows the compiler to generate crc instructions for v8a architecture.

Embedded Studio for ARM Reference Manual Utilities Reference

217

-hascrypto (ARM Generate crypto instructions)

Syntax

-hascrypto

Description

The -hascrypto option allows the compiler to generate crypto instructions for v8a architecture.

Embedded Studio for ARM Reference Manual Utilities Reference

218

-hasdsp (ARM Generate dsp instructions)

Syntax

-hasdsp

Description

The -hasdsp option allows the compiler to generate dsp instructions for v8m architecture.

Embedded Studio for ARM Reference Manual Utilities Reference

219

-hasidiv (ARM Generate integer divide instructions)

Syntax

-hasidiv

Description

The -hasidiv option instructs the compiler to generate integer divide instructions for v7a and v7r architectures.

Embedded Studio for ARM Reference Manual Utilities Reference

220

-hassmallmultiplier (ARM Do not generate multiply
instructions)

Syntax

-hassmallmultiplier

Description

The -hassmallmultiplier option instructs the compiler to avoid generating multiply instructions for v6m

architectures depending on code to be generated and optimization level requested.

Embedded Studio for ARM Reference Manual Utilities Reference

221

-help (Display help information)

Syntax

-help

Description

Displays a short summary of the options accepted by the compiler driver.

Embedded Studio for ARM Reference Manual Utilities Reference

222

-instrument (Instrument functions)

Syntax

-instrument

Description

This option causes the compiler to insert instrumentation calls on function entry and exit

Embedded Studio for ARM Reference Manual Utilities Reference

223

-I (Define user include directories)

Syntax

-Idirectory

Description

In order to find include files the compiler driver arranges for the compilers to search a number of standard

directories. You can add directories to the search path using the -I switch which is passed on to each of the

language processors.

You can specify more than one include directory by separating each directory component with either a comma

or semicolon.

Embedded Studio for ARM Reference Manual Utilities Reference

224

-I- (Exclude standard include directories)

Syntax

-I-

Description

Usually the compiler and assembler search for include files in the standard include directory created when the

product is installed. If for some reason you wish to exclude these system locations from being searched when

compiling a file, the -I- option will do this for you.

Embedded Studio for ARM Reference Manual Utilities Reference

225

-J (Define system include directories)

Syntax

-Jdirectory

Description

The -J option adds directory to the end of the list of directories to search for source files included (using

triangular brackets) by the #include preprocessor command.

You can specify more than one include directory by separating each directory component with either a comma

or semicolon in the property

Embedded Studio for ARM Reference Manual Utilities Reference

226

-kasm (Keep assembly code)

Syntax

-kasm

Description

The -kasm option instructs the compiler driver to keep intermediate assembly code files.

Embedded Studio for ARM Reference Manual Utilities Reference

227

-kldscript (Keep linker script)

Syntax

-kldscript

Description

The -kldscript option instructs the compiler driver to keep generated linker script files.

Embedded Studio for ARM Reference Manual Utilities Reference

228

-kpp (Keep preprocessor output)

Syntax

-kpp

Description

The -kpp option instructs the compiler driver to generate and keep intermediate preprocessor files.

Embedded Studio for ARM Reference Manual Utilities Reference

229

-K (Keep linker symbol)

Syntax

-Kname

Description

The linker removes unused code and data from the output file. This process is called deadstripping. To prevent

the linker from deadstripping unreferenced code and data you wish to keep, you must use the -K command line

option to force inclusion of symbols.

Example

If you have a C function, contextSwitch that must be kept in the output file (and which the linker will normally

remove), you can force its inclusion using:

-KcontextSwitch

Embedded Studio for ARM Reference Manual Utilities Reference

230

-l- (Do not link standard libraries)

Syntax

-l-

Description

The -l option instructs the compiler driver not to link standard libraries. If you use this option you must supply

your own library functions or libraries.

Embedded Studio for ARM Reference Manual Utilities Reference

231

-longcalls (ARM Generate long calling sequences)

Syntax

-longcalls

Description

The -longcalls option causes the compiler to generate long call code sequences.

Embedded Studio for ARM Reference Manual Utilities Reference

232

-lto (Enable link time optimization)

Syntax

-lto

Description

The -lto option causes the compiler to generate intermediate code which is optimized before the link.

Embedded Studio for ARM Reference Manual Utilities Reference

233

-L (Set library directory path)

Syntax

-Ldir

Description

Sets the library directory to dir. If -L is not specified on the command line, the default location to search for

libraries is set to $(InstallDir)/lib.

Embedded Studio for ARM Reference Manual Utilities Reference

234

-memorymap (Memory map file)

Syntax

-memorymap file

Description

The -memorymap option supplies the memory map file which is used to define the memory segments

referenced in the section placement file. See Memory Map file format for a description of the memory map file

format.

Example

-memorymap MemoryMap.xml

Embedded Studio for ARM Reference Manual Utilities Reference

235

-memorymapmacros (Memory map macros)

Syntax

-memorymapmacros macros

Description

The -memorymapmacros option supplies macro definitions that are applied to the memory map file.

Example

The macros FLASH_START and FLASH_SIZE are defined for the memory map using:

-memorymapmacros "FLASH_START=0x08000000;FLASH_SIZE=0x10000"

Embedded Studio for ARM Reference Manual Utilities Reference

236

-M (Display linkage map)

Syntax

-M

Description

The -M option prints a linkage map named the same as the linker output file with the .map file extension.

Embedded Studio for ARM Reference Manual Utilities Reference

237

-n (Dry run, no execution)

Syntax

-n

Description

When -n is specified, the compiler driver processes options as usual, but does not execute any subprocesses to

compile, assemble, archive or link applications.

Embedded Studio for ARM Reference Manual Utilities Reference

238

-nointerwork (ARM No interwork code for v4t)

Syntax

-nointerwork

Description

The -nointerwork option disables generation of bx lr instructions for v4t architectures.

Embedded Studio for ARM Reference Manual Utilities Reference

239

-nowarn-mismatch (ARM No warning on architecture
mismatch)

Syntax

-nowarn-mismatch

Description

When -nowarn-mismatch is specified, the linker will ignore architecture mismatches on object file and libraries.

Embedded Studio for ARM Reference Manual Utilities Reference

240

-nowarn-enumsize (ARM No warning on enum size
mismatch)

Syntax

-nowarn-enumsize

Description

When -nowarn-enumsize is specified, the linker will ignore enum size mismatches on object files and libraries.

Embedded Studio for ARM Reference Manual Utilities Reference

241

-nowarn-wcharsize (ARM No warning on wide
character size mismatch)

Syntax

-nowarn-wcharsize

Description

When -nowarn-wcharsize is specified, the linker will ignore wide character size mismatches on object files and

libraries.

Embedded Studio for ARM Reference Manual Utilities Reference

242

-nostderr (No stderr output)

Syntax

-nostderr

Description

When -nostderr is specified, any stderr output of subprocesses is redirected to stdout.

Embedded Studio for ARM Reference Manual Utilities Reference

243

-O (Optimize output)

Syntax

-Ox

Description

Pass the optimization option -Ox to the compiler and select library variant. The following options are supported:

-O0 No optimization, use libraries built with -O1.

-O1 Level 1 optimization, use libraries built with -O1.

-O2 Level 2 optimization, use libraries built with -O1.

-O3 Level 3 optimization, use libraries built with -O1.

-Oz Optimize for more size, use libraries built with -Os.

-Os Optimize for size, use libraries built with -Os.

Embedded Studio for ARM Reference Manual Utilities Reference

244

-o (Set output file name)

Syntax

-o filename

Description

The -o option instructs the compiler driver to write linker or archiver output to filename.

Embedded Studio for ARM Reference Manual Utilities Reference

245

-patch (Run patch command)

Syntax

-patch cmd

Description

The -patch option instructs the compiler driver to run the cmd after the link but before the creation of the

additional output file. The macro $(TargetPath) is expanded to the full path of the linked executable.

Example

This example will run the command mypatch replacing $(TargetPath) with myoutput.elf

-patch "mypatch $(TargetPath)" -o myoutput.elf -Fbin

The mypatch command can modify myoutput.elf before the creation of the myouput.bin.

Embedded Studio for ARM Reference Manual Utilities Reference

246

-placement (Section placement file)

Syntax

-placement file

Description

The -placement option supplies the section placement file which is used to control the placement of program

sections in the memory map segments. See Section Placement file format for a description of the section

placement file format.

Example

-memorymap MemoryMap.xml -placement flash.xml

Embedded Studio for ARM Reference Manual Utilities Reference

247

-placementmacros (Section placement macros)

Syntax

-placementmacros macros

Description

The -placementmacros option supplies macro definitions that are applied to the section placement file.

Example

The macros FLASH_START and FLASH_SIZE are defined for the section placement using:

-placementmacros "FLASH_START=0x08000000;FLASH_SIZE=0x10000"

Embedded Studio for ARM Reference Manual Utilities Reference

248

-placementsegments (Section placement segments)

Syntax

-placementsegments segments

Description

The -placementsegments option supplies segments descriptions to the section placement file. You can use this

rather than supplying a memory map file.

Example

A simple memory map with FLASH and SRAM can be supplied as follows:

-placementsegments "FLASH RX 0x0 0x10000;SRAM RWX 0x20000000 0x10000" -placement flash.xml

Embedded Studio for ARM Reference Manual Utilities Reference

249

-printf (Select printf capability)

Syntax

-printf=c

Description

The -printf option selects the printf capability for the linked executable. The options are:

-printf=i[p][w] integer is supported, optional width and precision and optional wchar

-printf=l[p][w] long integer is supported, optional width and precision and optional wchar

-printf=ll[p][w] long long integer is supported, optional width and precision and optional wchar

-printf=f[ll][w] float, width and precision supported, optional long long and optional wchar

-printf=d[ll][w] double, width and precision supported, optional long long and optional wchar

Example

The minimal sized printf

-printf=i

The maximal functionality printf

-printf=dllw

Embedded Studio for ARM Reference Manual Utilities Reference

250

-rtti (Enable C++ RTTI Support)

Syntax

-rtti

Description

Enables C++ run-time type information to be compiled.

Embedded Studio for ARM Reference Manual Utilities Reference

251

-R (Set section name)

Syntax

-Rx name

Description

These options name the default name of the sections generated by the compiler/assembler to be name. The

options are:

-Rc name change the default name of the code section

-Rd name change the default name of the data section

-Rk name change the default name of the const section

-Rz name change the default name of the bss section

Embedded Studio for ARM Reference Manual Utilities Reference

252

-scanf (Select scanf capability)

Syntax

-scanf= c

Description

The -scanf option selects the scanf capability for the linked executable. The options are:

-scanf=i[c] integer is supported, optional %[...] and %[^...] character class

-scanf=l[c] long integer is supported, optional %[...] and %[^...] character class

-scanf=ll[c] long long integer is supported, optional %[...] and %[^...] character class

-scanf=d[ll][c] floating point is supported, optional long long and %[...] and %[^...] character class

Example

The minimal sized scanf

-scanf=i

The maximal functionality scanf

-scanf=dllc

Embedded Studio for ARM Reference Manual Utilities Reference

253

-segger (Use SEGGER assembler/compiler/linker)

Syntax

-clang

Description

Use the SEGGER assembler, compiler and linker. Default is to use the GNU assembler, compiler and linker.

Embedded Studio for ARM Reference Manual Utilities Reference

254

-shortenums (ARM Minimal sized enums)

Syntax

-shortenums

Description

The -shortenums option instructs the compiler to set the size of an enumeration type to the smallest

appropriate data type.

Embedded Studio for ARM Reference Manual Utilities Reference

255

-shortwchar (ARM 16-bit wide chars)

Syntax

-shortwchar

Description

The -shortwchar option instructs the compiler to set the size of a wide character to 16-bit.

Embedded Studio for ARM Reference Manual Utilities Reference

256

-simd (ARM Generate vector processing code)

Syntax

-simd=neon

Description

The -simd option instructs the compiler to generate vector processing code.

Embedded Studio for ARM Reference Manual Utilities Reference

257

-std (Select language standard)

Syntax

-std=s

-std=list

Description

The -std option sets the language standard to use.

Example

To set the language to c99 core you would use:

cc -std=c99

To list supported language standards:

cc -std=list

Embedded Studio for ARM Reference Manual Utilities Reference

258

-strip (Strip symbols from executable)

Syntax

-stripsymbols

-stripdebug

Description

The -stripsymbols removes symbols from the linked executable.

The -stripdebug removes debugging information from the linked executable.

Embedded Studio for ARM Reference Manual Utilities Reference

259

-symbols (Link symbols)

Syntax

-symbols=s

Description

The -symbols option supplies the symbols file s to the linker.

Embedded Studio for ARM Reference Manual Utilities Reference

260

-thumb (ARM Generate thumb code)

Syntax

-thumb

Description

The -thumb option instructs the compiler to generate thumb code rather than ARM code and link in thumb

libraries. This option is NOT needed for Cortex-M architectures.

Embedded Studio for ARM Reference Manual Utilities Reference

261

-T (Supply linker script)

Syntax

-Tfile

Description

The -T option supplies the file to the linker as a linker script.

Embedded Studio for ARM Reference Manual Utilities Reference

262

-U (Undefine macro symbol)

Syntax

-Uname

Description

The -U option undefines the preprocessor macro name.

Embedded Studio for ARM Reference Manual Utilities Reference

263

-unwindtables (Generate unwind tables)

Syntax

-unwindtables

Description

The -unwind option instructs the compiler to generate unwind tables.

Embedded Studio for ARM Reference Manual Utilities Reference

264

-v (Verbose execution)

Syntax

-v

Description

The -v switch displays command lines executed by the compiler driver.

Embedded Studio for ARM Reference Manual Utilities Reference

265

-vectorize (ARM Generate vector processing code)

Syntax

-vectorize

Description

The -vectorize option instructs the compiler to generate vector processing code.

Embedded Studio for ARM Reference Manual Utilities Reference

266

-w (Suppress warnings)

Syntax

-w

Description

This option instructs the compiler, assembler, and linker not to issue any warnings.

Embedded Studio for ARM Reference Manual Utilities Reference

267

-we (Treat warnings as errors)

Syntax

-we

Description

This option directs the compiler, assembler, and linker to treat all warnings as errors.

Embedded Studio for ARM Reference Manual Utilities Reference

268

-W (Pass option to tool)

Syntax

-Wtool option

Description

The -W command-line option passes option directly to the specified tool. Supported tools are

-Wa pass option to assembler

-Wc pass option to compiler

-Wl pass option to linker

Example

The following example passes the (compiler specific) -version option to the compiler

cc -Wc-version

Embedded Studio for ARM Reference Manual Utilities Reference

269

-x (Specify file types)

Syntax

-x type

Description

The -x option causes the compiler driver to treat subsequent files to be of the following file type

-xa archives/libraries

-xasm assembly code files

-xc C code files

-xc++ C++ code files

-xo object code files

Example

The following command line enables an assembly code file with the extension .arm to be assembled.

cc -xasm a.arm

Embedded Studio for ARM Reference Manual Utilities Reference

270

Command-Line Project Builder
emBuild is a program used to build your software from the command line without using SEGGER Embedded

Studio. You can, for example, use emBuild for nightly (automated) builds, production builds, and batch builds.

Embedded Studio for ARM Reference Manual Utilities Reference

271

Building with a SEGGER Embedded Studio project file
You can specify a SEGGER Embedded Studio project file:

Syntax

emBuild [options] project-file

You must specify a configuration to build using -config. For instance:

emBuild -config "V5T Thumb LE Release" arm.emProject

The above example uses the configuration V5T Thumb LE Release to build all projects in the solution contained

in arm.emProject.

To build a specific project that is in a solution, you can specify it using the -project option. For example:

emBuild -config "V5T Thumb LE Release" -project "libm" libc.emProject

This example will use the configuration V5T Thumb LE Release to build the project libm that is contained in

libc.emProject.

If your project file imports other project files (using the <import> mechanism), when denoting projects you must

specify the solution names as a comma-separated list in parentheses after the project name:

emBuild -config "V5T Thumb LE Release" -project "libc(C Library)" arm.emProject

libc(C Library) specifies the libc project in the C Library solution that has been imported by the project file

arm.emProject.

To build a specific solution that has been imported from other project files, you can use the -solution option.

This option takes the solution names as a comma-separated list. For example:

emBuild -config "ARM Debug" -solution "ARM Targets,EB55" arm.emProject

In this example, ARM Targets,EB55 specifies the EB55 solution imported by the ARM Targets solution, which

was itself imported by the project file arm.emProject.

You can do a batch build using the -batch option:

emBuild -config "ARM Debug" -batch libc.emProject

This will build the projects in libc.emProject that are marked for batch build in the configuration ARM Debug.

By default, a make-style build will be donei.e., the dates of input files are checked against the dates of output

files, and the build is avoided if the output is up to date. You can force a complete build by using the -rebuild

option. Alternatively, to remove all output files, use the -clean option.

Embedded Studio for ARM Reference Manual Utilities Reference

272

To see the commands being used in the build, use the -echo option. To also see why commands are being

executed, use the -verbose option. You can see what commands will be executed, without executing them, by

using the -show option.

Embedded Studio for ARM Reference Manual Utilities Reference

273

Building without a SEGGER Embedded Studio project
file
To use emBuild without a SEGGER Embedded Studio project, specify the name of an installed project template,

the name of the project, and the files to build. For example:

emBuild -config -template LM3S_EXE -project myproject -file main.c

Or, instead of a template, you can specify a project type:

emBuild -config -type "Library" -project myproject -file main.c

You can specify project properties with the -property option:

emBuild -property Target=LM3S811

Embedded Studio for ARM Reference Manual Utilities Reference

274

Command-line options
This section describes the command-line options accepted by emBuild.

Embedded Studio for ARM Reference Manual Utilities Reference

275

-batch (Batch build)

Syntax

-batch

Description

Perform a batch build.

Embedded Studio for ARM Reference Manual Utilities Reference

276

-config (Select build configuration)

Syntax

-config name

Description

Specify the configuration for a build. If the configuration name can't be found, emBuild will list the available

configurations.

Embedded Studio for ARM Reference Manual Utilities Reference

277

-clean (Remove output files)

Syntax

-clean

Description

Remove all output files resulting from the build process.

Embedded Studio for ARM Reference Manual Utilities Reference

278

-D (Define macro)

Syntax

-D macro=value

Description

Define a SEGGER Embedded Studio for ARM macro value for the build process.

Embedded Studio for ARM Reference Manual Utilities Reference

279

-echo (Show command lines)

Syntax

-echo

Description

Show the command lines as they are executed.

Embedded Studio for ARM Reference Manual Utilities Reference

280

-file (Build a named file)

Syntax

-file name

Description

Build the file name. Use with -template or -type.

Embedded Studio for ARM Reference Manual Utilities Reference

281

-packagesdir (Specify packages directory)

Syntax

-packagesdir dir

Description

Override the default value of the $(PackagesDir) macro.

Embedded Studio for ARM Reference Manual Utilities Reference

282

-project (Specify project to build)

Syntax

-project name

Description

Specify the name of the project to build. When used with a project file, if emBuild can't find the specified project,

the names of available projects are listed.

Embedded Studio for ARM Reference Manual Utilities Reference

283

-property (Set project property)

Syntax

-property name=value

Description

Specify the value of a project property use with -template or -type. If emBuild cannot find the specified

property, a list of the properties is shown.

Embedded Studio for ARM Reference Manual Utilities Reference

284

-rebuild (Always rebuild)

Syntax

-rebuild

Description

Always execute the build commands.

Embedded Studio for ARM Reference Manual Utilities Reference

285

-show (Dry run, don't execute)

Syntax

-show

Description

Show the command lines that would be executed, but do not execute them.

Embedded Studio for ARM Reference Manual Utilities Reference

286

-solution (Specify solution to build)

Syntax

-solution name

Description

Specify the name of the solution to build. If emBuild cannot find the given solution, the valid solution names are

listed.

Embedded Studio for ARM Reference Manual Utilities Reference

287

-studiodir (Specify SEGGER Embedded Studio
directory)

Syntax

-studiodir name

Description

Override the default value of the $(StudioDir) macro.

Embedded Studio for ARM Reference Manual Utilities Reference

288

-template (Specify project template)

Syntax

-template name

Description

Specify the project template to use. If emBuild cannot find the specified template then a list of template names

is shown.

Embedded Studio for ARM Reference Manual Utilities Reference

289

-time (Time the build)

Syntax

-time

Description

Show the time taken for the build.

Embedded Studio for ARM Reference Manual Utilities Reference

290

-threadnum (Specify number of build threads)

Syntax

-threadnum n

Description

Specify the number of build threads to use for the build. The default is zero which will use the number of

processor cores on your machine.

Embedded Studio for ARM Reference Manual Utilities Reference

291

-type (Specify project type)

Syntax

-type name

Description

Specify the project type to use. If emBuild cannot find the specified project type then a list of project type names

is shown.

Embedded Studio for ARM Reference Manual Utilities Reference

292

-verbose (Show build information)

Syntax

-verbose

Description

Show extra information relating to the build process.

Embedded Studio for ARM Reference Manual Utilities Reference

293

Command-Line Simulator
emSim is a program that allows you to run SEGGER Embedded Studio's instruction set simulator from the

command line.

The primary purpose of emSim is to enable command line tests to be run.

Syntax

emSim file [options] args

Embedded Studio for ARM Reference Manual Utilities Reference

294

Command-line options
This section describes the command-line options accepted by emSim.

Embedded Studio for ARM Reference Manual Utilities Reference

295

file (Elf executable file)

Description

This is the name of the elf file to run on the simulator. The file will be run until it makes a debug request to exit.

The simulator will allocate memory regions based on the elf program sections.

Example

emSim app.elf

Embedded Studio for ARM Reference Manual Utilities Reference

296

-segments (Specify memory segments)

Syntax

-segments start;size;

Description

Specify the memory segments to simulate.

Example

emSim app.elf -segments 0x08000000;0x10000;0x20000000;0x10000

Embedded Studio for ARM Reference Manual Utilities Reference

297

args (User arguments)

Description

The arguments supplied to the elf file in the argc/argv parameters to the main function.

emSim app.elf hello world

Embedded Studio for ARM Reference Manual Utilities Reference

298

Command-Line Scripting
emScript is a program that allows you to run SEGGER Embedded Studio's JavaScript (ECMAScript) interpreter

from the command line.

The primary purpose of emScript is to facilitate the creation of platform-independent build scripts.

Syntax

emScript [options] file

Embedded Studio for ARM Reference Manual Utilities Reference

299

Command-line options
This section describes the command-line options accepted by emScript.

Embedded Studio for ARM Reference Manual Utilities Reference

300

-define (Define global variable)

Syntax

-define variable=value

Description

Embedded Studio for ARM Reference Manual Utilities Reference

301

-help (Show usage)

Syntax

-help

Description

Display usage information and command line options.

Embedded Studio for ARM Reference Manual Utilities Reference

302

-load (Load script file)

Syntax

-load path

Description

Loads the script file path.

Embedded Studio for ARM Reference Manual Utilities Reference

303

-define (Verbose output)

Syntax

-verbose

Description

Produces verbose output.

Embedded Studio for ARM Reference Manual Utilities Reference

304

emScript classes
emScript provides the following predefined classes:

BinaryFile

CWSys

ElfFile

WScript

Embedded Studio for ARM Reference Manual Utilities Reference

305

Example uses
The following example demonstrates using emScript to increment a build number:

First, add a JavaScript file to your project called incbuild.js containing the following code:

function incbuild()
{
 var file = "buildnum.h"
 var text = "#define BUILDNUMBER "
 var s = CWSys.readStringFromFile(file);
 var n;
 if (s == undefined)
 n = 1;
 else
 n = eval(s.substring(text.length)) + 1;
 CWSys.writeStringToFile(file, text + n);
}

// Executed when script loaded.
incbuild();

Add a file called getbuildnum.h to your project containing the following code:

#ifndef GETBUILDNUM_H
#define GETBUILDNUM_H

unsigned getBuildNumber();

#endif

Add a file called getbuildnum.c to your project containing the following code:

#include "getbuildnum.h"
#include "buildnum.h"

unsigned getBuildNumber()
{
 return BUILDNUMBER;
}

Now, to combine these:

Set the Build Options > Always Rebuild project property of getbuildnum.c to Yes.

Set the User Build Step Options > Pre-Compile Command project property of getbuildnum.c to

"$(StudioDir)/bin/emScript" -load "$(ProjectDir)/incbuild.js".

Embedded Studio for ARM Reference Manual Utilities Reference

306

Embed
Embed is a program that converts a binary file into a C/C++ array definition.

The primary purpose of the Embed tool is to provide a simple method of embedding files into an application.

This may be useful if you want to include firmware images, bitmaps, etc. in your application without having to

read them first from an external source.

Syntax

embed variable_name input_file output_file

variable_name is the name of the C/C++ array to be initialised with the binary data.

input_file is the path to the binary input file.

output_file is the path to the C/C++ source file to generate.

Example

To convert a binary file image.bin to a C/C++ file called image.h:

embed img image.bin image.h

This will generate the following output in image.h:

static const unsigned char img[] = {
 0x5B, 0x95, 0xA4, 0x56, 0x16, 0x5F, 0x2D, 0x47,
 0xC5, 0x04, 0xD4, 0x8D, 0x73, 0x40, 0x31, 0x66,
 0x3E, 0x81, 0x90, 0x39, 0xA3, 0x8E, 0x22, 0x37,
 0x3C, 0x63, 0xC8, 0x30, 0x90, 0x0C, 0x54, 0xA4,
 0xA2, 0x74, 0xC2, 0x8C, 0x1D, 0x56, 0x57, 0x05,
 0x45, 0xCE, 0x3B, 0x92, 0xAD, 0x0B, 0x2C, 0x39,
 0x92, 0x59, 0xB9, 0x9D, 0x01, 0x30, 0x59, 0x9F,
 0xC5, 0xEA, 0xCE, 0x35, 0xF6, 0x4B, 0x05, 0xBF
};

Embedded Studio for ARM Reference Manual Utilities Reference

307

Command-Line License Manager
The emLicense program can be used to install, remove and list licenses from the command line.

Usage Description

emLicense install license-strings... Install licenses

emLicense list List all installed licenses

emLicense remove license-ids... Remove licenses

Option Description

-erase-all-existing Erase all existing licenses when installing

-verbose Produce verbose output

The install command can be used to install licenses:

$ emLicense install license-strings...

The list command can be used to list installed licenses:

$ emLicense list
Product: SEGGER Embedded Studio for ARM
Ethernet MAC Address Lock: 01-02-03-04-05-06 (OK)
Licensed to: Joe Bloggs
License ID: 00010203-04050607-08090A0B-0C0D0E0F

The remove command can be used to uninstall licenses:

$ emLicense remove 00010203-04050607-08090A0B-0C0D0E0F

Embedded Studio for ARM Reference Manual Utilities Reference

308

Linker script file generator
The command line program mkld generates a GNU ld linker script from a SEGGER Embedded Studio for ARM

memory map or section placement file.

Syntax

mkld -memory-map-file inputfile outputfile [options]

mkld -memory-map-segments segments outputfile [options]

Description

inputfile is the name of the SEGGER Embedded Studio for ARM memory map file to generate the ld script

from.

segments is a list of memory segments of the form SegmentName RWX Address Size

outputfile is the the name of the ld script file to write.

Embedded Studio for ARM Reference Manual Utilities Reference

309

Command-line options
This section describes the command-line options accepted by mkld.

Embedded Studio for ARM Reference Manual Utilities Reference

310

-check-section-overflow

Syntax

-check-section-overflow

Description

Add checks for memory section overflow to the linker script.

Embedded Studio for ARM Reference Manual Utilities Reference

311

-check-segment-overflow

Syntax

-check-segment-overflow

Description

Add checks for memory segment overflow to the linker script.

Embedded Studio for ARM Reference Manual Utilities Reference

312

-disable-missing-runin-error

Syntax

-disable-missing-runin-error

Description

Discard any sections with a missing run in section.

Embedded Studio for ARM Reference Manual Utilities Reference

313

-memory-map-macros

Syntax

-memory-map-macros macro=value[;macro=value]

Description

Define SEGGER Embedded Studio for ARM macros to use when reading a memory map file.

Embedded Studio for ARM Reference Manual Utilities Reference

314

-no-check-unplaced-sections

Syntax

-no-check-unplaced-sections

Description

Removes checks for unplaced memory sections from the linker script.

Embedded Studio for ARM Reference Manual Utilities Reference

315

-no-ctors

Syntax

-no-ctors

Description

Ignore the .ctors section.

Embedded Studio for ARM Reference Manual Utilities Reference

316

-no-dtors

Syntax

-no-ctors

Description

Ignore the .dtors section.

Embedded Studio for ARM Reference Manual Utilities Reference

317

-section-placement-file

Syntax

-section-placement-file filename

Description

Generate a GNU ld linker script from the SEGGER Embedded Studio for ARM section placement file filename. If

this option is used, a memory map file should also be specified with the -memory-map-file option.

Embedded Studio for ARM Reference Manual Utilities Reference

318

-section-placement-macros

Syntax

-section-placement-macros macro=value[;macro=value]

Description

Define SEGGER Embedded Studio for ARM macros to use when reading a section placement file.

Embedded Studio for ARM Reference Manual Utilities Reference

319

-symbols

Syntax

-symbols symbol=value[;symbol=value]

Description

Add extra symbol definitions to the ld linker script.

Embedded Studio for ARM Reference Manual Utilities Reference

320

Package generator
To create a package the program mkpkg can be used. The set of files to put into the package should be

in the desired location in the $(PackagesDir) directory. The mkpkg command should be run with

$(PackagesDir) as the working directory and all files to go into the package must be referred to using

relative paths. A package must have a package description file that is placed in the $(PackagesDir)/

packages directory. The package description file name must end with _package.xml. If a package is to

create entries in the new project wizard then it must have a file name project_templates.xml.

For example, a package for the mythical FX150 processor would supply the following files:

A project template file called targets/FX150/project_templates.xml. The format of the

project templates file is described in Project Templates file format.

The $(PackagesDir)-relative files that define the functionality of the package.

A package description file called packages/FX150_package.xml. The format of the package

description file is described in Package Description file format.

The package file FX150.emPackage would be created using the following command line:

mkpkg -c packages/FX150.emPackage targets/FX150/project_templates.xml packages/
FX150_package.xml

You can exclude specific files or directories from being added to a package using the -exclude option:

mkpkg -c packages/FX150.emPackage targets/FX150 -exclude targets/FX150/excluded_file.txt -
exclude targets/FX150/excluded_directory packages/FX150_package.xml

You can list the contents of the package using the -t option:

mkpkg -t packages/FX150.emPackage

You can remove an entry from a package using the -d option:

mkpkg -d packages/FX150.emPackage -d fileName

You can add or replace a file into an existing package using the -r option:

mkpkg -r packages/FX150.emPackage -r fileName

You can extract files from an existing package using the -x option:

mkpkg -x packages/FX150.emPackage outputDirectory

You can automate the package creation process using a Combining project type.

Using the new project wizard create a combining project in the directory $(PackagesDir).

Set the Output File Path property to be $(PackagesDir)/packages/mypackage.emPackage.

Set the Combine command property to $(StudioDir)/bin/mkpkg -c $(CombiningOutputFilePath)

$(CombiningRelInputPaths).

Embedded Studio for ARM Reference Manual Utilities Reference

321

Add the files you want to go into the package into the project using the Project Explorer.

Right-click the project node in the Project Explorer and choose Build.

When a package is installed, the files in the package are copied into the desired $(PackagesDir)-relative

locations. When a file is copied into the $(PackagesDir)/packages directory and its filename ends with

_package.xml the file $(PackagesDir)/packages/installed_packages.xml is updated with an

entry:

<include filename="FX150_package.xml" />

During development of a package you can manually edit this file. The same applies to the file

$(PackagesDir)/targets/project_templates.xml which will contain a reference to your

project_templates.xml file.

Usage:

mkpkg [options] packageFileName file1 file2

Option Description

-c Create a new package.

-compress level Change compression level (0 for none, 9 for
maximum).

-d Remove files from a package.

-exclude path Exclude path when adding files to a package.

-f Output files to stdout.

-overwrite Overwrite existing files.

-no-date Do not add date attribute to package.

-r Replace files in a package.

-readonly Force all files to have read only attribute.

-set-attr attribute=value Set package attribute to value.

-sub-arch-endian Create architecture and endian specific sub packages.

-sub-arch-endian-compatiblity Create architecture and endian specific sub packages
including compatibility packages for versions of the
IDE that don't have $(LibEndian) macro.

-sub-base-type Specify the type description of the base package.

-sub-type Specify the type description of the sub packages.

-t List the contents of a package.

-v Be chatty.

-V Show version information.

-x Extract files from a package.

Embedded Studio for ARM Reference Manual Utilities Reference

322

Package manager
The pkg program can be used to download, install, remove and search for packages from the command line.

Usage Description

pkg history package_names... List version history of packages

pkg install package_names... Download and install packages

pkg install -manual package_files... Manually install package files

pkg list List all available packagess

pkg list -installed List installed packages

pkg list -installed-names List installed package names

pkg list -dependencies package_names... List package dependencies

pkg list -dependents package_names... List dependent packages

pkg remove package_names... Remove packages

pkg remove -all Remove all packages

pkg search keywords... Search for packages

pkg update Update list of available packages

pkg upgrade Upgrade all installed packages

pkg upgrade package_names... Upgrade selected packages

Option Description

-D macro=value Set a global macro

-keepgoing Continue when errors occur

-legacy Include legacy packages

-nodelete Don't delete downloaded packages after installation

-noverify Don't verify downloaded packages

-outputformat string Specify list/search output format string

-packagesdir directory Set the packages directory to be directory

-packagesurl url Set the URL of the packages website to be url

-quiet Do not output any progress messages

-rootuserdir directory Set the root user data directory to directory

-verbose Produce verbose output

-yes Answer yes to all questions without prompting

Macro Description

$(Description) Package description

$(Name) Package name

$(Title) Package title

Embedded Studio for ARM Reference Manual Utilities Reference

323

$(Version) Package version

Before you can download, install or search for packages you must first update the local list of available packages:

$ pkg update

The search command can be used to search for a specific package:

$ pkg search libcxx
libcxx_arm - ARM libcxx Library Package (1.1)

The install command can be used to install a package:

$ pkg install libcxx_arm

The list command can be used to list installed packages:

$ pkg list -installed
libcxx_arm - ARM libcxx Library Package (1.1)

The history command can be used to show package history:

$ pkg history libcxx_arm
libcxx_arm - libcxx Library Package [ARM]

 1.1 (Installed)
 - Fixed name of Type Interpretation File.

 1.0
 - Initial release.

Specific versions of a package can be installed:

$ pkg install libcxx_arm:1.0

The upgrade command can be used to upgrade to the latest version of a package:

$ pkg upgrade libcxx_arm

The remove command can be used to uninstall a package:

$ pkg remove libcxx_arm

Embedded Studio for ARM Reference Manual Utilities Reference

324

Embedded Studio for ARM Reference Manual Appendices

325

Appendices

Embedded Studio for ARM Reference Manual Appendices

326

File formats
This section describes the file formats SEGGER Embedded Studio for ARM uses:

Memory Map file format
Describes the memory map file format that defines memory regions and registers in a microcontroller.

Section Placement file format
Describes the section placement file format that maps program sections to memory areas in the target

microcontroller.

Project file format
Describes the format of SEGGER Embedded Studio project files.

Project Templates file format
Describes the format of project template files used by the New Project wizard.

Property Groups file format
Describes the format of the property groups file you can use to define meta-properties.

Package Description file format
Describes the format of the package description files you use to create packages other users can install in

SEGGER Embedded Studio.

External Tools file format
Describes the format of external tool configuration files you use to extend SEGGER Embedded Studio.

Debugger Type Interpretation file format
Describes the format of the debugger type interpretation file.

Embedded Studio for ARM Reference Manual Appendices

327

Memory Map file format
SEGGER Embedded Studio memory-map files are structured using XML syntax for its simple construction and

parsing.

The first entry of the project file defines the XML document type used to validate the file format.

<!DOCTYPE Board_Memory_Definition_File>

The next entry is the Root element. There can only be one Root element in a memory map file:

<Root name="My Board">

A Root element has a name attribute every element in a memory map file has a name attribute. Names should

be unique within a hierarchy level. Within a Root element, there are MemorySegment elements that represent

regions within the memory map.

<Root name="My Board">
 <MemorySegment name="Flash" start="0x1000" size="0x200" access="ReadOnly">

MemorySegment elements have the following attributes:

start:The start address of the memory segment. A simple expression, usually a hexadecimal number with

a 0x prefix.

size:The size of the memory segment. A simple expression, usually a hexadecimal number with a 0x prefix.

access:The permissible access types of the memory segment. One of ReadOnly, Read/Write,

WriteOnly, or None.

address_symbol:A symbolic name for the start address of the memory segment.

size_symbol:A symbolic name for the size of the memory segment.

end_symbol:A symbolic name for the end address of the memory segment.

RegisterGroup elements are used to organize registers into groups. Register elements are used to define

peripheral registers:

 <Root name="My Board" >
 <MemorySegment name="System" start="0x2000" size="0x200" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >

RegisterGroup elements have the same attributes as MemorySegment elements. Register elements

have the following attributes:

name:Register names should be valid C/C++ identifier names, i.e., alphanumeric characters and

underscores are allowed but names cannot start with a number.

start:The start address of the memory segment. Either a C-style hexadecimal number or, if given a + prefix,

an offset from the enclosing element's start address.

size:The size of the register in bytes, either 1, 2, or 4.

Embedded Studio for ARM Reference Manual Appendices

328

access:The same as the access attribute of the MemorySegment element.

address_symbol:The same as the address_symbol attribute of the MemorySegment element.

A Register element can contain BitField elements that represent the bits in a peripheral register:

 <Root name="My Board" >
 <MemorySegment name="System" start="0x2000" size="0x200" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >
 <BitField name="Bits_0_to_3" start="0" size="4" />

BitField elements have the following attributes:

name:The same as the name attribute of the RegisterGroup element.

start:The starting bit position, 031.

size:The total number of bits, 132.

A Bitfield element can contain Enum elements:

<Root name="My Board" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >
 <BitField name="Bits_0_to_3" start="0" size="4" />
 <Enum name="Enum3" start="3" />
 <Enum name="Enum5" start="5" />

You can import CMSIS SVD files (see http://www.onarm.com/) into a memory map using the ImportSVD

element:

<ImportSVD filename="$(TargetsDir)/targets/Manufacturer1/Processor1.svd.xml">

The filename attribute is an absolute filename which is macro-expanded using SEGGER Embedded Studio for

ARM system macros.

When a memory map file is loaded either for the memory map viewer or to be used for linking or debugging, it is

preprocessed using the (as yet undocumented) SEGGER Embedded Studio for ARM XML preprocessor.

http://www.onarm.com/

Embedded Studio for ARM Reference Manual Appendices

329

Section Placement file format
SEGGER Embedded Studio section-placement files are structured using XML syntax to enable simple

construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE Linker_Placement_File>

The next entry is the Root element. There can only be one Root element in a memory map file:

<Root name="Flash Placement">

A Root element has a name attribute. Every element in a section-placement file has a name attribute. Each

name should be unique within its hierarchy level. Within a Root element, there are MemorySegment elements.

These correspond to memory regions defined in a memory map file that will be used in conjunction with the

section-placement file when linking a program. For example:

 <Root name="Flash Placement">
 <MemorySegment name="FLASH">

A MemorySegment contains ProgramSection elements that represent program sections created by the C/

C++ compiler and assembler. The order of ProgramSection elements within a MemorySegment element

represents the order in which the sections will be placed when linking a program. The first ProgramSection

will be placed first and the last one will be placed last.

<Root name="My Board" >
 <MemorySegment name="FLASH">
 <ProgramSection name=".text">

ProgramSection elements have the following attributes:

address_symbol:A symbolic name for the start address of the section.

alignment:The required alignment of the program section; a decimal number specifying the byte

alignment.

end_symbol:A symbolic name for the end address of the section.

fill:The optional value used to fill unspecified regions of memory, a hexadecimal number with a 0x prefix.

inputsections:An expression describing the input sections to be placed in this section. If you omit this

(recommended) and the section name isn't one of .text, .dtors, .ctors, .data, .rodata, or .bss, then the

equivalent input section of *(.name .name.*) is supplied to the linker.

keep:If Yes, the section will be kept even if none of the symbols are referenced by the rest of the program.

load:If Yes, the section is loaded. If No, the section isn't loaded.

place_from_segment_end:If Yes, this section and following sections will be placed at the end of the

segment. Please note that this will only succeed if the section and all following sections have a fixed size

specified with the size attribute.

runin:This specifies the name of the section to copy this section to. Multiple sections can be specified

separated by a semicolon, the first section that exists will be used.

Embedded Studio for ARM Reference Manual Appendices

330

runoffset:This specifies an offset from the load address that the section will be run from.

size:The optional size of the program section in bytes, a hexadecimal number with a 0x prefix. The macro

$(SEGMENT_SIZE_REMAINING) can be used for size calcuations based on the remaining number of bytes in

the segment.

size_symbol:A symbolic name for the size of the section.

start:The optional start address of the program section, a hexadecimal number with a 0x prefix.

When a section placement file is used for linking it is preprocessed using the (as yet undocumented) SEGGER

Embedded Studio for ARM XML preprocessor.

Embedded Studio for ARM Reference Manual Appendices

331

Project file format
SEGGER Embedded Studio project files are held in text files with the .emProject extension. Because you may

want to edit project files, and perhaps generate them, they are structured using XML syntax to enable simple

construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE CrossStudio_Project_File>

The next entry is the solution element; there can only be one solution element in a project file. This

specifies the solution name displayed in the Project Explorer and has a version attribute that defines the file-

format version of the project file. Solutions can contain projects, projects can contain folders and files, and

folders can contain folders and files. This hierarchy is reflected in the XML nestingfor example:

<solution version="1" Name="solutionname">
 <project Name="projectname">
 <file Name="filename" />
 <folder Name="foldername">
 <file Name="filename2" />
 </folder>
 </project>
</solution>

Note that each entry has a Name attribute. Names of project elements must be unique to the solution, and

names of folder elements must be unique to the project, but names of files do not need to unique.

Each file element must have a file_name attribute that is unique to the project. Ideally, the file_name

is a file path relative to the project (or solution directory), but you can also specify a full file path, if you want to.

File paths are case-sensitive and use "/" as the directory separator. They may contain macro instantiations, so file

paths cannot contain the "$" character. For example

<file file_name="$(StudioDir)/source/crt0.s" Name="crt0.s" />

will be expanded using the value of $(StudioDir) when the file is referenced from SEGGER Embedded Studio.

Project properties are held in configuration elements with the Name attribute of the configuration element

corresponding to the configuration name, e.g., "Debug". At a given project level (i.e., solution, project, folder),

there can only be one named configuration elementi.e., all properties defined for a configuration are in single

configuration element.

<project Name="projectname">

 <configuration project_type="Library" Name="Common" />
 <configuration Name="Release" build_debug_information="No" />

</project>

You can use the import element to link projects:

<import file_name="target/libc.emProject" />

Embedded Studio for ARM Reference Manual Appendices

332

Project Templates file format
The SEGGER Embedded Studio New Project dialog works from a file called project_templates.xml in the

targets subdirectory of the SEGGER Embedded Studio installation directory. Because you may want to add

your own new project types, they are structured using XML syntax to enable simple construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE Project_Templates_File>

The next entry is the projects element, which is used to group a set of new project entries into an XML

hierarchy.

<projects>
 <project>
</projects>

Each entry has a project element that contains the class of the project (attribute caption), the name of the

project (attribute name), its type (attribute type) and a description (attribute description). For example:

<project caption="ARM Evaluator7T" name="Executable"
 description="An executable for an ARM Evaluator7T." type="Executable"/>

The project type can be one of these:

Executable: a fully linked executable.

Library: a static library.

Object file: an object file.

Staging: a staging project.

Combining: a combining project.

Externally Built Executable: an externally built executable.

The configurations to be created for the project are defined using the configuration element, which must

have a name attribute:

<configuration name="ARM RAM Release"/>

The property values to be created for the project are defined using the property element. If you have a

defined value, you can specify this using the value attribute and, optionally, set the property in a defined

configuration, such as:

<property name="target_reset_script" configuration="RAM"
 value="Evaluator7T_ResetWithRamAtZero()" />

Alternatively, you can include a property that will be shown to the user, prompting them to supply a value as

part of the new-project process.

<property name="linker_output_format"/>

Embedded Studio for ARM Reference Manual Appendices

333

The folders to be created are defined using the folder element. The folder element must have a name

attribute and can also have a filter attribute. For example:

<folder name="Source Files" filter="c;cpp;cxx;cc;h;s;asm;inc" />

The files to be in the project are specified using the file element. You can use build-system macros (see

Project macros) to specify files located in the SEGGER Embedded Studio installation directory. Files will be

copied to the project directory or just left as references, depending on the value of the source attribute:

<file name="main.c" source="$(StudioDir)/samples/Shared/main.c"/>
<file name="$(StudioDir)/source/thumb_crt0.s"/>

You can define the set of configurations that can be referred to in the top-level configurations element:

<configurations>
 <configuration>
</configurations>

This contains the set of all configurations that can be created when a project is created. Each configuration is

defined using a configuration element, which can define the property values for that configuration. For

example:

<configuration name="Debug">
 <property name="build_debug_information" value="Yes">

Embedded Studio for ARM Reference Manual Appendices

334

Property Groups file format
The SEGGER Embedded Studio project system provides a means to create new properties that change a number

of project property settings and can also set C pre-processor definitions when selected. Such properties are

called property groups and are defined in a property-groups file. The property-group file to use for a project

is defined by the Property Groups File property. These files usually define target-specific properties and are

structured using XML syntax to enable simple construction and parsing.

The first entry of the property groups file defines the XML document type, which is used to validate the file

format:

<!DOCTYPE CrossStudio_Group_Values>

The next entry is the propertyGroups element, which is used to group a set of property groups entries into

an XML hierarchy:

<propertyGroups>
 <grouphdots

 <grouphdots
</propertyGroups>

Each group has the name of the group (attribute name), the name of the options category (attribute group),

short (attribute short) and long (attribute long) help descriptions, and a default value (attribute default).

For example:

<group short="Target Processor" group="Build Options" short="Target Processor"
 long="Select a set of target options" name="Target" default="STR912FW44" />

Each group has a number of groupEntry elements that define the enumerations of the group.

<group\>
 <groupEntry>

 <groupEntry>
</group>

Each groupEntry has the name of the entry (attribute name), e.g.:

<groupEntry name="STR910FW32">

A groupEntry has the property values and C pre-processor definitions that are set when the groupEntry is

selected; they are specified with property and cdefine elements. For example:

<groupEntry>
 <property>
 <cdefine>
 <property>
</groupEntry>

Embedded Studio for ARM Reference Manual Appendices

335

A property element has the property's name (attribute name), its value (attribute value), and an optional

configuration (attribute configuration):

<property name="linker_memory_map_file"
 value="$(StudioDir)/targets/ST_STR91x/ST_STR910FM32_MemoryMap.xml" />

A cdefine element has the C preprocessor name (attribute name) and its value (attribute value):

<cdefine value="STR910FM32" name="TARGET_PROCESSOR" />

Embedded Studio for ARM Reference Manual Appendices

336

Package Description file format
Package-description files are XML files used by SEGGER Embedded Studio to describe a support package, its

contents, and any dependencies it has on other packages.

Each package file must contain one package element that describes the package. Optionally, the package

element can contain a collection of file, history, and documentation elements to be used by SEGGER

Embedded Studio for documentation purposes.

The filename of the package-description file should match that of the package and end in "_package.xml".

Below is an example of two package-description files. The first is for a base chip-support package for the

LPC2000; the second is for a board-support package dependent on the first:

Philips_LPC2000_package.xml

<!DOCTYPE CrossStudio_Package_Description_File>
<package cpu_manufacturer="Philips" cpu_family="LPC2000" version="1.1" ses_versions="8:1-"
 author="SEGGER" >
 <file file_name="$(TargetsDir)/Philips_LPC210X/arm_target_Philips_LPC210X.htm"
 title="LPC2000 Support Package Documentation" />
 <file file_name="$(TargetsDir)/Philips_LPC210X/Loader.emProject" title="LPC2000 Loader
 Application Solution" />
 <group title="System Files">
 <file file_name="$(TargetsDir)/Philips_LPC210X/Philips_LPC210X_Startup.s" title="LPC2000
 Startup Code" />
 <file file_name="$(TargetsDir)/Philips_LPC210X/Philips_LPC210X_Target.js" title="LPC2000
 Target Script" />
 </group>
 <history>
 <version name="1.1" >
 <description>Corrected LPC21xx header files and memory maps to include GPIO ports 2
 and 3.</description>
 <description>Modified loader memory map so that .libmem sections will be placed
 correctly.</description>
 </version>
 <version name="1.0" >
 <description>Initial Release.</description>
 </version>
 </history>
 <documentation>
 <section name="Supported Targets">
 <p>This CPU support package supports the following LPC2000 targets:

 LPC2103
 LPC2104
 LPC2105
 LPC2106
 LPC2131
 LPC2132
 LPC2134
 LPC2136
 LPC2138

 </p>
 </section>
 </documentation>

Embedded Studio for ARM Reference Manual Appendices

337

</package>

CrossFire_LPC2138_package.xml

<!DOCTYPE CrossStudio_Package_Description_File>
<package cpu_manufacturer="Philips" cpu_family="LPC2000" cpu_name="LPC2138"
 board_manufacturer="Rowley Associates" board_name="CrossFire LPC2138"
 dependencies="Philips_LPC2000" version="1.0">
 <file file_name="$(SamplesDir)/CrossFire_LPC2138/CrossFire_LPC2138.emProject"
 title="CrossFire LPC2138 Samples Solution" />
 <file file_name="$(SamplesDir)/CrossFire_LPC2138/ctl/ctl.emProject" title="CrossFire
 LPC2138 CTL Samples Solution" />
</package>

Package elements

The package element describes the support package, its contents, and any dependencies it has on other

packages. Valid attributes for this element are:

Attribute Description

author The author of the package.

board_manufacturer The manufacturer of the board supported by the
package (if omitted, CPU manufacturer will be used).

board_name The name of the specific board supported by the
package (only required for board-support packages).

company_name The name of the company to group the package under
in the package dialogs. (if omitted, the Board/CPU
manufacturer will be used).

cpu_family The family name of the CPU supported by the package
(optional).

cpu_manufacturer The manufacturer of the CPU supported by the
package.

cpu_name The name of the specific CPU supported by the
package (may be omitted if the CPU family is specified).

description A description of the package (optional).

dependencies A semicolon-separated list of packages the package
requires to be installed in order to work (optional).

installation_directory The directory in which the package should be installed
(optional - if undefined, defaults to "$(PackagesDir)").

replaces A semicolon-separated list of package names listing
the packages that this package replaces. The replaced
packages are marked as legacy packages and are only
visible in the package manager if the if the Include
Legacy Packages option is selected (optional).

Embedded Studio for ARM Reference Manual Appendices

338

deprecated If set to true, indicates that the package has been
deprecated. Deprecated packages are marked as
legacy packages and are only visible in the package
manager if the if the Include Legacy Packages option is
selected (optional).

ses_versions A string describing which version of SEGGER
Embedded Studio supports the package. The format of
the string is target_id_number:version_range_string.

title A short description of the package (optional).

uninstalls A semicolon-separated list of packages names listing
the packages to be uninstalled if this package is
installed (optional).

version The package version number.

File elements

The file element is used by SEGGER Embedded Studio for documentation purposes by adding links to files of

interest within the package such as example project files and documentation.

Attribute Description

file_name The file path of the file.

title A description of the file.

Optionally, file elements can be grouped into categories using the group element.

Group elements

The group element is used for categorizing files described by file elements into a particular group.

Attribute Description

title Title of the group.

History elements

The history element is used to hold a description of the package's version history.

The history element should contain a collection of version elements.

Version element

The version element is used to hold the description of a particular version of the package.

Embedded Studio for ARM Reference Manual Appendices

339

Attribute Description

name The name of the version being described.

The version element should contain a collection of description elements.

Description elements

Each description element contains text that describes a feature of the package version.

Documentation elements

The documentation element is used to provide arbitrary documentation for the package.

The documentation element should contain a collection of one or more section elements.

Section elements

The section element contains package documentation in XHTML format.

Attribute Description

name The title of the documentation section.

target_id_number

The following table lists the possible target ID numbers:

Target ID

ARM 8

RISC-V 20

version_range_string

The version_range_string can be any of the following:

version_number:The package will only work on version_number.

version_number-:The package will work on version_number or any future version.

-version_number:The package will work on version_number or any earlier version.

low_version_number-high_version_number:The package will work on low_version_number,

high_version_number or any version in between.

Embedded Studio for ARM Reference Manual Appendices

340

External Tools file format
SEGGER Embedded Studio external-tool configuration files are structured using XML syntax for its simple

construction and parsing.

Tool configuration files

The SEGGER Embedded Studio application will read the tool configuration file when it starts up. By default,

SEGGER Embedded Studio will read the file $(StudioUserDir)/tools.xml.

Structure

All tools are wrapped in a tools element:

<tools>

</tools>

Inside the tools element are item elements that define each tool:

<tools>
 <item name="logical name">

 </item>
</tools>

The item element requires an name attribute, which is an internal name for the tool, and has an optional wait

element. When SEGGER Embedded Studio invokes the tool on a file or project, it uses the wait element to

determine whether it should wait for the external tool to complete before continuing. If the wait attribute is not

provided or is set to yes, SEGGER Embedded Studio will wait for external tool to complete.

The way that the tool is presented in SEGGER Embedded Studio is configured by elements inside the

element.

menu

The menu element defines the wording used inside menus. You can place a shortcut to the menu using an

ampersand, which must be escaped using & in XML, before the shortcut letter. For instance:

<menu>&PC-lint (Unit Check)</menu>

text

The optional text element defines the wording used in contexts other than menus, for instance when the tool

appears as a tool button with a label. If text is not provided, the tool's textual appearance outside the menu is

taken from the menu element (and is presented without an shortcut underline). For instance:

Embedded Studio for ARM Reference Manual Appendices

341

<text>PC-lint (Unit Check)</text>

tip

The optional tip element defines the status tip, shown on the status line, when moving over the tool inside

SEGGER Embedded Studio:

<tip>Run a PC-lint unit checkout on the selected file or folder</tip>

key

The optional key element defines the accelerator key, or key chord, to use to invoke the tool using the keyboard.

You can construct the key sequence using modifiers Ctrl, Shift, and Alt, and can specify more than one key in a

sequence (note: Windows and Linux only; OS X does not provide key chords). For instance:

<key>Ctrl+L, Ctrl+I</key>

message

The optional message element defines the text shown in the tool log in SEGGER Embedded Studio when

running the tool. For example:

<message>Linting</message>

match

The optional match element defines which documents the tool will operator on. The match is performed using

the file extension of the document. If the file extension of the document matches one of the wildcards provided,

the tool will run on that document. If there is no match element, the tool will run on all documents. For instance:

<match>*.c;*.cpp</match>

output

The optional output element defines the name of the output file created by the tool. If this element is specified

the the output file will be opened in the editor when the tool has finished execution. The macros $(InputPath)

and $(InputBaseName) can be used to name the output file. For Instance:

<output>$(InputBaseName).txt</output>

commands

The commands element defines the command line to run to invoke the tool. The command line is expanded

using macros applicable to the file derived from the current build configuration and the project settings. Most

importantly, the standard $(InputPath) macro expands to a full pathname for the target file.

Embedded Studio for ARM Reference Manual Appendices

342

Additional macros constructed by SEGGER Embedded Studio are:

$(DEFINES) is the set of -D options applicable to the current file, derived from the current configuration

and project settings.

$(INCLUDES) is the set of -I options applicable to the current file, derived from the current configuration

and project settings.

For instance:

<commands>
 "$(LINTDIR)/lint-nt" -i$(LINTDIR)/lnt "$(LINTDIR)/lnt/co-gcc.lnt"
 $(DEFINES) $(INCLUDES) -D__GNUC__ -u -b +macros -w2 -e537 +fie +ffn -width(0,4) -hF1
 "-format=%f:%l:%C:s%t:s%m" "$(InputPath)"
</commands>

In this example we intend $(LINTDIR) to point to the directly where PC-lint is installed and for $(LINTDIR) to

be defined as a SEGGER Embedded Studio global macro. You can set global macros using Tools > Options >

Building > Global Macros.

Note that additional " entities are placed around pathnames in the commands sectionthis is to ensure

that paths that contain spaces are correctly interpreted when the command is executed by SEGGER Embedded

Studio.

Embedded Studio for ARM Reference Manual Appendices

343

Debugger Type Interpretation file format
SEGGER Embedded Studio debugger type interpretation files are used by the debugger to provide list and string

displays of C++ template container types. The files are structured using XML syntax for its simple construction

and parsing.

Consider the following C++ template type

template <class _Type> class VeryBasicArray
{
private:
 size_t m_Count;
 _Type *m_pData;
public:
 VeryBasicArray(size_t count)
 : m_Count(count)
 , m_pData(new _Type[count])
 {
 }
}

VeryBasicArray<int> basicArray(5);

To display a variable of this type as a list the type interpretation file contains the following entry

<List Name="VeryBasicArray<*>"
 Head="(($(T)*)HEAD).m_pData"
 Data="(*($(T0)*)CURRENT)"
 Length="(($(T)*)HEAD).m_Count"
 Next="CURRENT+sizeof($(T0))"/>

The Name attribute is used to match the template type name note that the < and > xml entities are used to

match the template argument.

When an entry has been matched the head of the list is located by evaluating the debugger expression in the

Head attribute. The debugger expressions can contain macros that refer to the matched template type and will

use the symbols HEAD and CURRENT.

The macro $(T) refers to the instantiated template type, for the above example $(T)=VeryBasicArray<int>.

The template arguments are referred to using macros $(T0), for the above example $(T0)=int.

The symbol HEAD is the address of the variable being displayed, for the above example if the variable

basicArray is allocated at address 0x20004000 then the Head expression

 ((VeryBasicArray<int>*)0x20004000).m_pData

will be evaluated by the debugger, note that the . operator and the -> operator are equivalent in debugger

expressions.

To display an element the debugger will evaluate the Data expression. This expression contains the symbol

CURRENT which is the address of the element to display, for the above example the first element is at the

address basicArray.m_pData which is allocated at address 0x20008000 then the Data expression

Embedded Studio for ARM Reference Manual Appendices

344

 (*(int*)0x20008000)

will be evaluated by the debugger.

To increment the CURRENT symbol the Next expression

 0x20008000+sizeof(int)

will be evaluated by the debugger.

Before the CURRENT symbol is incremented the debugger needs to check if it is at the end of list. The can be

done either as a Condition expression or as a Length expression

 ((VeryBasicArray<int>*)0x20004000).m_Count

The String display is simpler than the List display since the characters are contiguous and optionally null

terminated. The Data and Length expressions are supported, for example

<String Name="string"
 Data="*(($(T) *)HEAD)._M_start_of_storage._M_data"
 Length="(($(T) *)HEAD)._M_finish-(($(T) *)HEAD)._M_start_of_storage._M_data"/>

is used to display STLPort std::string types.

Embedded Studio for ARM Reference Manual Appendices

345

Building Environment Options

Build

Property Description

Automatically Build Before Debug
Environment/Build/Build Before

DebugBoolean

Enables auto-building of a project before downloading
if it is out of date.

Confirm Automatically Build Before Debug
Environment/Build/Show Build Before

DebugBoolean

Enables the display of the auto-building popup.

Confirm Debugger Stop
Environment/Build/Confirm Debugger

StopBoolean

Present a warning when you start to build that requires
the debugger to stop.

Display ETA
Environment/Build/Display ETABoolean

Selects whether to attempt to compute and display
the ETA on building.

Display Progress Bar
Environment/Build/Display Progress

BarBoolean

Selects whether to display progress bar on building.

Echo Build Command Lines
Environment/Build/Show Command

LinesBoolean

Selects whether build command lines are written to
the build log.

Echo Raw Error/Warning Output
Environment/Build/Show Unparsed Error

OutputBoolean

Selects whether the unprocessed error and warning
output from tools is displayed in the build log.

Find Error After Building
Environment/Build/Find Error After

BuildBoolean

Moves the cursor to the first diagnostic after a build
completes with errors.

Global Macros
Environment/Macros/Global MacrosStringList

Build macros that are shared across all solutions and
projects e.g. paths to library files.

Keep Going On Error
Environment/Build/Keep Going On

ErrorBoolean

Build doesn't stop on error.

Save Project File Before Building
Environment/Build/Save Project File On

BuildBoolean

Selects whether to save the project file prior to build.

Show Build Information
Environment/Build/Show Build

InformationBoolean

Show build information.

Embedded Studio for ARM Reference Manual Appendices

346

Build Acceleration

Property Description

Disable Unity Build
Environment/Build/Disable Unity

BuildBoolean

Ignore Unity Build project properties and always build
individual project components.

Parallel Building Threads
Environment/Build/Building

ThreadsIntegerRange

The number of threads to launch when building.

Window

Property Description

Show Build Log On Build
Environment/Show Transcript On

BuildBoolean

Show the build log when a build starts.

Embedded Studio for ARM Reference Manual Appendices

347

Debugging Environment Options

Breakpoint
Property Description

Disassembly Breakpoints
Environment/Debugger/Disassembly

BreakpointsBoolean

What to do with disassembly breakpoints on debug
stop/start.

Focus On Breakpoint
Environment/Debugger/Focus On

BreakpointBoolean

Focus IDE when breakpoint is hit.

Display
Property Description

Close Disassembly On Mode Switch
Environment/Debugger/Close Disassembly On

Mode SwitchBoolean

Close Disassembly On Mode Switch.

Data Tips Display a Maximum Of
Environment/Debugger/Maximum Array

Elements DisplayedIntegerRange

Selects the maximum number of array elements
displayed in a data tip.

Default Display Mode
Environment/Debugger/Default Variable

Display ModeEnumeration

Selects the format that data values are shown in.

Display Floating Point Number In
Environment/Debugger/Floating Point

Format DisplayCustom

The printf format directive used to display floating
point numbers.

Maximum Backtrace Calls
Environment/Debugger/Maximum Backtrace

CallsIntegerRange

Selects the maximum number of calls when
backtracing.

Prompt To Display If More Than
Environment/Debugger/Array Elements

Prompt SizeIntegerRange

The array size to display with prompt.

Show Data Tips In Text Editor
Environment/Debugger/Show Data TipsBoolean

Show Data Tips In Text Editor.

Show ELF Header
ElfDwarf/Environment/Show ELF

HeaderBoolean

Display ELF Headers when executable and object files
are displayed in text editor.

Show Folds In Disassembly
Environment/Debugger/Disassembly Show

FoldsBoolean

Show Folds In Disassembly.

Embedded Studio for ARM Reference Manual Appendices

348

Show Labels In Disassembly
Environment/Debugger/Disassembly Show

LabelsBoolean

Show Labels In Disassembly.

Show Source In Disassembly
Environment/Debugger/Disassembly Show

SourceBoolean

Show Source In Disassembly.

Show char * as null terminated string
Environment/Debugger/Display Char Ptr As

StringBoolean

Show char * as null terminated string.

Source Path
Environment/Debugger/Source PathStringList

Global search path to find source files.

Use objdump For File Disassembly
ElfDwarf/Environment/Use Objdump For

DisassemblyBoolean

Specifies whether to use objdump to disassemble files
rather than the built-in disassembler.

Extended Data Tips

Property Description

ASCII
Environment/Debugger/Extended Tooltip

Display Mode/ASCIIBoolean

Display ASCII extended data tips.

Binary
Environment/Debugger/Extended Tooltip

Display Mode/BinaryBoolean

Display Binary extended data tips.

Decimal
Environment/Debugger/Extended Tooltip

Display Mode/DecimalBoolean

Display Decimal extended data tips.

Hexadecimal
Environment/Debugger/Extended Tooltip

Display Mode/HexadecimalBoolean

Display Hexadecimal extended data tips.

Octal
Environment/Debugger/Extended Tooltip

Display Mode/OctalBoolean

Display Octal extended data tips.

Unsigned Decimal
Environment/Debugger/Extended Tooltip

Display Mode/Unsigned DecimalBoolean

Display Unsigned Decimal extended data tips.

Ozone

Property Description

Embedded Studio for ARM Reference Manual Appendices

349

Ozone Executable
ARM/Debugger/Ozone ExecutableFileName

The path to the Ozone executable.

Target

Property Description

Switch Project To Text Editor
Environment/Debugger/Switch ProjectBoolean

Switch Project To Text Editor.

Window

Property Description

Clear Debug Terminal On Run
Environment/Clear Debug Terminal On

RunBoolean

Clear the debug terminal automatically when a
program is run.

Hide Output Window On Successful Load
Debugging/Hide Transcript On Successful

LoadBoolean

Hide the Output window when a load completes
without error.

Show Target Log On Load
Debugging/Show Transcript On LoadBoolean

Show the target log when a load starts.

Embedded Studio for ARM Reference Manual Appendices

350

IDE Environment Options

Browser

Property Description

Text Size
Environment/Browser/Text SizeEnumeration

Sets the text size of the integrated HTML and help
browser.

Underline Hyperlinks In Browser
Environment/Browser/Underline Web

LinksBoolean

Enables underlining of hypertext links in the
integrated HTML and help browser.

File Extension

Property Description

ELF Archive File Extensions
ElfDwarf/Environment/Archive File

ExtensionsStringList

The file extensions used for ELF archive files.

ELF Executable File Extensions
ElfDwarf/Environment/Executable File

ExtensionsStringList

The file extensions used for ELF executable files.

ELF Object File Extensions
ElfDwarf/Environment/Object File

ExtensionsStringList

The file extensions used for ELF object files.

File Search

Property Description

Collapse Search Results
Find In Files/Collapse ResultsBoolean

Whether to initially collapse search results.

Files To Exclude
Find In Files/Exclude File TypesStringList

The wildcard used to exclude files in Find In Files
searches.

Files To Search
Find In Files/File TypeStringList

The wildcard used to match files in Find In Files
searches.

Find History
Find In Files/Find HistoryStringList

The list of strings recently used in searches.

Flat Search Result Output
Find In Files/Flat OutputBoolean

Whether to display file search results as a flat list.

Embedded Studio for ARM Reference Manual Appendices

351

Folder History
Find In Files/Folder HistoryStringList

The set of folders recently used in file searches.

Match Case
Find In Files/Match CaseBoolean

Whether the case of letters must match exactly when
searching.

Match Whole Word
Find In Files/Match Whole WordBoolean

Whether the whole word must match when searching.

Replace History
Find In Files/Replace HistoryStringList

The list of strings recently used in searches.

Search Dependencies
Find In Files/Search DependenciesBoolean

Controls searching of dependent files."

Search In
Find In Files/ContextEnumeration

Where to look to find files.

Use Regular Expressions
Find In Files/Use RegExpBoolean

Whether to use a regular expression or plain text
search.

Find And Replace
Property Description

Greedy Regular Expressions
Find/Greedy RegExpBoolean

Enables greedy matching when using regular
expressions.

Internet
Property Description

Automatically Check For Packages
Environment/Internet/Check PackagesBoolean

Specifies whether to enable downloading of the list of
available packages.

Automatically Check For Updates
Environment/Internet/Check UpdatesBoolean

Specifies whether to check for software updates.

Check For Latest News
Environment/Internet/RSS UpdateBoolean

Specifies whether to update the latest news window.

Enable Connection Debugging
Environment/Internet/Enable

DebuggingBoolean

Controls debugging traces of internet connections and
downloads.

External Web Browser
Environment/External Web BrowserFileName

The path to the external web browser to use when
accessing non-local files.

HTTP Caching
Environment/Internet/HTTP CachingBoolean

Specifies if caching should be permitted when carrying
out HTTP requests.

HTTP Proxy Host
Environment/Internet/HTTP Proxy

ServerString

Specifies the IP address or hostname of the HTTP proxy
server. If empty, no HTTP proxy server will be used.

Embedded Studio for ARM Reference Manual Appendices

352

HTTP Proxy Port
Environment/Internet/HTTP Proxy

PortIntegerRange

Specifies the HTTP proxy server's port number.

Maximum Download History Items
Environment/Internet/Max Download History

ItemsIntegerRange

The maximum amount of download history kept in the
downloads window.

Launcher
Property Description

Confirm Check Solution Target
Environment/Launcher/Confirm Check

Solution TargetBoolean

Specifies whether the SEGGER Embedded Studio
launcher should present a warning if the solution
being launched targets a device it does not support.

Launch Latest Installations Only
Environment/Launcher Use Latest

Installations OnlyBoolean

Specifies whether the SEGGER Embedded Studio
launcher should only consider the latest installations
when deciding which one to use.

Launcher Enabled
Environment/Launcher EnabledBoolean

Specifies whether the SEGGER Embedded Studio
launcher should be used when the operating system
or an external application requests a file to be opened.

Licensing
Property Description

Check J-Link For Licenses
Environment/Check J-Link LicensesBoolean

Specifies whether to check J-Link's for licenses.

Package Manager
Property Description

Check Solution Package Dependencies
Environment/Package/Check Solution

Package DependenciesBoolean

Specifies whether to check package dependencies
when a solution is loaded.

Delete Package Downloads
Environment/Package/Delete

DownloadsBoolean

Specifies whether to delete downloaded package files
after they have been installed.

Install Default Packages
Environment/Package/Install Default

PackagesBoolean

Specifies whether default packages should be installed
on startup if they are not installed already.

Package Directory
Environment/Package/Destination

DirectoryString

Specifies the directory packages are installed to.

Embedded Studio for ARM Reference Manual Appendices

353

Parallel Download And Install
Environment/Package/Parallel Download And

InstallBoolean

Specifies whether the package manager should
download and install packages in parallel.

Show Check For Packages Dialog
Environment/Package/Show Check For

Packages DialogBoolean

Specifies whether the package manager should
prompt for a package list refresh.

Show Logos
Environment/Package/Show LogosEnumeration

Specifies whether the package manager should display
company logos.

Verify Package Downloads
Environment/Package/Verify

DownloadsBoolean

Specifies whether to carry out an MD5 sum check on
downloaded package files.

Print

Property Description

Bottom Margin
Environment/Printing/Bottom

MarginIntegerRange

The page's bottom margin in millimetres.

Left Margin
Environment/Printing/Left MarginIntegerRange

The page's left margin in millimetres.

Page Orientation
Environment/Printing/OrientationEnumeration

The page's orientation.

Page Size
Environment/Printing/Page SizeEnumeration

The page's size.

Right Margin
Environment/Printing/Right

MarginIntegerRange

The page's right margin in millimetres.

Top Margin
Environment/Printing/Top MarginIntegerRange

The page's top margin in millimetres.

Startup

Property Description

Allow Multiple SEGGER Embedded Studios
Environment/Permit Multiple Studio

InstancesBoolean

Allow more than one SEGGER Embedded Studio to run
at the same time.

Load Last Project On Startup
Environment/Load Last Project On

StartupBoolean

Specifies whether to load the last project the next time
SEGGER Embedded Studio runs.

Embedded Studio for ARM Reference Manual Appendices

354

New Project Directory
Environment/General/Solution

DirectoryString

The directory where projects are created.

Show Support Expired Dialog
Environment/Support Reminder NagBoolean

Specifies whether to show the support expired dialog.

Sort Project File On Save
Environment/Sort Project FileBoolean

The project file is sorted when it is saved.

Splash Screen
Environment/Splash ScreenEnumeration

How to display the splash screen on startup.

Status Bar

Property Description

(Visible)
Environment/Status BarBoolean

Show or hide the status bar.

Show Build Status Pane
Environment/General/Status Bar/Show Build

StatusBoolean

Show or hide the Build pane in the status bar.

Show Caret Position Pane
Environment/General/Status Bar/Show Caret

PosBoolean

Show or hide the Caret Position pane in the status bar.

Show Insert/Overwrite Status Pane
Environment/General/Status Bar/Show

Insert ModeBoolean

Show or hide the Insert/Overwrite pane in the status
bar.

Show Read-Only Status Pane
Environment/General/Status Bar/Show Read

OnlyBoolean

Show or hide the Read Only pane in the status bar.

Show Size Grip
Environment/General/Status Bar/Show Size

GripBoolean

Show or hide the status bar size grip.

Show Target Pane
Environment/General/Status Bar/Show

TargetBoolean

Show or hide the Target pane in the status bar.

Show Time Pane
Environment/General/Status Bar/Show

TimeBoolean

Show or hide the Time pane in the status bar.

Title Bar

Property Description

Embedded Studio for ARM Reference Manual Appendices

355

Show Full Solution Path
Environment/General/Title Bar/Show Full

Solution PathBoolean

Show the full solution path in title bar.

User Interface

Property Description

Application Main Font
Environment/Application Main FontFont

The font to use for the user interface as a whole.

Application Monospace Font
Environment/Application Monospace

FontFixedPitchFont

The fixed-size font to use for the user interface as a
whole.

Error Display Timeout
Environment/Error Display

TimeoutIntegerRange

The minimum time, in seconds, that errors are shown
for in the status bar.

Errors Are Displayed
Environment/Error Display ModeEnumeration

How errors are reported in SEGGER Embedded Studio.

File Size Display Units
Environment/Size Display UnitEnumeration

How to display sizes of items in the user interface. SI
defines 1kB=1000 bytes, IEC defines 1kiB=1024 bytes,
Alternate SI defines 1kB=1024 bytes.

Number File Names in Menus
Environment/Number MenusBoolean

Number the first nine file names in menus for quick
keyboard access.

Qt Style Sheet
Environment/Qt Style SheetFileName

The Qt style sheet to use in order to customize the user
interface (experimental).

Show Large Icons In Toolbars
Environment/General/Large IconsEnumeration

Show large or small icons on toolbars.

Show Ribbon
Environment/General/Ribbon/ShowBoolean

Show or hide the ribbon.

Show Window Selector On Ctrl+Tab
Environment/Show SelectorBoolean

Present the Window Selector on Next Window and
Previous Window commands activated from the
keyboard.

Theme
Environment/Studio ThemeEnumeration

The user interface style and color theme to use.

Window Menu Contains At Most
Environment/Max Window Menu

ItemsIntegerRange

The maximum number of windows appearing in the
Windows menu.

Embedded Studio for ARM Reference Manual Appendices

356

Programming Language Environment Options

Assembly Language

Property Description

Column Guide Columns
Text Editor/Indent/Assembly Language/

Column GuidesString

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Assembly Language/

Close BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Assembly Language/

Context LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Assembly Language/

Indent ModeEnumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/Assembly Language/Open

BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Assembly Language/

SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Assembly Language/Tab

SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Assembly Language/Use

TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Assembly Language/

KeywordsStringList

Additional identifiers to highlight as keywords.

C and C++

Property Description

Column Guide Columns
Text Editor/Indent/C and C++/Column

GuidesString

The columns that guides are drawn for.

Embedded Studio for ARM Reference Manual Appendices

357

Indent Closing Brace
Text Editor/Indent/C and C++/Close

BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/C and C++/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/C and C++/Indent

ModeEnumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/C and C++/Open

BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/C and C++/

SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/C and C++/Tab

SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/C and C++/Use

TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/C and C++/

KeywordsStringList

Additional identifiers to highlight as keywords.

Default

Property Description

Column Guide Columns
Text Editor/Indent/Default/Column

GuidesString

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Default/Close

BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Default/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Default/Indent

ModeEnumeration

How to indent when a new line is inserted.

Embedded Studio for ARM Reference Manual Appendices

358

Indent Opening Brace
Text Editor/Indent/Default/Open

BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Default/SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Default/Tab

SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Default/Use TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Default/

KeywordsStringList

Additional identifiers to highlight as keywords.

Java
Property Description

Column Guide Columns
Text Editor/Indent/Java/Column GuidesString

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Java/Close BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Java/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Java/Indent

ModeEnumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/Java/Open BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Java/SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Java/Tab SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Java/Use TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Java/KeywordsStringList

Additional identifiers to highlight as keywords.

XML
Property Description

Embedded Studio for ARM Reference Manual Appendices

359

Column Guide Columns
Text Editor/Indent/XML/Column GuidesString

The columns that guides are drawn for.

Indent Context
Text Editor/Indent/XML/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/XML/Indent

ModeEnumeration

How to indent when a new line is inserted.

Indent Size
Text Editor/Indent/XML/SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/XML/Tab SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/XML/Use TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/XML/KeywordsStringList

Additional identifiers to highlight as keywords.

Embedded Studio for ARM Reference Manual Appendices

360

Source Control Environment Options

External Tools

Property Description

Diff Command Line
Environment/Source Code Control/

DiffCommandStringList

The diff command line.

Merge Command Line
Environment/Source Code Control/

MergeCommandStringList

The merge command line.

Preference

Property Description

Add Immediately
Environment/Source Code Control/Immediate

AddBoolean

Bypasses the confirmation dialog and immediately
adds items to source control.

Commit Immediately
Environment/Source Code Control/Immediate

CommitBoolean

Bypasses the confirmation dialog and immediately
commits items.

Get Immediately
Environment/Source Code Control/Immediate

GetBoolean

Bypasses the confirmation dialog and immediately
gets items from source control.

Lock Immediately
Environment/Source Code Control/Immediate

LockBoolean

Bypasses the confirmation dialog and immediately
locks items.

Remove Immediately
Environment/Source Code Control/Immediate

RemoveBoolean

Bypasses the confirmation dialog and immediately
removes items from source control.

Resolved Immediately
Environment/Source Code Control/Immediate

ResolvedBoolean

Bypasses the confirmation dialog and immediately
mark items resolved.

Revert Immediately
Environment/Source Code Control/Immediate

RevertBoolean

Bypasses the confirmation dialog and immediately
revert items.

Unlock Immediately
Environment/Source Code Control/Immediate

UnlockBoolean

Bypasses the confirmation dialog and immediately
unlocks items.

Embedded Studio for ARM Reference Manual Appendices

361

Update Immediately
Environment/Source Code Control/Immediate

UpdateBoolean

Bypasses the confirmation dialog and immediately
updates items.

Embedded Studio for ARM Reference Manual Appendices

362

Text Editor Environment Options

Auto Recovery
Property Description

Auto Recovery Backup Time
Text Editor/Auto Recovery Backup

TimeIntegerRange

The time in minutes between saving of auto recovery
backups files or 0 to disable generation of backup files.

Auto Recovery Keep Time
Text Editor/Auto Recovery Keep

TimeIntegerRange

The time in days to keep unrecovered backup files or 0
to disable deletion of unrecovered backup files.

Cursor Fence
Property Description

Bottom Margin
Text Editor/Margins/BottomIntegerRange

The number of lines in the bottom margin.

Keep Cursor Within Fence
Text Editor/Margins/EnabledBoolean

Enable margins to fence and scroll around the cursor.

Left Margin
Text Editor/Margins/LeftIntegerRange

The number of characters in the left margin.

Right Margin
Text Editor/Margins/RightIntegerRange

The number of characters in the right margin.

Top Margin
Text Editor/Margins/TopIntegerRange

The number of lines in the right margin.

Editing
Property Description

Allow Drag and Drop Editing
Text Editor/Drag Drop EditingBoolean

Enables dragging and dropping of selections in the
text editor.

Bold Popup Diagnostic Messages
Text Editor/Bold Popup DiagnosticsBoolean

Displays popup diagnostic messages in bold for easier
reading.

Column-mode Tab
Text Editor/Column Mode TabBoolean

Tab key moves to the next textual column using the
line above.

Confirm Modified File Reload
Text Editor/Confirm Modified File

ReloadBoolean

Display a confirmation prompt before reloading a file
that has been modified on disk.

Embedded Studio for ARM Reference Manual Appendices

363

Copy Action When Nothing Selected
Text Editor/Copy ActionEnumeration

What Copy copies when nothing is selected.

Cut Action When Nothing Selected
Text Editor/Cut ActionEnumeration

What Cut cuts when nothing is selected.

Cut Single Blank Line
Text Editor/Cut Blank LinesBoolean

Selects whether to place text on the clipboard when
a single blank line is cut. When set to Yes, cutting
a single blank line will put the blank line on the
clipboard. When set to No, cutting a single blank line
deletes the line and does not place it on the clipboard.

Diagnostic Cycle Mode
Text Editor/Diagnostic Cycle

ModeEnumeration

Iterates through diagnostics either from most severe
to least severe or in reported order.

Edit Read-Only Files
Text Editor/Edit Read OnlyBoolean

Allow editing of read-only files.

Enable Virtual Space
Text Editor/Enable Virtual SpaceBoolean

Permit the cursor to move into locations that do not
currently contain text.

Numeric Keypad Editing
Text Editor/Numeric Keypad EnabledBoolean

Selects whether the numeric keypad plus and minus
buttons copy and cut text.

Tab Key Indents Preprocessor Directives
Text Editor/Tab Key Indents Preprocessor

DirectivesBoolean

Enables or disables the indentation of C preprocessor
directives when using tab key indentation on a
selection.

Undo And Redo Behavior
Text Editor/Undo ModeEnumeration

How Undo and Redo group your typing when it is
undone and redone.

Find And Replace
Property Description

Case Sensitive Matching
Text Editor/Find/Match CaseBoolean

Enables or disables the case sensitivity of letters when
searching.

Find History
Text Editor/Find/HistoryStringList

The list of strings recently used in searches.

Regular Expression Matching
Text Editor/Find/Use RegExpBoolean

Enables regular expression matching rather than plain
text matching.

Replace History
Text Editor/Replace/HistoryStringList

The list of strings recently used in replaces.

Whole Word Matching
Text Editor/Find/Match Whole WordBoolean

Enables or disables whole word matching when
searching.

Formatting
Property Description

Embedded Studio for ARM Reference Manual Appendices

364

Access Modifier Offset
Text Editor/Formatting/

AccessModifierOffsetInteger

The extra indent or outdent of access modifiers, e.g.
public:.

Additional Formatting Styles
Text Editor/Additional Formatting

StylesStringList

Additional styles to pass to clang-format.

Align After Open Bracket
Text Editor/Formatting/

AlignAfterOpenBracketBoolean

If enabled, horizontally aligns arguments after an open
bracket.

Align Consecutive Assignments
Text Editor/Formatting/

AlignConsecutiveAssignmentsBoolean

If enabled, aligns consecutive assignments.

Align Consecutive Declarations
Text Editor/Formatting/

AlignConsecutiveDeclarationsBoolean

If enabled, aligns consecutive declarations.

Align Escaped Newlines Left
Text Editor/Formatting/

AlignEscapedNewlinesLeftBoolean

If enabled, aligns escaped newlines as far left as
possible otherwise puts them into the right-most
column.

Align Operands
Text Editor/Formatting/

AlignOperandsBoolean

If enabled, horizontally align operands of binary and
ternary expressions.

Align Trailing Comments
Text Editor/Formatting/

AlignTrailingCommentsBoolean

If enabled, aligns trailing comments.

Allow All Parameters Of Declaration On Next Line
Text Editor/Formatting/

AllowAllParametersOfDeclarationOnNextLineBoolean

Allow putting all parameters of a function declaration
onto the next line even if Bin-pack Parameters is
disabled.

Allow Short 'if' Statements On A Single Line
Text Editor/Formatting/

AllowShortIfStatementsOnASingleLineBoolean

If enabled, short 'if' statements are put on a single line.

Allow Short Blocks On A Single Line
Text Editor/Formatting/

AllowShortBlocksOnASingleLineBoolean

If enabled, allows contracting simple braced
statements to a single line.

Allow Short Case Labels On A Single Line
Text Editor/Formatting/

AllowShortCaseLabelsOnASingleLineBoolean

If enabled, short case labels will be contracted to a
single line.

Allow Short Functions On A Single Line
Text Editor/Formatting/

AllowShortFunctionsOnASingleLineEnumeration

Optionally compress small functions to a single line.

Allow Short Loop Statements On A Single Line
Text Editor/Formatting/

AllowShortLoopsOnASingleLineBoolean

If enabled, short loop statements are put on a single
line.

Embedded Studio for ARM Reference Manual Appendices

365

Always Break After Return Type
Text Editor/Formatting/

AlwaysBreakAfterReturnTypeEnumeration

The function declaration return type breaking style to
use.

Always Break Before Multiline Strings
Text Editor/Formatting/

AlwaysBreakBeforeMultilineStringsBoolean

If enabled, always break before multiline strings.

Always Break Template Declarations
Text Editor/Formatting/

AlwaysBreakTemplateDeclarationsBoolean

If enabled, always break after the 'template<...>' of a
template declaration.

Bin-Pack Arguments
Text Editor/Formatting/

BinPackArgumentsBoolean

If disabled, a function call?s arguments will either be all
on the same line or will have one line each.

Bin-Pack Parameters
Text Editor/Formatting/

BinPackParametersBoolean

If disabled, a function call's or function definition's
parameters will either all be on the same line or will
have one line each.

Break Before Binary Operators
Text Editor/Formatting/

BreakBeforeBinaryOperatorsBoolean

The way to wrap binary operators.

Break Before Braces
Text Editor/Formatting/

BreakBeforeBracesEnumeration

The brace breaking style to use.

Break Before Inheritance Comma
Text Editor/Formatting/

BreakBeforeInheritanceCommaBoolean

If enabled, the class inheritance expression will break
before : and , if there is multiple inheritance.

Break Before Ternary Operators
Text Editor/Formatting/

BreakBeforeTernaryOperatorsBoolean

If enabled, ternary operators will be placed after line
breaks.

Break Constructor Initializers Before Comma
Text Editor/Formatting/

BreakConstructorInitializersBeforeCommaBoolean

If enabled, always break constructor initializers before
commas and align the commas with the colon.

Break String Literals
Text Editor/Formatting/

BreakStringLiteralsBoolean

Allow breaking string literals when formatting.

C++11 Braced List Style
Text Editor/Formatting/

Cpp11BracedListStyleBoolean

If enabled, format braced lists as best suited for C++11
braced lists.

Column Limit
Text Editor/Formatting/ColumnLimitInteger

The column limit which limits the width of formatted
lines.

Comment Pragmas
Text Editor/Formatting/CommentPragmasString

A regular expression that describes comments with
special meaning, which should not be split into lines or
otherwise changed.

Embedded Studio for ARM Reference Manual Appendices

366

Compact Namespaces
Text Editor/Formatting/

CompactNamespacesBoolean

If enabled, consecutive namespace declarations will
be on the same line. If disabled, each namespace is
declared on a new line.

Constructor Initializer All On One Line Or One Per Line
Text Editor/Formatting/

ConstructorInitializerAllOnOneLineOrOnePerLineBoolean

If enabled and the constructor initializers don't fit on a
line, put each initializer on its own line.

Constructor Initializer Indent Width
Text Editor/Formatting/

ConstructorInitializerIndentWidthInteger

The number of characters to use for indentation of
constructor initializer lists.

Continuation Indent Width
Text Editor/Formatting/

ContinuationIndentWidthInteger

Indent width for line continuations.

Derive Pointer Alignment
Text Editor/Formatting/

DerivePointerAlignmentBoolean

If enabled, analyze the formatted file for the most
common alignment of address of and dereference.
PointerAlignment is then used only as fallback.

Empty Lines At End Of File
Text Editor/Extra Formatting/

LinesAtEOFIntegerRange

The number of lines to add at the end of the file.

Fix Namespace Comments
Text Editor/Formatting/

FixNamespaceCommentsBoolean

If enabled, add missing namespace end comments and
fix invalid existing ones.

For-Each Macros
Text Editor/Formatting/

ForEachMacrosStringList

A list of macros that should be interpreted as foreach
loops rather than function calls.

Formatting Indent Width
Text Editor/Formatting/IndentWidthInteger

The number of columns the code formatter uses for
indentation. Note that this is not the indent width
used by the text editor, that value is specified in the
'Languages' environment option group.

Formatting Style
Text Editor/FormattingStyleEnumeration

Select a set of formatting options based on a named
standard.

Formatting Tab Width
Text Editor/Formatting/TabWidthIntegerRange

The number of columns the code formatter uses
for tab stops. Note that this is not the tab width
used by the text editor, that value is specified in the
'Languages' environment option group.

Include Is Main Regex
Text Editor/Formatting/

IncludeIsMainRegexString

Specify a regular expression of suffixes that are
allowed in the file-to-main-include mapping.

Indent Case Labels
Text Editor/Formatting/

IndentCaseLabelsBoolean

If enabled, indent case labels one level from the switch
statement.

Indent Wrapped Function Names
Text Editor/Formatting/

IndentWrappedFunctionNamesBoolean

If enabled, Indent if a function definition or declaration
is wrapped after the type.

Embedded Studio for ARM Reference Manual Appendices

367

Keep Empty Lines At The Start Of Blocks
Text Editor/Formatting/

KeepEmptyLinesAtTheStartOfBlocksBoolean

If enabled, empty lines at the start of blocks are kept.

Macro Block Begin
Text Editor/Formatting/

MacroBlockBeginString

A regular expression matching macros that start a
block.

Macro Block End
Text Editor/Formatting/MacroBlockEndString

A regular expression matching macros that end a
block.

Maximum Empty Lines To Keep
Text Editor/Formatting/

MaxEmptyLinesToKeepInteger

The maximum number of consecutive empty lines to
keep.

Namespace Indentation
Text Editor/Formatting/

NamespaceIndentationEnumeration

The indentation used for namespaces.

Penalty Break Assignment
Text Editor/Formatting/

PenaltyBreakAssignmentIntegerRange

The penalty for breaking around an assignment
operator.

Penalty Break Before First Call Parameter
Text Editor/Formatting/

PenaltyBreakBeforeFirstCallParameterIntegerRange

The penalty for breaking a function call after 'call('.

Penalty Break Before First Less-Less
Text Editor/Formatting/

PenaltyBreakFirstLessLessIntegerRange

The penalty for breaking before the first less-less.

Penalty Break Comment
Text Editor/Formatting/

PenaltyBreakCommentIntegerRange

The penalty for each line break introduced inside a
comment.

Penalty Break String
Text Editor/Formatting/

PenaltyBreakStringIntegerRange

The penalty for each line break introduced inside a
string literal.

Penalty Excess Character
Text Editor/Formatting/

PenaltyExcessCharacterIntegerRange

The penalty for each character outside of the column
limit.

Penalty Return Type On Its Own Line
Text Editor/Formatting/

PenaltyReturnTypeOnItsOwnLineIntegerRange

Penalty for putting the return type of a function onto
its own line.

Pointer Alignment
Text Editor/Formatting/

PointerAlignmentEnumeration

Pointer and reference alignment style.

Reflow Comments
Text Editor/Formatting/

ReflowCommentsBoolean

If enabled, clang-format will attempt to re-flow
comments.

Sort Includes
Text Editor/Formatting/SortIncludesBoolean

If enabled, sort #includes.

Embedded Studio for ARM Reference Manual Appendices

368

Sort Using Declarations
Text Editor/Formatting/

SortUsingDeclarationsBoolean

If enabled, sort using declarations.

Space After C Style Cast
Text Editor/Formatting/

SpaceAfterCStyleCastBoolean

If enabled, a space may be inserted after C style casts.

Space After Template Keyword
Text Editor/Formatting/

SpaceAfterTemplateKeywordBoolean

If enabled, a space will be inserted after the ?template?
keyword.

Space Before Assignment Operators
Text Editor/Formatting/

SpaceBeforeAssignmentOperatorsBoolean

If disabled spaces will be removed before assignment
operators.

Space Before Parentheses
Text Editor/Formatting/

SpaceBeforeParensEnumeration

Defines in which cases to put a space before opening
parentheses.

Space In Empty Parentheses
Text Editor/Formatting/

SpaceInEmptyParenthesesBoolean

If enabled, spaces may be inserted into '()'.

Spaces Before Trailing Comments
Text Editor/Formatting/

SpacesBeforeTrailingCommentsIntegerRange

The number of spaces before trailing line comments.

Spaces In Angles
Text Editor/Formatting/

SpacesInAnglesBoolean

If enabled, spaces will be inserted around the angle
brackets in template argument lists.

Spaces In C-style Cast Parentheses
Text Editor/Formatting/

SpacesInCStyleCastParenthesesBoolean

If enabled, spaces may be inserted into C style casts.

Spaces In Container Literals
Text Editor/Formatting/

SpacesInContainerLiteralsBoolean

If enabled, spaces are inserted inside container literals.

Spaces In Parentheses
Text Editor/Formatting/

SpacesInParenthesesBoolean

If true, spaces will be inserted after '(' and before ')'.

Spaces In Square Brackets
Text Editor/Formatting/

SpacesInSquareBracketsBoolean

If true, spaces will be inserted after '[' and before ']'.

Standard
Text Editor/Formatting/StandardEnumeration

Format compatible with this standard

Tab Style
Text Editor/Formatting/UseTabEnumeration

The way to use hard tab characters in the resulting file.

Embedded Studio for ARM Reference Manual Appendices

369

Use .clang-format File
Text Editor/Use .clang-format FileBoolean

Load code formatting style configuration from
a .clang-format file located in one of the parent
directories of the source file rather than use the
formatting options.

International
Property Description

Auto-Detect UTF-8
Text Editor/Auto-Detect UTF-8Boolean

Auto-detect UTF-8 encoding without signature.

Default Text File Encoding
Text Editor/Default CodecEnumeration

The encoding to use if not overridden by a project
property or file is not in a known format.

Verify Text File Decoding
Text Editor/Verify DecodeBoolean

Specifies whether the decoding of a text file should be
verified when file is loaded.

Mouse
Property Description

Alt+Left Click Action
Environment/Project Explorer/Alt+Left

Click ActionEnumeration

The action the editor performs on Alt+Left Click.

Alt+Middle Click Action
Environment/Project Explorer/Alt+Middle

Click ActionEnumeration

The action the editor performs on Alt+Middle Click.

Alt+Right Click Action
Environment/Project Explorer/Alt+Right

Click ActionEnumeration

The action the editor performs on Alt+Right Click.

Copy On Mouse Select
Text Editor/Copy On Mouse SelectBoolean

Automatically copy text to clipboard when marking a
selection with the mouse.

Ctrl+Left Click Action
Environment/Project Explorer/Ctrl+Left

Click ActionEnumeration

The action the editor performs on Ctrl+Left Click.

Ctrl+Middle Click Action
Environment/Project Explorer/Ctrl+Middle

Click ActionEnumeration

The action the editor performs on Ctrl+Middle Click.

Ctrl+Right Click Action
Environment/Project Explorer/Ctrl+Right

Click ActionEnumeration

The action the editor performs on Ctrl+Right Click.

Middle Click Action
Environment/Project Explorer/Middle Click

ActionEnumeration

The action the editor performs on Middle Click.

Embedded Studio for ARM Reference Manual Appendices

370

Mouse Wheel Adjusts Font Size
Text Editor/Mouse Wheel Adjusts Font

SizeBoolean

Enable or disable resizing of font by mouse wheel
when CTRL key pressed.

Shift+Middle Click Action
Environment/Project Explorer/Shift+Middle

Click ActionEnumeration

The action the editor performs on Shift+Middle Click.

Shift+Right Click Action
Environment/Project Explorer/Shift+Right

Click ActionEnumeration

The action the editor performs on Shift+Right Click.

Programmer Assistance
Property Description

ATTENTION Tag List
Text Editor/ATTENTION TagsStringList

Set the tags to display as ATTENTION comments.

Ask For Index
Text Editor/Ask For IndexBoolean

Ask to index the project if goto symbol fails in current
editor context.

Auto-Comment Text
Text Editor/Auto CommentBoolean

Enable or disable automatically swapping
commenting on source lines by typing '/' with an
active selection.

Auto-Surround Text
Text Editor/Auto SurroundBoolean

Enable or disable automatically surrounding selected
text when typing triangular brackets, quotation marks,
parentheses, brackets, or braces.

Check Spelling
Text Editor/Spell CheckingBoolean

Enable spell checking in comments.

Code Completion Replaces Existing Word
Text Editor/Completion Replaces Existing

WordBoolean

Replace existing word with completion suggestion if
cursor is located on one.

Code Completion Suggestion Selection Key
Text Editor/Suggestion Selection

KeyEnumeration

The key used to select a code completion suggestion.

Display Code Completion Suggestions While Typing
Text Editor/Suggest Completion While

TypingBoolean

Enable code completion as you type without needing
to use the show suggestions key (Ctrl+J).

Enable Popup Diagnostics
Text Editor/Enable Popup

DiagnosticsBoolean

Enables on-screen diagnostics in the text editor.

FIXME Tag List
Text Editor/FIXME TagsStringList

Set the tags to display as FIXME comments.

Inactive Code Opacity
Text Editor/Inactive Code

OpacityIntegerRange

Specifies the opacity of code that has been
conditionally excluded by the preprocessor.

Embedded Studio for ARM Reference Manual Appendices

371

Include Preprocessor Definitions in Suggestions
Text Editor/Preprocessor Definition

SuggestionsBoolean

Include or exclude preprocessor definitions in code
completion suggestions.

Include Templates in Suggestions
Text Editor/Template SuggestionsBoolean

Include or exclude templates in code completion
suggestions.

Lint Tag List
Text Editor/LINT TagsStringList

Set the tags to display as Lint directives.

Show Inactive Code
Text Editor/Show Inactive CodeBoolean

Show code that has been conditionally excluded by
the preprocessor.

Show Symbol Declaration Tooltips
Text Editor/Show TooltipBoolean

Show tooltips when hovering over symbols.

Template Characters To Match
Text Editor/Template Suggestions

CharactersIntegerRange

The number of characters to match before suggesting
a template.

Save
Property Description

Backup File History Depth
Text Editor/Backup File DepthIntegerRange

The number of backup files to keep when saving an
existing file.

Default Line Endings
Text Editor/Default Line EndingsEnumeration

The line ending format to use for a new file or a file
where the existing line ending format cannot be
determined.

Delete Trailing Space On Save
Text Editor/Delete Trailing Space On

SaveBoolean

Deletes trailing whitespace from each line when a file
is saved.

Format On Save
Text Editor/Format On SaveEnumeration

Formats text when a file is saved.

Tab Cleanup On Save
Text Editor/Cleanup Tabs On SaveEnumeration

Cleans up tabs when a file is saved.

Visual Appearance
Property Description

Fold Comments
Text Editor/Fold CommentsBoolean

Allow multiline comments to be collapsed.

Fold Preprocessor Directives
Text Editor/Fold Preprocessor

DirectivesBoolean

Allow preprocessor directives to be collapsed.

Font
Text Editor/FontFixedPitchFont

The font to use for text editors.

Embedded Studio for ARM Reference Manual Appendices

372

Font Rendering
Text Editor/Font RenderingEnumeration

The font rendering scheme to use in text editors.

Font Smoothing Threshold
Text Editor/Antialias ThresholdIntegerRange

The minimum size for font smoothing: font sizes
smaller than this will have antialiasing turned off.

Hide Cursor When Typing
Text Editor/Hide Cursor When TypingBoolean

Hide or show the I-beam cursor when you start to type.

Highlight All Selected Text
Text Editor/Highlight All Selected

TextBoolean

Enable or disable visually highlighting all text that
matches the current selection.

Highlight Cursor Line
Text Editor/Highlight Cursor LineBoolean

Enable or disable visually highlighting the cursor line.

Horizontal Scroll Bar
Text Editor/HScroll BarEnumeration

Show or hide the horizontal scroll bar.

Insert Caret Style
Text Editor/Insert Caret StyleEnumeration

How the caret is displayed with the editor in insert
mode.

Line Numbers
Text Editor/Line Number ModeEnumeration

How often line numbers are displayed in the margin.

Mate Match Off Screen
Text Editor/Mate Match Off ScreenBoolean

Specifies whether braces, brackets, and parentheses
are matched when off screen.

Mate Matching Mode
Text Editor/Mate Matching ModeEnumeration

Controls when braces, brackets, and parentheses are
matched.

Maximum Collapsed Fold Preview Lines
Text Editor/Maximum Collapsed Fold

Preview LinesIntegerRange

The maximum number of lines to show in a collapsed
fold preview tooltip.

Minimum Scroll Width
Text Editor/Minimum Scroll WidthIntegerRange

Specifies the minimum width of the scrolling region in
characters.

Overwrite Caret Style
Text Editor/Overwrite Caret

StyleEnumeration

How the caret is displayed with the editor in overwrite
mode.

Selection Opacity
Text Editor/Selection OpacityIntegerRange

Specifies the opacity of text selection.

Show Bookmarks In Vertical Scroll Bar
Text Editor/Show Bookmarks In Vertical

Scroll BarBoolean

Annotate the vertical scroll bar with bookmark
positions.

Show Breakpoints In Vertical Scroll Bar
Text Editor/Show Breakpoints In Vertical

Scroll BarBoolean

Annotate the vertical scroll bar with breakpoint
positions.

Show Caret Position In Vertical Scroll Bar
Text Editor/Show Caret In Vertical Scroll

BarBoolean

Annotate the vertical scroll bar with the caret's
position within the document.

Embedded Studio for ARM Reference Manual Appendices

373

Show Diagnostic Icons In Gutter
Text Editor/Diagnostic IconsBoolean

Enables display of diagnostic icons in the icon gutter.

Show Errors In Vertical Scroll Bar
Text Editor/Show Errors In Vertical

Scroll BarBoolean

Annotate the vertical scroll bar with error positions.

Show Fold Gutter
Text Editor/Fold GutterBoolean

Show or hide the left-hand gutter containing folding
controls.

Show Icon Gutter
Text Editor/Icon GutterBoolean

Show or hide the left-hand gutter containing
breakpoint, bookmark, and optional diagnostic icons.

Show Mini Toolbar
Text Editor/Mini ToolbarBoolean

Show the mini toolbar when selecting text with the
mouse.

Show Toolbar
Text Editor/ShowWidgetStripBoolean

Show or hide the Editor toolbar in the dock window.

Show Warnings In Vertical Scroll Bar
Text Editor/Show Warnings In Vertical

Scroll BarBoolean

Annotate the vertical scroll bar with warning positions.

Use I-beam Cursor
Text Editor/Ibeam cursorBoolean

Show an I-beam or arrow cursor in the text editor.

Vertical Scroll Bar
Text Editor/VScroll BarEnumeration

Show or hide the vertical scroll bar.

View Whitespace
Text Editor/View WhitespaceBoolean

Make whitespace characters visible in the text editor.

Embedded Studio for ARM Reference Manual Appendices

374

Windows Environment Options

Autos

Property Description

Show Digit Separator
Environment/AutosWindow/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/AutosWindow/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/AutosWindow/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/AutosWindow/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/AutosWindow/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Call Stack

Property Description

Execution Frame at Top
Environment/Call Stack/Most Recent At

TopBoolean

Controls whether the most recent call is at the top or
the bottom of the list.

Show Call Address
Environment/Call Stack/Show Call

AddressBoolean

Enables the display of the call address in the call stack.

Show Call Source Location
Environment/Call Stack/Show Call

LocationBoolean

Enables the display of the call source location in the
call stack.

Show Frame Size
Environment/Call Stack/Show Stack

UsageBoolean

Enables the display of the amount of stack used by the
call.

Show Frame Size In Bytes
Environment/Call Stack/Show Stack Usage

In BytesBoolean

Display the stack usage in bytes rather than words.

Embedded Studio for ARM Reference Manual Appendices

375

Show Parameter Names
Environment/Call Stack/Show Parameter

NamesBoolean

Enables the display of parameter names in the call
stack.

Show Parameter Types
Environment/Call Stack/Show Parameter

TypesBoolean

Enables the display of parameter types in the call stack.

Show Parameter Values
Environment/Call Stack/Show Parameter

ValuesBoolean

Enables the display of parameter values in the call
stack.

Show Stack Pointer
Environment/Call Stack/Show Stack

PointerBoolean

Enables the display of the stack pointer in the call
stack.

Show Stack Usage
Environment/Call Stack/Show Cumulative

Stack UsageBoolean

Enables the display of the amount of stack used.

Show Stack Usage In Bytes
Environment/Call Stack/Show Cumulative

Stack Usage In BytesBoolean

Display the stack usage in bytes rather than words.

Clipboard Ring
Property Description

Maximum Items Held In Ring
Environment/Clipboard Ring/Max

EntriesIntegerRange

The maximum number of items held on the clipboard
ring before they are recycled.

Preserve Contents Between Runs
Environment/Clipboard Ring/SaveBoolean

Save the clipboard ring across SEGGER Embedded
Studio runs.

Debug Terminal
Property Description

Backscroll Buffer Lines
Debug Terminal/Backscroll Buffer

LinesIntegerRange

The number of lines you can see when you scroll
backward in the debug terminal window.

Use Window System Colors
Debug Terminal/Use Window System

ColorsBoolean

Substitute window system colors for ANSI black
background and white foreground in debug terminal.

Frame Buffer
Property Description

Embedded Studio for ARM Reference Manual Appendices

376

Maximum Frame Buffer Height
Environment/Frame Buffer Window/Maximum

HeightIntegerRange

Specifies the maximum frame buffer height.

Maximum Frame Buffer Width
Environment/Frame Buffer Window/Maximum

WidthIntegerRange

Specifies the maximum frame buffer width.

Show Frame Buffer Tooltips
Environment/Frame Buffer Window/Display

TooltipsBoolean

Specifies whether tooltips are displayed in the frame
buffer window.

Globals
Property Description

Show Digit Separator
Environment/GlobalsWindow/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/GlobalsWindow/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/GlobalsWindow/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/GlobalsWindow/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/GlobalsWindow/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Locals
Property Description

Show Digit Separator
Environment/LocalsWindow/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/LocalsWindow/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Struct Offsets
Environment/Watch4Window/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Embedded Studio for ARM Reference Manual Appendices

377

Show Struct Offsets
Environment/Watch3Window/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/Watch2Window/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/Watch1Window/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/AutosWindow/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/GlobalsWindow/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/LocalsWindow/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Variable Address Column
Environment/LocalsWindow/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/LocalsWindow/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/LocalsWindow/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Memory

Property Description

Confirm Large Download
Environment/Memory Window/Confirm

SizeBoolean

Present a warning if you attempt to download a large
amount of memory in the memory window.

Group Auto Columns
Environment/Memory Window/Group Auto

ColumnsBoolean

Selects whether columns are grouped in automatic
column mode.

Locate Sets Entry Width
Environment/Memory Window/Locate Sets

Entry WidthBoolean

Set the memory window entry width if possible when
locating.

Embedded Studio for ARM Reference Manual Appendices

378

Locate Sets Size
Environment/Memory Window/Locate Sets

SizeBoolean

Set the memory window size when locating.

Scroll Wheel Modifies Start Address
Environment/Memory Window/Scroll Wheel

Modifies Start AddressBoolean

Selects whether the mouse scroll wheel can change
the memory window start address.

Outline
Property Description

Group #define Directives
Windows/Outline/Group DefinesBoolean

Group consecutive #define and #undef preprocessor
directives.

Group #include Directives
Windows/Outline/Group IncludesBoolean

Group consecutive #include preprocessor directives.

Group Top-Level Declarations
Windows/Outline/Group Top Level

ItemsBoolean

Group consecutive top-level variable and type
declarations.

Show Function Arguments
Windows/Outline/Show Function ArgsBoolean

Show function arguments.

Project Explorer
Property Description

Add Filename Replace Macros
Environment/Project Explorer/Filename

Replace MacrosStringList

Macros (system and global) used to replace the start of
a filename on project file addition.

Check Solution Target
Environment/Project Explorer/Check

Solution TargetBoolean

Specifies whether to check target is correct when
loading a solution.

Color Project Nodes
Environment/Project Explorer/Color

NodesBoolean

Show the project nodes colored for identification in
the Project Explorer.

Confirm Configuration Folder Delete
Project Explorer/Confirm Configuration

Folder DeleteBoolean

Display a confirmation prompt before deleting a
configuration folder cotaining properties.

Confirm File Replacement Warning
Project Explorer/Confirm File Replacement

WarningBoolean

Display a confirmation prompt before replacing
project files for import and creation

Confirm Forget Modified Options
Project Explorer/Confirm Reject Property

ChangesBoolean

Display a confirmation prompt before forgetting
option modifications.

Embedded Studio for ARM Reference Manual Appendices

379

Context Menu Edit Options At Top
Environment/Project Explorer/Context Menu

Properties PositionBoolean

Controls where Edit Options are displayed by the
Project Explorer's context menu.

Context Menu Uses Common Folder
Environment/Project Explorer/Context Menu

Common FolderBoolean

Controls how common options are displayed by the
Project Explorer's context menu.

External Editor
Environment/Project Explorer/External

EditorFileName

The file name of the application to use as the external
text editor. The external editor is started by holding
down the Shift key when opening files from the
project explorer.

Highlight Dynamic Items
Environment/Project Explorer/Show Dynamic

OverlayBoolean

Show an overlay on an item if it is populated from a
dynamic folder.

Highlight External Items
Environment/Project Explorer/Show Non-

Local OverlayBoolean

Show an overlay on an item if it is not held within the
project directory.

Output Files Folder
Environment/Project Explorer/Show Output

FilesBoolean

Show the build output files in an Output Files folder in
the project explorer.

Read-Only Data In Code
Environment/Project Explorer/Statistics

Read-Only Data HandlingBoolean

Configures whether read-only data contributes to the
Code or Data statistic.

Show Dependencies
Environment/Project Explorer/Dependencies

DisplayEnumeration

Controls how the dependencies are displayed.

Show Favorite Properties
Environment/Project Explorer/Context Menu

Show FavoritesBoolean

Controls if favorite properties are displayed by the
Project Explorer's context menu.

Show File Count on Folder
Environment/Project Explorer/Count

FilesBoolean

Show the number of files contained in a folder as a
badge in the Project Explorer.

Show Modified Options on Folder/File
Environment/Project Explorer/Show

Modified PropertiesBoolean

Show if a folder or file has modified options as a badge
in the Project Explorer.

Show Options
Environment/Project Explorer/Properties

DisplayEnumeration

Controls how the options are displayed.

Show Project Count on Solution
Environment/Project Explorer/Count

ProjectsBoolean

Show the number of projects contained in a solution
as a badge in the Project Explorer.

Show Source Control Annotation
Environment/Project Explorer/Show Source

Control AnnotationBoolean

Annotate items in the project explorer with their
source control status.

Embedded Studio for ARM Reference Manual Appendices

380

Show Statistics Rounded
Environment/Project Explorer/Statistics

FormatBoolean

Show exact or rounded sizes in the project explorer.

Source Control Status Column
Environment/Project Explorer/Show Source

Control ColumnBoolean

Show the source control status column in the project
explorer.

Starred Files Names
Environment/Project Explorer/Starred File

NamesStringList

The list of wildcard-matched file names that are
highligted with stars, to bring attention to themselves,
in the Project Explorer.

Statistics Column
Environment/Project Explorer/Statistics

DisplayBoolean

Show the code and data size columns in the Project
Explorer.

Synchronize Explorer With Editor
Environment/Project Explorer/Sync

EditorBoolean

Synchronizes the Project Explorer with the document
being edited.

Use Common Options Folder
Environment/Project Explorer/Common

Properties DisplayBoolean

Controls how common options are displayed.

Registers 1

Property Description

Show Digit Separator
Environment/Registers1Window/Show Digit

SeparatorBoolean

Show digit separator in register value display.

Show Register Address Column
Environment/Registers1Window/Show Address

ColumnBoolean

Controls whether the register address column is
displayed.

Registers 2

Property Description

Show Digit Separator
Environment/Registers2Window/Show Digit

SeparatorBoolean

Show digit separator in register value display.

Show Register Address Column
Environment/Registers2Window/Show Address

ColumnBoolean

Controls whether the register address column is
displayed.

Embedded Studio for ARM Reference Manual Appendices

381

Registers 3
Property Description

Show Digit Separator
Environment/Registers3Window/Show Digit

SeparatorBoolean

Show digit separator in register value display.

Show Register Address Column
Environment/Registers3Window/Show Address

ColumnBoolean

Controls whether the register address column is
displayed.

Registers 4
Property Description

Show Digit Separator
Environment/Registers4Window/Show Digit

SeparatorBoolean

Show digit separator in register value display.

Show Register Address Column
Environment/Registers4Window/Show Address

ColumnBoolean

Controls whether the register address column is
displayed.

Source Navigator
Property Description

Show Definitions Only
Windows/Source Navigator/Show Definitions

OnlyBoolean

Show definitions only. When set to Yes only symbols
that are defined will be included in the source
navigator display. When set to No declarations of
symbols will also be included in the source navigator
display.

Show Function Arguments
Windows/Source Navigator/Show Function

ArgsBoolean

Show function arguments.

Symbol Browser
Property Description

Code Field
Environment/Symbol Browser/Display

CodeBoolean

Selects whether the Code field is displayed.

Const Field
Environment/Symbol Browser/Display

ConstBoolean

Selects whether the Const field is displayed.

Embedded Studio for ARM Reference Manual Appendices

382

Data Field
Environment/Symbol Browser/Display

DataBoolean

Selects whether the Data field is displayed.

Frame Size Field
Environment/Symbol Browser/Display Frame

SizeBoolean

Selects whether the Frame Size field is displayed.

Range Field
Environment/Symbol Browser/Display

RangeBoolean

Selects whether the Range field is displayed.

Section Field
Environment/Symbol Browser/Display

SectionBoolean

Selects whether the Section field is displayed.

Size Field
Environment/Symbol Browser/Display

SizeBoolean

Selects whether the Size field is displayed.

Sort Criteria
Environment/Symbol Browser/

GroupingEnumeration

Selects how to sort or group the symbols displayed.

Type Field
Environment/Symbol Browser/Display

TypeBoolean

Selects whether the Type field is displayed.

Value Field
Environment/Symbol Browser/Display

ValueBoolean

Selects whether the Value field is displayed.

Terminal Emulator

Property Description

Backscroll Buffer Lines
Terminal Emulator/Backscroll Buffer

LinesIntegerRange

The number of lines you can see when you scroll
backward in the terminal emulator window.

Baud Rate
Terminal Emulator/Communications/Baud

RateEnumeration

Baud rate used when transmitting and receiving data.

Data Bits
Terminal Emulator/Communications/Data

BitsEnumeration

Number of data bits to use when transmitting and
receiving data.

Flow Control
Terminal Emulator/Communications/Flow

ControlEnumeration

The flow control method to use.

Embedded Studio for ARM Reference Manual Appendices

383

Line Feed On Carriage Return
Terminal Emulator/Line Feed On Carriage

ReturnBoolean

Append a line feed character when a carriage return
character is received.

Local Echo
Terminal Emulator/Local EchoBoolean

Displays every character typed before sending to the
remote computer.

Maximum Input Block Size
Terminal Emulator/Maximum Input Block

SizeIntegerRange

The maximum number of bytes to read at a time.

Parity
Terminal Emulator/Communications/

ParityEnumeration

Parity used when transmitting and receiving data.

Port
Terminal Emulator/Communications/

PortCOMPort

The communications port to use, e.g. /dev/ttyS0, /dev/
ttyS1, etc.

Port Used By Target Interface
Terminal Emulator/Communications/Port

Used By Target InterfaceBoolean

The COM port will be disconnected when the target
interface is connected and reconnected when the
target interface is disconnected.

Set DTR
Terminal Emulator/Communications/

DTRBoolean

Set the DTR signal.

Stop Bits
Terminal Emulator/Communications/Stop

BitsEnumeration

Number of stop bits to use when transmitting data.

Watch 1
Property Description

Show Digit Separator
Environment/Watch1Window/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/Watch1Window/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/Watch1Window/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/Watch1Window/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/Watch1Window/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Embedded Studio for ARM Reference Manual Appendices

384

Watch 2
Property Description

Show Digit Separator
Environment/Watch2Window/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/Watch2Window/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/Watch2Window/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/Watch2Window/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/Watch2Window/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Watch 3
Property Description

Show Digit Separator
Environment/Watch3Window/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/Watch3Window/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/Watch3Window/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/Watch3Window/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/Watch3Window/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Watch 4
Property Description

Embedded Studio for ARM Reference Manual Appendices

385

Show Digit Separator
Environment/Watch4Window/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/Watch4Window/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/Watch4Window/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/Watch4Window/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/Watch4Window/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Windows

Property Description

Buffer Grouping
Environment/Windows/GroupingEnumeration

How the files are grouped or listed in the Windows
window.

Show File Path as Tooltip
Environment/Windows/Show Filename

TooltipsBoolean

Show the full file name as a tooltip when hovering
over files in the Windows window.

Show Line Count and File Size
Environment/Windows/Show SizesBoolean

Show the number of lines and size of each file in the
windows list.

Embedded Studio for ARM Reference Manual Appendices

386

Code Options

Assembler
Property Description

Additional Assembler Options
asm_additional_optionsStringList

Enables additional options to be supplied to the
assembler. This property will have macro expansion
applied to it.

Additional Assembler Options From File
asm_additional_options_from_fileProjFileName

Enables additional options to be supplied to the
assembler from a file. This property will have macro
expansion applied to it.

Assembler
arm_assembler_variantEnumeration

Specifies which assembler to use. SEGGER Assembler:
Technology preview - For test purposes only.

Backup Additional Assembler Options
asm_additional_options_backupString

Value of additional assembler options prior to generic
options processing.

Run Preprocessor
arm_preprocess_assembly_codeBoolean

The assembly code file is preprocessed before
assembly

Build
Property Description

Always Rebuild
build_always_rebuildBoolean

Specifies whether or not to always rebuild the project/
folder/file.

Batch Build Configurations
batch_build_configurationsStringList

The set of configurations to batch build.

Build Options Generic File Name
build_generic_options_file_nameProjFileName

The file name containing the generic options.

Build Quietly
build_quietlyBoolean

Suppress the display of startup banners and
information messages.

Dependency File Name
build_dependency_file_nameFileName

The file name to contain the dependencies.

Enable Unused Symbol Removal
build_remove_unused_symbolsBoolean

Enable the removal of unused symbols from the
executable.

Exclude From Build
build_exclude_from_buildBoolean

Specifies whether or not to exclude the project/folder/
file from the build.

GCC Prefix
gcc_prefixString

The string that is prepended to the gcc toolname e.g
arm-none-eabi-. The macro $(GCCPrefix) is set to this
value for external build command lines.

GCC Target
gcc_targetString

The macro $(GCCTarget) is set to this value for build
command lines.

Embedded Studio for ARM Reference Manual Appendices

387

GCC Version
gcc_versionString

The macro $(GCCVersion) is set to this value for build
command lines.

Generate Dependency File
build_generate_dependency_fileEnumeration

Generate a dependency file

Include Debug Information
build_debug_informationBoolean

Specifies whether symbolic debug information is
generated.

Inputs File
inputs_fileFileName

Specifies the inputs file to be used for Linking/
Archiving. The files listed in this file will be used rather
than the outputs of the project.

Intermediate Directory
build_intermediate_directoryDirPath

Specifies a relative path to the intermediate file
directory. This property will have macro expansion
applied to it. The macro $(IntDir) is set to this value.

Is C++ Project
is_cpp_projectEnumeration

Supply C++ include directories and libraries to the
project build.

Object File Name
build_object_file_nameFileName

Specifies a name to override the default object file
name.

Output Directory
build_output_directoryDirPath

Specifies a relative path to the output file directory.
This property will have macro expansion applied
to it. The macro $(OutDir) is set to this value. The
macro $(RootRelativeOutDir) is set relative to the Root
Output Directory if specified.

Project Can Build In Parallel
project_can_build_in_parallelEnumeration

Specifies that dependent projects can be built in
parallel. Default is No for Staging and Combining
project types, Yes for all other project types.

Project Dependencies
project_dependenciesStringList

Specifies the projects the current project depends
upon.

Project Directory
project_directoryString

Path of the project directory relative to the directory
containing the project file. The macro $(ProjectDir) is
set to the absolute path of this property.

Project Macros
macrosStringList

Specifies macro values which are expanded in
project properties and for file names in Common
configuration only. Each macro is defined as
name=value and are seperated by ;.

Project Type
project_typeEnumeration

Specifies the type of project to build. The options are
Executable, Library, Object file, Staging, Combining,
Externally Built Executable, Externally Built Library,
Externally Built Object file.

Property Groups File
property_groups_file_pathProjFileName

The file containing the property groups for this project.
This is applicable to Executable and Externally Built
Executable project types only.

Root Output Directory
build_root_output_directoryDirPath

Allows a common root output directory to be specified
that can be referenced using the $(RootOutDir) macro.

Embedded Studio for ARM Reference Manual Appendices

388

Suppress Warnings
build_suppress_warningsBoolean

Don't report warnings.

Toolchain Directory
build_toolchain_directoryDirPath

Specify the root of the toolchain directory. This
property will have macro expansion applied to it. The
macro $(ToolChainDir) is set to this value.

Treat Warnings as Errors
build_treat_warnings_as_errorsBoolean

Treat all warnings as errors.

Code Analyzer

Property Description

Analyze After Compile
analyze_after_compileBoolean

Run the static code analyzer after compile

Analyze Command
analyze_commandCommandLine

The command to execute for the Analyze action. This
property will have macro expansion applied to it with
the additional macros:

$(DEFINES) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions property.
$(INCLUDES) contains a space seperated list of
user include directories as set in the User Include
Directories property.

Analyze Command Options C
analyze_command_c_optionsStringList

Options to supply to the analyze command for C
source files.

Analyze Command Options C++
analyze_command_cpp_optionsStringList

Options to supply to the analyze command for C++
source files.

Clang Tidy Checks C
clang_tidy_checks_cStringList

Checks to supply to clang-tidy for C source files.

Clang Tidy Checks C++
clang_tidy_checks_cppStringList

Checks to supply to clang-tidy for C++ source files.

Code Generation

Property Description

ARM Advanced SIMD Auto Vectorize
arm_advanced_SIMD_auto_vectorizeBoolean

Enable automatic code generation for Advanced SIMD.

ARM Advanced SIMD Type
arm_advanced_SIMD_typeEnumeration

Specifies the Advanced SIMD type to generate code
for. The options are:

NEON - Cortex-A based processors

https://clang.llvm.org/extra/clang-tidy
https://clang.llvm.org/extra/clang-tidy

Embedded Studio for ARM Reference Manual Appendices

389

ARM Architecture
arm_architectureEnumeration

Specifies the version of the instruction set to generate
code for. The options are:

v4T - ARM7TDMI and ARM920T processors
v5TE - ARM9E, Feroceon and XScale processors
v6 - ARM11 processors
v6M - Cortex-M0/M1 processors
v7M - Cortex-M3 processors
v7EM - Cortex-M4/M7 processors
v7R - Cortex-R4/R5/R8 processors
v7A - Cortex-A5/A7/A8/A9/A17 processors
v8R - Cortex-R52 processors
v8A - Cortex-A32/A35/A53/A55/A57/A72/A73/A75
processors
v8M_Baseline - Cortex M23 processor
v8M_Mainline - Cortex M33 processor
v8.1M_Mainline - Cortex-M55/M85 processors
None

The corresponding preprocessor definitions:

__ARM_ARCH_4T__
__ARM_ARCH_5TE__
__ARM_ARCH_6__
__ARM_ARCH_6M__
__ARM_ARCH_7M__
__ARM_ARCH_7EM__
__ARM_ARCH_7R__
__ARM_ARCH_7A__
__ARM_ARCH_8R__
__ARM_ARCH_8A__
__ARM_ARCH_8M_BASELINE__
__ARM_ARCH_8M_MAINLINE__
__ARM_ARCH_81M_MAINLINE__

are defined.

Embedded Studio for ARM Reference Manual Appendices

390

ARM Core Type
arm_core_typeEnumeration

Specifies the core to generate code for. The options
are:

ARM7TDMI, ARM7TDMI-S, ARM720T
ARM920T, ARM946E-S, ARM966E-S, ARM968E-S,
ARM926EJ-S
ARM1136J-S, ARM1136JF-S, ARM1176JZ-S,
ARM1176JZF-S
Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M23,
Cortex-M3, Cortex-M33, Cortex-M4, Cortex-M55,
Cortex-M7
Cortex-R4, Cortex-R4F, Cortex-R5, Cortex-R7,
Cortex-R8
Cortex-R52
Cortex-A5, Cortex-A7, Cortex-A8, Cortex-A9,
Cortex-A15, Cortex-A17
Cortex-A32, Cortex-A35, Cortex-A53, Cortex-A55,
Cortex-A57, Cortex-A72, Cortex-A73, Cortex-A75
XScale
None

If this property is set to None then the architecture
property is used

ARM FP ABI Type
arm_fp_abiEnumeration

Specifies the FP ABI type to generate code for. The
options are:

Soft generate calls to the C library to implement
floating point operations.
SoftFP generate VFP code to implement floating
point operations.
Hard generate VFP code to implement floating
point operations and use VFP registers to pass
floating point parameters on function calls.
None will not specify the FP ABI or the FPU.

Embedded Studio for ARM Reference Manual Appendices

391

ARM FPU Type
arm_fpu_typeEnumeration

Specifies the FPU type to generate code for. The
options are:

VFP - ARM9/ARM11 based processors
VFP9 - the same as VFP
VFPv3-D32 - Cortex-A/Cortex-R based processors
VFPv3-D16 - Cortex-A/Cortex-R based processors
VFPv4-D32 - Cortex-A/Cortex-R based processors
VFPv4-D16 - Cortex-A/Cortex-R based processors
FPv4-SP-D16 - Cortex-M4 processors
FPv5-SP-D16 - Cortex-M7/M33/R52 processors
FPv5-D16 - Cortex-M7/M55 processors
FP-ARMv8 - Cortex-A/Cortex-R processors

The corresponding preprocessor definitions:

__ARM_ARCH_VFP__
__ARM_ARCH_VFP3_D32__
__ARM_ARCH_VFP3_D16__
__ARM_ARCH_VFP4_D32__
__ARM_ARCH_VFP4_D16__
__ARM_ARCH_FPV4_SP_D16__
__ARM_ARCH_FPV5_SP_D16__
__ARM_ARCH_FPV5_D16__
__ARM_ARCH_FP_ARMv8__

are defined.

ARM/Thumb Interworking
arm_interworkEnumeration

Specifies whether ARM/Thumb interworking code
should be generated. Setting this property to No
may result in smaller code sizes when compiling for
architecture v4T.

Additional C++ Modules
gcc_additional_modulesStringList

Add additional C++ Modules to the module mapper
file of the form name=filename.

Byte Order
arm_endianEnumeration

Specify the byte order of the target processor. The
options are:

Little little endian code and data.
Big big endian code and data.
BE-8 little endian code and big endian data.
None do not specify the endian.

CM0/CM0+/CM1 Has Small Multiplier
arm_cm0_has_small_multiplierBoolean

The CM0/CM0+/CM1 core has the small multiplier.

Code Model.
arm64_code_modelEnumeration

Specify the code model to generate code for.

Data Model.
arm64_abiEnumeration

Specify the data model to generate code for.

Embedded Studio for ARM Reference Manual Appendices

392

Debugging Level
gcc_debugging_levelEnumeration

Specifies the level of debugging information to
generate. The options are:

None - no debugging information
Level 1 - backtrace and line number debugging
information
Level 2 - Level 1 and variable display debugging
information
Level 3 - Level 2 and macro display debugging
information

Disable Function Inlining
gcc_disable_function_inliningBoolean

Disable auto inlining of functions when optimization
enables this.

Dwarf Version
gcc_dwarf_versionEnumeration

Specifies the version of Dwarf debugging information
to generate.

Emit Assembler CFI
gcc_emit_assembler_cfiBoolean

Emit DWARF 2 unwind info using GAS .cfi_* directives
rather than a compiler generated .eh_frame section.

Enable Coroutine Support
gcc_enable_coroutinesBoolean

Specifies whether coroutine support is enabled for C+
+ programs.

Enable Exception Support
cpp_enable_exceptionsBoolean

Specifies whether exception support is enabled for C+
+ programs.

Enable Modules Support
gcc_enable_modulesBoolean

Specifies whether modules support is enabled for C++
programs.

Enable RTTI Support
cpp_enable_rttiBoolean

Specifies whether RTTI support is enabled for C++
programs.

Enable Stack Overflow Prevention
stack_overflow_preventionBoolean

Enable Stack Overflow Prevention.
For more information read: https://wiki.segger.com/
Stack_Overflow_Prevention

Enable Use Of __cxa_atexit
gcc_use_cxa_at_exitBoolean

Enable compiler usage of __cxa_atexit.

Enumeration Size
gcc_short_enumEnumeration

Select between minimal container sized enumerations
and int sized enumerations.

FP16 Format.
arm_fp16_formatEnumeration

The format of 16-bit floating point numbers.

Generate Dwarf Debug Types
gcc_dwarf_generate_debug_typesBoolean

Generate Dwarf .debug_types section.

Generate Dwarf Pubnames
gcc_dwarf_generate_pubnamesBoolean

Generate Dwarf .debug_pubnames
and .debug_pubtypes sections.

Generate Listing File
asm_generate_listing_fileBoolean

An source/assembler listing file is generated which can
be found in the output files folder

Instruction Set
arm_instruction_setEnumeration

Specifies the instruction set to generate code for.

https://wiki.segger.com/Stack_Overflow_Prevention
https://wiki.segger.com/Stack_Overflow_Prevention

Embedded Studio for ARM Reference Manual Appendices

393

Instrument Functions
arm_instrument_functionsBoolean

Specifies whether instrumentation calls are generated
for function entry and exit.

Is C++ Module
is_cpp_moduleEnumeration

The file contains an importable C++ module unit.

Keep Link Time Optimization Intermediate Files
link_keep_lto_filesBoolean

Specifies whether to keep the link time optimization
resolution and object files.

Link Time Optimization
link_time_optimizationBoolean

Specifies whether the project should be built for
optimization at link time.

Link Time Optimization Additional Options
lto_additional_optionsStringList

Enables additional options to be supplied to the link
time optimization process

Long Calls
arm_long_callsBoolean

Specifies whether function calls are made using
absolute addresses.

Machine Outliner [segger-cc]
clang_machine_outlinerEnumeration

Select machine outliner mode. An optimization
that reduces code size by identifying identical code
sequences across functions and replaces them with
a call to a function which contains the identical code
sequence.

Math Errno
arm_math_errnoBoolean

Set errno after calling math functions that are
executed with a single instruction, e.g., sqrt.

Merge Globals [segger-cc]
clang_merge_globalsBoolean

Select whether global declarations are merged. This
may reduce code size and increase execution speed
for some applications. However, if functions are not
used in an application and are eliminated by the
linker, merged globals may increase the data size
requirement of an application.

No COMMON
gcc_no_commonBoolean

Don't put globals in the common section

Omit Frame Pointer
gcc_omit_frame_pointerBoolean

Specifies whether a frame pointer register is omitted if
not required.

Optimization Level
gcc_optimization_levelEnumeration

Specifies the optimization level to use. The options are:

None - don't specify an optimization level
Level 0 - no optimization, fastest compilation and
best debug experience.
Level 1 - optimize minimally.
Level 2 for speed
Level 2 balanced
Level 2 for size
Level 3 for more speed - optimize even more, will
take longer to compile and may produce much
larger code.

Relocation Model [segger-cc]
clang_relocation_modelEnumeration

Select relocation model.

Embedded Studio for ARM Reference Manual Appendices

394

Stack Sizes
generate_stack_sizesBoolean

Generate stack sizes section

TLS Model.
arm_tls_modelEnumeration

Thread local storage model.

Unaligned Access Support.
arm_unaligned_accessEnumeration

Unaligned word and half-words can be accessed. The
options are:

Yes enable unaligned word and half-words.
No disable unaligned word and half-words.
Auto disable unaligned word and half-word
access for v4T/v5TE/v6M/v8M_Baseline
architectures, enable for others.

Unwind Tables
arm_unwind_tablesBoolean

Generate unwind tables for C code.

Use Builtins
arm_use_builtinsBoolean

Use built-in library functions e.g. scanf.

Vector Extension
arm_v81M_mve_typeEnumeration

Specifies the vector extension type to generate code
for. The options are:

MVE - integer instructions
MVE.FP - integer and single precision floating-
point instructions

Wide Character Size
gcc_wchar_sizeEnumeration

Select between standard 32-bit or shorter 16-bit size
for wide characters and wchar_t.

v7A/v7R Has Integer Divide Instructions
arm_v7_has_divide_instructionsBoolean

The v7A architecture has integer divide instructions
in both ARM and Thumb instruction sets. The v7R
architecture has integer divide instructions in the ARM
instruction set. The v7R architecture always has integer
divide instructions in the Thumb instruction set.

v8.1M Has PACBTI Instructions
arm_v81M_has_pacbtiBoolean

The v8.1M architecture has PACBTI instructions.

v8A Has CRC Instructions
arm_v8A_has_crcBoolean

The v8A architecture has CRC instructions.

v8A Has Crypto Instructions
arm_v8A_has_cryptoBoolean

The v8A architecture has crypto instructions.

v8M Has CMSE Instructions
arm_v8M_has_cmseBoolean

The v8M architecture has CMSE instructions.

v8M Has DSP Instructions
arm_v8M_has_dspBoolean

The v8M architecture has DSP instructions.

Combining
Property Description

Embedded Studio for ARM Reference Manual Appendices

395

Combine Command
combine_commandCommandLine

The command to execute. This property will have
macro expansion applied to it with the macro
$(CombiningOutputFilePath) set to the output
filepath of the combine command and the macro
$(CombiningRelInputPaths) is set to the (project
relative) names of all of the files in the project.

Combine Command Working Directory
combine_command_wdString

The working directory in which the combine command
is run. This property will have macro expansion applied
to it.

Output File Path
combine_output_filepathString

The output file path the stage command will create.
This property will have macro expansion applied to it.

Set To Read-only
combine_set_readonlyEnumeration

Set the output file to read only or read/write.

Compiler
Property Description

Additional C Compiler Only Options
c_only_additional_optionsStringList

Enables additional options to be supplied to the
C compiler only. This property will have macro
expansion applied to it.

Additional C Compiler Only Options From File
c_only_additional_options_from_fileProjFileName

Enables additional options to be supplied to the C
compiler only from a file. This property will have macro
expansion applied to it.

Additional C++ Compiler Only Options
cpp_only_additional_optionsStringList

Enables additional options to be supplied to the
C++ compiler only. This property will have macro
expansion applied to it.

Additional C++ Compiler Only Options From File
cpp_only_additional_options_from_fileProjFileName

Enables additional options to be supplied to the C++
compiler only from a file. This property will have macro
expansion applied to it.

Additional C/C++ Assembler Options
c_asm_additional_optionsStringList

Enables additional options to be supplied to the
assembler when used by the C/C++ compiler. This
property will have macro expansion applied to it.

Additional C/C++ Compiler Options
c_additional_optionsStringList

Enables additional options to be supplied to the C/C+
+ compiler. This property will have macro expansion
applied to it.

Additional C/C++ Compiler Options From File
c_additional_options_from_fileProjFileName

Enables additional options to be supplied to the C/C
++ compiler from a file. This property will have macro
expansion applied to it.

Backup Additional C Compiler Only Options
c_only_additional_options_backupString

Value of additional C compiler options prior to generic
options processing

Backup Additional C++ Compiler Only Options
cpp_only_additional_options_backupString

Value of additional C++ compiler options prior to
generic options processing

Embedded Studio for ARM Reference Manual Appendices

396

Backup Additional Compiler Options
c_additional_options_backupString

Value of additional compiler options prior to generic
options processing

C Language Standard
gcc_c_language_standardEnumeration

Specifies the language standard to use when
compiling C files. The options are:

None - don't specify a language standard
c89/gnu89
c90/gnu90
c99/gnu99
c11/gnu11
c17/gnu17

C++ Language Standard
gcc_cplusplus_language_standardEnumeration

Specifies the language standard to use when
compiling C files. The options are:

None - don't specify a language standard
c++98/gnu++98
c++11/gnu++11
c++14/gnu++14
c++20/gnu++20
c++17/gnu++17

Color Diagnostics
compiler_color_diagnosticsBoolean

Specifies whether to enable color diagnostic output.

Compile C Files As C++
c_files_are_cppBoolean

Compile files that have the .c extension with the C++
compiler.

Compiler
arm_compiler_variantEnumeration

Specifies which compiler to use.

Enable All Warnings
gcc_enable_all_warningsBoolean

Enables all the warnings about constructions that
some users consider questionable, and that are easy
to avoid (or modify to prevent the warning), even in
conjunction with macros.

Enable All Warnings C Compiler Only Command Line
Options
gcc_c_only_all_warnings_command_line_optionsStringList

The command line options supplied to the C compiler
when Enable All Warnings is enabled.

Enable All Warnings C++ Compiler Only Command
Line Options
gcc_cpp_only_all_warnings_command_line_optionsStringList

The command line options supplied to the C++
compiler when Enable All Warnings is enabled.

Enable All Warnings Command Line Options
gcc_all_warnings_command_line_optionsStringList

The command line options supplied to the compiler
when Enable All Warnings is enabled.

Enforce ANSI Checking
c_enforce_ansi_checkingBoolean

Perform additional checks for ensure strict
conformance to the selected ISO (ANSI) C or C++
standard.

Enforce ANSI Checking C Command Line Options
gcc_c_only_enforce_ansi_checking_command_line_optionsStringList

The command line options supplied to the C compiler
when Enforce ANSI Checking is enabled.

Embedded Studio for ARM Reference Manual Appendices

397

Enforce ANSI Checking C++ Command Line Options
gcc_cpp_only_enforce_ansi_checking_command_line_optionsStringList

The command line options supplied to the C++
compiler when Enforce ANSI Checking is enabled.

Enforce ANSI Checking Command Line Options
gcc_enforce_ansi_checking_command_line_optionsStringList

The command line options supplied to the compiler
when Enforce ANSI Checking is enabled.

GNU Version [segger-cc]
clang_gnu_versionEnumeration

Specifies value of __GNU__ and related macros

Keep Assembly Source
arm_keep_assemblyBoolean

Specifies whether assembly code generated by the
compiler is kept.

Keep Preprocessor Output
arm_keep_preprocessor_outputBoolean

Specifies whether preprocessor output generated by
the compiler is kept.

No Unsupported Architecture [segger-cc]
segger_cc_no_unsupported_architectureBoolean

Disable unsupported architecture warning.

Show Caret
compiler_diagnostics_show_caretBoolean

Specifies whether caret is displayed in compiler
diagnostics.

Supply Absolute File Path
arm_supply_absolute_file_pathBoolean

Specifies whether absolute file paths are supplied to
the compiler.

Supply Execution Character Set
compiler_supply_editor_execute_charsetBoolean

Specifies whether to supply the editor file encoding as
the execution character set.

Supply Input Character Set
compiler_supply_editor_input_charsetBoolean

Specifies whether to supply the editor file encoding as
the input character set.

Use Compiler Driver
use_compiler_driverBoolean

The build will issue cc commands.

External Build

Property Description

Archive Command
external_archive_commandCommandLine

The command line to archive object files. This property
will have macro expansion applied to it with the
additional macros:

$(TargetPath) contains the full file name of the
Library File Name property
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(Objects) a space seperated list of files to archive,
generated from the source files of the project OR.
$(ObjectsFilePath) contains the full file name of
the file containing the list of files to archive
$(RelObjectsFilePath) contains the project
directory relative file name of the file containing
the list of files to link

Embedded Studio for ARM Reference Manual Appendices

398

Assemble Command
external_assemble_commandCommandLine

The command line to assemble an assembly source
file. This property will have macro expansion applied
to it with the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(AsmOptions) contains a space seperated list
of options as set in the Additional Assembler
Options property.
$(DependencyPath) contains the filename of
the .d file that is required to be output by the
compilation for dependency support.
$(RelDependencyPath) contains the relative
filename of the .d file that is required to be output
by the compilation for dependency support.
$(Defines) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions property.
$(Undefines) contains a space seperated list
of preprocessor undefinitions as set in the
Preprocessor Definitions property.
$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.
$(IncludeFiles) contains a space seperated list of
include files as set in the Include Files property.

Build Command
external_build_commandCommandLine

The command line to build the executable e.g. make.
This property will have macro expansion applied to it.

Embedded Studio for ARM Reference Manual Appendices

399

C Compile Command
external_c_compile_commandCommandLine

The command line to compile a C source file. This
property will have macro expansion applied to it with
the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(COptions) contains a space seperated list of
options as set in the C Additional C/C++ Compiler
Options property.
$(COnlyOptions) contains a space seperated list
of options as set in the C Additional C Compiler
Only Options property.
$(DependencyPath) contains the filename of
the .d file that is required to be output by the
compilation for dependency support.
$(RelDependencyPath) contains the relative
filename of the .d file that is required to be output
by the compilation for dependency support.
$(Defines) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions property.
$(Undefines) contains a space seperated list
of preprocessor undefinitions as set in the
Preprocessor Definitions property.
$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.
$(IncludeFiles) contains a space seperated list of
include files as set in the Include Files property.

Embedded Studio for ARM Reference Manual Appendices

400

C++ Compile Command
external_cpp_compile_commandCommandLine

The command line to compile a C++ source file. This
property will have macro expansion applied to it with
the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(COptions) contains a space seperated list of
options as set in the C Additional C/C++ Compiler
Options property.
$(CppOnlyOptions) contains a space seperated
list of options as set in the C Additional C++
Compiler Only Options property.
$(DependencyPath) contains the filename of
the .d file that is required to be output by the
compilation for dependency support.
$(RelDependencyPath) contains the relative
filename of the .d file that is required to be output
by the compilation for dependency support.
$(Defines) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions property
$(Undefines) contains a space seperated list
of preprocessor undefinitions as set in the
Preprocessor Definitions property.
$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.
$(IncludeFiles) contains a space seperated list of
include files as set in the Include Files property.

Embedded Studio for ARM Reference Manual Appendices

401

C++ Link Command
external_cpp_link_commandCommandLine

The command line to link an executable. This property
will have macro expansion applied to it with the
additional macros:

$(TargetPath) contains the full file name of the
Executable File Name property.
$(RelTargePath) contains the project directory
relative file name of the Executable File Name
property.
$(LinkOptions) contains a space seperated list of
options as set in the Additional Linker Options
property.
$(Objects) a space seperated list of files to link,
generated from the source files of the project and
the outputs of any dependent projects OR.
$(ObjectsFilePath) contains the full file name of
the file containing the list of files to link
$(RelObjectsFilePath) contains the project
directory relative file name of the file containing
the list of files to link
$(LinkerScriptPath) contains the full file name of
the Linker Script File property.
$(RelLinkerScriptPath) contains the project
directory relative file name of the Linker Script
File property.
$(MapPath) contains the full file name of the
required map file.
$(RelMapPath) contains the project directory
relative file name of the required map file.

Clean Command
external_clean_commandCommandLine

The command line to clean the executable e.g. make
clean. This property will have macro expansion applied
to it.

Embedded Studio for ARM Reference Manual Appendices

402

Link Command
external_link_commandCommandLine

The command line to link an executable. This property
will have macro expansion applied to it with the
additional macros:

$(TargetPath) contains the full file name of the
Executable File Name property.
$(RelTargePath) contains the project directory
relative file name of the Executable File Name
property.
$(LinkOptions) contains a space seperated list of
options as set in the Additional Linker Options
property.
$(Objects) a space seperated list of files to link,
generated from the source files of the project and
the outputs of any dependent projects OR.
$(ObjectsFilePath) contains the full file name of
the file containing the list of files to link
$(RelObjectsFilePath) contains the project
directory relative file name of the file containing
the list of files to link
$(LinkerScriptPath) contains the full file name of
the Linker Script File property.
$(RelLinkerScriptPath) contains the project
directory relative file name of the Linker Script
File property.
$(MapPath) contains the full file name of the
required map file.
$(RelMapPath) contains the project directory
relative file name of the required map file.

Objects File
external_objects_file_nameCommandLine

The name of the file containing the list of files to
archive or link, generated from the source files of
the project.This property will have macro expansion
applied to it. The macro $(ObjectsFilePath) is set to this
value.

File

Property Description

File Encoding
file_codecEnumeration

Specifies the encoding to use when reading and
writing the file.

Embedded Studio for ARM Reference Manual Appendices

403

File Name
file_nameString

The name of the file. This property will have global
macro expansion applied to it. The following macros
are set based on the value: $(InputDir) relative
directory of file, $(InputName) file name without
directory or extension, $(InputFileName) file name,
$(InputExt) file name extension, $(InputPath) absolute
path to the file name, $(RelInputPath) relative path
from project directory to the file name.

File Open Action
file_open_withEnumeration

Specifies how to open the file when it is double
clicked.

File Type
file_typeEnumeration

The type of file. Default setting uses the file extension
to determine file type.

Flag
file_flagEnumeration

Flag which you can use to draw attention to important
files in your project.

Folder

Property Description

Dynamic Folder Directory
pathDirPath

Dynamic folder directory specification - ; seperated
directory names that will have global macro expansion
applied to them.

Dynamic Folder Exclude
excludeStringList

Dynamic folder exclude specification - ; seperated
wildcards.

Dynamic Folder Filter
filterString

Dynamic folder filter specification - ; seperated
wildcards.

Dynamic Folder Recurse
recurseBoolean

Dynamic folder recurse into subdirectories.

Unity Build Exclude Filter
unity_build_exclude_filterString

The filter specification to exclude from the unity build
- ; seperated wildcards.

Unity Build File Name
unity_build_file_nameFileName

The file name created that #includes all files in the
folder for the unity build.

General

Property Description

Environment Variables
environment_variablesStringList

Environment variables to set on solution load.

Inherited Configurations
inherited_configurationsStringList

The list of configurations that are inherited by this
configuration.

Embedded Studio for ARM Reference Manual Appendices

404

Library

Property Description

Debug I/O Implementation
arm_link_debugio_typeEnumeration

Specifies which Debug I/O mechanism to use for I/O
operations.
Options are:

Breakpoint: Hardware breakpoint instruction and
memory locations are used
DCC: ARM debug communication channel is used
Memory Poll: Memory locations are polled

Exclude Default Library Helper Functions
link_use_multi_threaded_librariesBoolean

Specifies whether to exclude default library helper
functions.

Include Standard Libraries
link_include_standard_librariesBoolean

Specifies whether the standard libraries should be
linked into your application.

Library ARM Architecture
arm_library_architectureEnumeration

Specifies the architecture variant of the library to link
with. The default uses the ARM Architecture value

Library File Name
build_output_file_nameFileName

Specifies a name to override the default library file
name.

Library Heap
LIBRARY_HEAP_TYPEEnumeration

Specifies how the library heap is implemented.
Options are:

Basic: Use low-overhead heap allocator.
Minimal: Use alloc-only heap allocator.
Real-Time: Use real-time heap allocator.
None: Do not implement heap allocator. (Use
application-supplied allocator).

Library Heap Locking
LIBRARY_HEAP_LOCKINGEnumeration

Specifies how the library heap locking is implemented.
Options are:

Disable Interrupts: Disable global interrupts.
User: Call user supplied __heap_lock/
__heap_unlock functions.

Embedded Studio for ARM Reference Manual Appendices

405

Library I/O
LIBRARY_IO_TYPEEnumeration

Specifies how the library does I/O.
Options are:

RTT: Use SEGGER Real-Time Transfer for I/
O operations without halting the system.
Recommended for maximum speed.
SEMIHOST: Format output and write to RAM
buffer. Halt CPU for I/O operation. Provides hosted
file I/O.
SEMIHOST (host-formatted): Halt CPU for I/O
operation. Recommended for minimum size.
SWO: Format output and write to RAM buffer.
Use SWO for Output operation. Use CMSIS
ITM_RxBuffer/ITM_RXBUFFER_EMPTY memory
access for Input Operation.
SWO (Interrupts Disabled): Format output
and write to RAM buffer. Use SWO for Output
operation with interrupts disabled. Use CMSIS
ITM_RxBuffer/ITM_RXBUFFER_EMPTY memory
access for Input Operation.
None: Do not include I/O implementation. Use
user-supplied I/O Mechanism.

For more information read: https://wiki.segger.com/
Embedded_Studio_Library_IO

Library Instruction Set
arm_library_instruction_setEnumeration

Specifies the instruction set variant of the libraries to
link with, Default will use the Instruction Set value.

Library Optimization
arm_library_optimizationEnumeration

Specifies whether to link with libraries optimized for
speed or size.

Standard Libraries Directory
link_standard_libraries_directoryString

Specifies where to find the standard libraries

Linker
Property Description

Additional Input Files
linker_additional_filesStringList

Enables additional object and library files to be
supplied to the linker.

Additional Linker Options
linker_additional_optionsStringList

Enables additional options to be supplied to the linker.

Additional Linker Options From File
linker_additional_options_from_fileProjFileName

Enables additional options to be supplied to the linker
from a file.

Additional Linker Script Generator Options
arm_additional_mkld_optionsStringList

Enables additional options to be supplied to the linker
script generator.

Additional Output File Gap Fill Value
arm_linker_additional_output_file_gap_fillString

The value to fill gaps between sections in additional
output file.

https://wiki.segger.com/Embedded_Studio_Library_IO
https://wiki.segger.com/Embedded_Studio_Library_IO

Embedded Studio for ARM Reference Manual Appendices

406

Additional Output Format
linker_output_formatEnumeration

The format used when creating an additional linked
output file.The options are:

None do not create an additional output file.
bin create a binary file.
srec create a Motorola S-Record file.
hex create an Intel Hex file.

Additional System Libraries
linker_additional_system_librariesStringList

Enables additional system libraries to be supplied to
the linker.

Align ro Section [segger-ld]
link_align_roEnumeration

Specifies the linker byte alignment of the ro section

Align rw Section [segger-ld]
link_align_rwEnumeration

Specifies the linker byte alignment of the rw section

Align rx Section [segger-ld]
link_align_rxEnumeration

Specifies the linker byte alignment of the rx section

Align zi Section [segger-ld]
link_align_ziEnumeration

Specifies the linker byte alignment of the zi section

Allow Multiple Symbol Definition
arm_linker_allow_multiple_definitionBoolean

Do not report error if the same symbol is defined more
than once in object files/libraries.

Backup Additional Linker Options
link_additional_options_backupString

Value of additional linker options prior to generic
options processing

Breakpad Symbols Directory
linker_breakpad_symbols_directoryString

Specifies location of the breakpad symbols directory.

CMSE Import Library File
arm_linker_cmse_import_library_file_nameFileName

Specifies the name of the CMSE import library to
generate.

Check CMSE Import Library File
arm_linker_check_cmse_import_library_file_nameFileName

Specifies the name of the file to check the generated
CMSE import library with.

Check For Memory Section Overflow
arm_library_check_memory_section_overflowBoolean

Specifies whether the linker should check whether
program sections exceed their specified size.

Check For Memory Segment Overflow
arm_library_check_memory_segment_overflowBoolean

Specifies whether the linker should check whether
program sections fit in their memory segments.

Deduplicate Code Sections [segger-ld]
link_dedupe_codeBoolean

Specifies whether the linker finds readonly code
sections that are identical and discard duplicates.

Deduplicate Data Sections [segger-ld]
link_dedupe_dataBoolean

Specifies whether the linker finds readonly data
sections that are identical and discard duplicates.

Default Fill Pattern
arm_linker_script_generator_default_fill_patternString

Specifies the default pattern used to fill unspecified
regions of memory in a generated linker script. This
pattern maybe overidden by the fill attribute of a
program section in the section placement file.

Emit Relocations
arm_linker_emit_relocationsBoolean

Output relocation information into the executable.

Embedded Studio for ARM Reference Manual Appendices

407

Entry Point
gcc_entry_pointString

Specifies the entry point of the program.

Generate Breakpad Symbols
linker_generate_breakpad_symbolsBoolean

Specifies whether to generate breakpad symbols from
the linked image.

Generate Linker Map File
linker_map_fileBoolean

Specifies whether to generate a linkage map file.

Generate Log File [segger-ld]
linker_log_fileBoolean

Specifies whether to generate a linkage log file.

Generate Map File [segger-ld]
link_map_fileEnumeration

Specifies whether to generate a linkage map file.

Indirect File Supported
linker_use_indirect_filesBoolean

Linker can use @indirect file for input files.

Inline Small Functions [segger-ld]
link_inlineBoolean

Specifies whether the linker inlines small functions at
the call site rather than calling the function.

Keep Indirect Files
linker_keep_indirect_filesBoolean

Keep generated linker indirect files.

Keep Symbols
linker_keep_symbolsStringList

Specifies the symbols that should be kept by the linker
even if they are not reachable.

Link Dependent Projects
link_dependent_projectsBoolean

Specifies whether to link the output of dependent
library projects.

Linker
arm_linker_variantEnumeration

Specifies which linker to use.

Linker Map File Name
linker_map_file_nameFileName

The file name to contain the linkage map file.

Linker Script File
link_linker_script_fileProjFileName

The name of the manual linker script file.

Linker Search Path
arm_linker_search_pathStringList

Specify the linker script search path.

Linker Symbol Definitions
link_symbol_definitionsStringList

Specifies one or more linker symbol definitions.

Map File Format [segger-ld]
link_map_file_formatEnumeration

Specifies map file format generated by the linker.

Memory Map File
linker_memory_map_fileProjFileName

The name of the file containing the memory map
description.

Memory Map Macros
linker_memory_map_macrosStringList

Macro values to substitue in memory map nodes. Each
macro is defined as name=value and are seperated by
;.

Embedded Studio for ARM Reference Manual Appendices

408

Memory Segments
linker_section_placements_segmentsString

The start, access and size of named segments in the
target, these are used when no memory map file is
available.Each segment is specified by NAME RWX
HEXSTART HEXSIZE for example FLASH RX 0x08000000
0x00010000

Merge Sections [segger-ld]
link_merge_sectionsBoolean

Specifies whether the linker merges compatible
sections.

Merge String Constants [segger-ld]
link_merge_stringsBoolean

Specifies whether the linker merges duplicate string
constants.

No Enum Size Warning
arm_linker_no_enum_size_warningBoolean

Do not generate warnings when object files have
different ARM EABI enum size attributes.

No Start File
arm_linker_no_start_filesBoolean

Do not use startup files when linking.

No Wide Char Size Warning
arm_linker_no_wchar_size_warningBoolean

Do not generate warnings when object files have
different ARM EABI wide character size attributes.

Pad ro Section [segger-ld]
link_pad_roBoolean

Specifies whether the linker pads the ro section

Pad rw Section [segger-ld]
link_pad_rwBoolean

Specifies whether the linker pads the rw section

Pad rx Section [segger-ld]
link_pad_rxBoolean

Specifies whether the linker pads the rx section

Pad zi Section [segger-ld]
link_pad_ziBoolean

Specifies whether the linker pads the zi section

Section Placement File
linker_section_placement_fileProjFileName

The name of the file containing section placement
description.

Section Placement Macros
linker_section_placement_macrosStringList

Macro values to substitue in section placement nodes -
MACRO1=value1;MACRO2=value2.

Start/End Group Required
linker_requires_start_groupBoolean

Linker requires --start-group and --end-group for input
files.

Strip Debug Information
linker_strip_debug_informationBoolean

Specifies whether debug information should be
stripped from the linked image.

Strip Symbols
gcc_strip_symbolsBoolean

Specifies whether symbols should be stripped.

Supply Memory Segments To Linker [segger-ld]
linker_supply_memory_segmentsBoolean

Specifies whether to supply memory segments on the
linker command line.

Suppress Warning on Executable Stack
arm_linker_no_warn_on_executable_stackBoolean

No warning on executable stack.

Suppress Warning on Mismatch
arm_linker_no_warn_on_mismatchBoolean

No warning on mismatched object files/libraries.

Suppress Warning on RWX Segments
arm_linker_no_warn_on_rwx_segmentsBoolean

No warning on RWX segments.

Embedded Studio for ARM Reference Manual Appendices

409

Symbols File
arm_linker_symbols_filesFileName

Specify the name of a symbols file to link.

Treat Libraries As Object Files
linker_treat_libraries_as_object_filesBoolean

Specifies whether the linker treats libraries as a set of
object files.

Treat Linker Warnings as Errors
arm_linker_treat_warnings_as_errorsBoolean

Treat linker warnings as errors.

Use Manual Linker Script
link_use_linker_script_fileBoolean

Specifies whether to use a manual linker script.

Package
Property Description

Package Dependencies
package_dependenciesStringList

Specifies the packages the current project depends
upon.

Package Directory
package_directoryDirPath

Specifies the directory packages are installed to. If no
directory is specified, the default package directory is
used.

Preprocessor
Property Description

Ignore Includes
c_ignore_includesBoolean

Ignore the include directories properties.

Include Files
c_include_filesStringList

Specifies the list of files to include before
preprocessing. This property will have macro
expansion applied to it.

Include Files Assembler Only
c_include_files_asm_onlyStringList

Specifies the list of files to include before
preprocessing. This property will have macro
expansion applied to it.

Include Files C Compiler Only
c_include_files_c_onlyStringList

Specifies the list of files to include before
preprocessing. This property will have macro
expansion applied to it.

Include Files C++ Compiler Only
c_include_files_cpp_onlyStringList

Specifies the list of files to include before
preprocessing. This property will have macro
expansion applied to it.

Preprocessor Definitions
c_preprocessor_definitionsStringList

Specifies one or more preprocessor definitions. This
property will have macro expansion applied to it.

Preprocessor Definitions Assembler Only
c_preprocessor_definitions_asm_onlyStringList

Specifies one or more preprocessor definitions. This
property will have macro expansion applied to it.

Preprocessor Definitions C Compiler Only
c_preprocessor_definitions_c_onlyStringList

Specifies one or more preprocessor definitions. This
property will have macro expansion applied to it.

Embedded Studio for ARM Reference Manual Appendices

410

Preprocessor Definitions C++ Compiler Only
c_preprocessor_definitions_cpp_onlyStringList

Specifies one or more preprocessor definitions. This
property will have macro expansion applied to it.

Preprocessor Undefinitions
c_preprocessor_undefinitionsStringList

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

Preprocessor Undefinitions Assembler Only
c_preprocessor_undefinitions_asm_onlyStringList

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

Preprocessor Undefinitions C Compiler Only
c_preprocessor_undefinitions_c_onlyStringList

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

Preprocessor Undefinitions C++ Compiler Only
c_preprocessor_undefinitions_cpp_onlyStringList

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

System Include Directories
c_system_include_directoriesStringList

Specifies the system include path. This property will
have macro expansion applied to it.

Undefine All Preprocessor Definitions
c_undefine_all_preprocessor_definitionsBoolean

Does not define any standard preprocessor definitions.

User Include Directories
c_user_include_directoriesStringList

Specifies the user include path. This property will have
macro expansion applied to it.

User Include Directories Assembler Only
c_user_include_directories_asm_onlyStringList

Specifies the user include path. This property will have
macro expansion applied to it.

User Include Directories C Compiler Only
c_user_include_directories_c_onlyStringList

Specifies the user include path. This property will have
macro expansion applied to it.

User Include Directories C++ Compiler Only
c_user_include_directories_cpp_onlyStringList

Specifies the user include path. This property will have
macro expansion applied to it.

Printf/Scanf
Property Description

Printf Floating Point Supported
linker_printf_fp_enabledEnumeration

Are floating point numbers supported by the printf
function group.

Printf Integer Support
linker_printf_fmt_levelEnumeration

The largest integer type supported by the printf
function group.

Printf Width/Precision Supported
linker_printf_width_precision_supportedBoolean

Enables support for width and precision specification
in the printf function group.

Scanf Classes Supported
linker_scanf_character_group_matching_enabledBoolean

Enables support for %[...] and %[^...] character class
matching in the scanf functions.

Scanf Floating Point Supported
linker_scanf_fp_enabledBoolean

Are floating point numbers supported by the scanf
function group.

Scanf Integer Support
linker_scanf_fmt_levelEnumeration

The largest integer type supported by the scanf
function group.

Wide Characters Supported
linker_printf_wchar_enabledBoolean

Are wide characters supported by the printf function
group.

Embedded Studio for ARM Reference Manual Appendices

411

Project
Property Description

Flag
project_flagEnumeration

Flag which you can use to draw attention to important
projects in your solution.

Runtime Memory Area
Property Description

Heap Size
arm_linker_heap_sizeIntegerRange

The size of the heap in bytes. The size must be a
multiple of 8. The preprocessor define __HEAP_SIZE__
is set to this value.

Main Stack Size
arm_linker_stack_sizeIntegerRange

The size of the main stack in bytes. The size must be a
multiple of 8.

Process Stack Size
arm_linker_process_stack_sizeIntegerRange

The size of the process stack in bytes. The size must be
a multiple of 8.

Stack Size (Abort Mode)
arm_linker_abt_stack_sizeIntegerRange

The size of the Abort mode stack in bytes. The size
must be a multiple of 8.

Stack Size (FIQ Mode)
arm_linker_fiq_stack_sizeIntegerRange

The size of the FIQ mode stack in bytes. The size must
be a multiple of 8.

Stack Size (IRQ Mode)
arm_linker_irq_stack_sizeIntegerRange

The size of the IRQ mode stack in bytes. The size must
be a multiple of 8.

Stack Size (Supervisor Mode)
arm_linker_svc_stack_sizeIntegerRange

The size of the Supervisor mode stack in bytes. The size
must be a multiple of 8.

Stack Size (Undefined Mode)
arm_linker_und_stack_sizeIntegerRange

The size of the Undefined mode stack in bytes. The size
must be a multiple of 8.

Section
Property Description

Code Section Name
default_code_sectionString

Specifies the default name to use for the program code
section.

Constant Section Name
default_const_sectionString

Specifies the default name to use for the read-only
constant section.

Data Section Name
default_data_sectionString

Specifies the default name to use for the initialized,
writable data section.

ISR Section Name
default_isr_sectionString

Specifies the default name to use for the ISR code.

Vector Section Name
default_vector_sectionString

Specifies the default name to use for the interrupt
vector section.

Embedded Studio for ARM Reference Manual Appendices

412

Zeroed Section Name
default_zeroed_sectionString

Specifies the default name to use for the zero-
initialized, writable data section.

Solution
Property Description

Flag
solution_flagEnumeration

Flag which you can use to draw attention to important
projects in your solution.

Properties Filter
properties_filterStringList

The names of project properties that can be displayed
at the solution

Source Code
Property Description

Additional Code Completion Compiler Options
code_completion_optionsStringList

Additional source indexing and code completion
compiler options.

Inhibit Source Indexing
project_inhibit_indexingBoolean

Disable source indexing and code completion for files/
folders/projects that would normally be indexed (C/C+
+ files in executable and library projects).

Source Code Control Directory
source_code_control_directoryDirPath

Source code control directory root.

Staging
Property Description

Output File Path
stage_output_filepathString

The output file path the stage command will create.
This property will have macro expansion applied to it.

Set To Read-only
stage_set_readonlyEnumeration

Set the output file permissions to read only or read/
write.

Stage Command
stage_commandCommandLine

The command to execute. This property will have
macro expansion applied to it with the additional
$(StageOutputFilePath) macro set to the output
filepath of the stage command.

Stage Command Working Directory
stage_command_wdString

The working directory in which the stage command is
run. This property will have macro expansion applied
to it.

Stage Project Command
stage_post_build_commandCommandLine

The command to execute after staging commands
have executed. This property will have macro
expansion applied to it.

Embedded Studio for ARM Reference Manual Appendices

413

Stage Project Command Working Directory
stage_post_build_command_wdString

The working directory where the post build command
runs. This property will have macro expansion applied
to it.

User Build Step

Property Description

Link Patch Command
linker_patch_build_commandCommandLine

A command to run after the link but prior to additional
binary file generation. This property will have
macro expansion applied to it with the additional
$(TargetPath) macro set to the output filepath of the
linker command.

Link Patch Working Directory
linker_patch_build_command_wdDirPath

The working directory where the link patch command
is run. This property will have macro expansion applied
to it.

Post-Archive Command
archive_post_build_commandCommandLine

A command to run after the archive command has
completed.This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the archive command.

Post-Archive Working Directory
archive_post_build_command_wdDirPath

The working directory where the post-archive
command is run. This property will have macro
expansion applied to it.

Post-Build Command
post_build_commandCommandLine

The command to execute after a project build. This
property will have macro expansion applied to it.

Post-Build Command Control
post_build_command_controlEnumeration

Controls when the post-build command is run, either
Always Run or when Run When Build Has Occurred.

Post-Build Command Working Directory
post_build_command_wdString

The working directory in which the post-build
command is run. This property will have macro
expansion applied to it.

Post-Compile Command
compile_post_build_commandCommandLine

A command to run after the compile command has
completed. This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the compiler command.

Post-Compile Working Directory
compile_post_build_command_wdDirPath

The working directory where the post-compile
command is run. This property will have macro
expansion applied to it.

Post-Link Command
linker_post_build_commandCommandLine

A command to run after the link command has
completed.This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the linker command and
$(PostLinkOutputFilePath) set to the value of the
output filepath of the post link command.

Embedded Studio for ARM Reference Manual Appendices

414

Post-Link Output File
linker_post_build_command_output_fileString

The name of the file created by the post-link
command. This property will have macro expansion
applied to it.

Post-Link Working Directory
linker_post_build_command_wdDirPath

The working directory where the post-link command is
run. This property will have macro expansion applied
to it.

Pre-Build Command
pre_build_commandCommandLine

The command to execute before a project build. This
property will have macro expansion applied to it.

Pre-Build Command Control
pre_build_command_controlEnumeration

Controls when the pre-build command is run, either
Always Run or when Run When Build Required.

Pre-Build Command Working Directory
pre_build_command_wdString

The working directory in which the pre-build
command is run. This property will have macro
expansion applied to it.

Pre-Compile Command
compile_pre_build_commandCommandLine

A command to run before the compile command. This
property will have macro expansion applied to it.

Pre-Compile Command Output File Path
compile_pre_build_command_output_file_nameString

The pre-compile generated file name. This property
will have macro expansion applied to it.

Pre-Compile Working Directory
compile_pre_build_command_wdDirPath

The working directory where the pre-compile
command is run. This property will have macro
expansion applied to it.

Pre-Link Command
linker_pre_build_commandCommandLine

A command to run before the link command. This
property will have macro expansion applied to it.

Pre-Link Working Directory
linker_pre_build_command_wdDirPath

The working directory where the pre-link command is
run. This property will have macro expansion applied
to it.

Embedded Studio for ARM Reference Manual Appendices

415

Debug Options

Debugger

Property Description

Alternative LDR Disassembly
debug_alternative_ldr_disBoolean

Show alternative disassembly of ldr*/vldr instructions

CPU Register File
debug_cpu_registers_fileProjFileName

The name of the file containing CPU register
definitions.

Command Arguments
debug_command_argumentsString

The command arguments passed to the executable.
This property will have macro expansion applied to it.

Debug Additional Configurations
debug_additional_configurationsStringList

The debugger will load and debug the specified
additional configurations.

Debug Additional Projects
debug_dependent_projectsStringList

The debugger will load (if not already loaded by
Load Additional Projects) and debug the specified
additional projects.

Debug Project Name
debug_project_nameString

The name of the project used by the debugger when
debugging multiple projects

Debug Symbols File[0]
external_debug_symbols_file_nameProjFileName

The name of the debug symbols file. This property will
have macro expansion applied to it. If it is not defined
then the main load file is used.

Debug Symbols File[1]
external_debug_symbols_file_name1ProjFileName

The name of the debug symbols file. This property will
have macro expansion applied to it. If it is not defined
then the main load file is used.

Debug Symbols File[2]
external_debug_symbols_file_name2ProjFileName

The name of the debug symbols file. This property will
have macro expansion applied to it. If it is not defined
then the main load file is used.

Debug Symbols File[3]
external_debug_symbols_file_name3ProjFileName

The name of the debug symbols file. This property will
have macro expansion applied to it. If it is not defined
then the main load file is used.

Debug Symbols Load Address[0]
external_debug_symbols_load_addressString

The (code) address to be added to the debug symbol
(code) addresses.

Debug Symbols Load Address[1]
external_debug_symbols_load_address1String

The (code) address to be added to the debug symbol
(code) addresses.

Debug Symbols Load Address[2]
external_debug_symbols_load_address2String

The (code) address to be added to the debug symbol
(code) addresses.

Debug Symbols Load Address[3]
external_debug_symbols_load_address3String

The (code) address to be added to the debug symbol
(code) addresses.

Debug Terminal Log File
debug_terminal_log_fileUnknown

A file to write the output from the debug terminal to.

Embedded Studio for ARM Reference Manual Appendices

416

Default debugIO implementation
arm_debugIO_ImplementationEnumeration

The default debugIO implementation used by the
debugger if symbols are unavailable.

Display DCC data
arm_display_DCCBoolean

The debugger will display data that is written to the
DCC when debugIO is not used.

Entry Point Symbol
debug_entry_point_symbolString

Debugger will start execution at symbol if defined.

Has Hypervisor Mode
arm_has_hypervisor_modeBoolean

Show hypervisor mode registers

Has Monitor Mode
arm_has_monitor_modeBoolean

Show monitor mode registers

Has Vector Catch
arm_has_vector_catchBoolean

Vector catching is supported

Ignore .debug_aranges Section
debug_ignore_debug_arangesBoolean

The debugger will not use the .debug_aranges section.

Ignore .debug_frame Section
debug_ignore_debug_frameBoolean

The debugger will not use the .debug_frame section.

Load Additional Projects
debug_load_additional_projectsStringList

The debugger will load the outputs of the specified
additional projects.

Memory Upload Page Size
debug_memory_upload_page_sizeInteger

The aligned page size the debugger uses when
uploading address ranges.

RTT Control Block Address
debug_RTTCBString

The symbol or 0x prefixed address of the RTT control
block.

RTT Enable
debug_enable_RTTBoolean

If enabled the debugger will service RTT input/output
in the debug terminal.

Register Definition File
debug_register_definition_fileProjFileName

The name of the file containing register definitions.

Reserved Member Name
reservedMember_nameString

The struct reserved member name. Struct members
that contain the (case insensitive) string will not be
displayed.

Restrict Memory Access
debug_restrict_memory_accessBoolean

If enabled the debugger will only display variables and
backtrace in the address ranges of the memory map or
the sections in the elf file.

Run To
debug_initial_breakpointString

The initial breakpoint to set

Run To Control
debug_initial_breakpoint_set_optionEnumeration

Specify when the initial breakpoint should be set

Start Address
external_start_addressString

The address to start the externally built executable
running from.

Start From Entry Point Symbol
debug_start_from_entry_point_symbolBoolean

If yes the debugger will start execution from the entry
point symbol.If no the debugger will start execution
from the core specific location.

Embedded Studio for ARM Reference Manual Appendices

417

Starting Stack Pointer Value
debug_stack_pointer_startString

The symbol or 0x prefixed value to set the stack
pointer on start debugging.

Startup Completion Point
debug_startup_completion_pointString

Specifies the point in the program where startup is
complete. Software breakpoints and debugIO will be
enabled after this point has been reached.

Target Connection
debug_target_connectionEnumeration

Specifies the target to connect to for debugging
actions.

Target Device
arm_target_device_nameString

The name of the device to connect to. The macro
$(Target) is substituted with the Target Processor
project property value.

Thread Maximum
debug_threads_maxIntegerRange

The maximum number of threads to display.

Threads Script File
debug_threads_scriptProjFileName

The threads script used by the debugger.

Type Interpretation File
debug_type_fileFileName

Specifies the type interpretation file to use.

Working Directory
debug_working_directoryDirPath

The working directory for a debug session. This
property will have macro expansion applied to it.

GDB Server
Property Description

Allow Memory Access During Execution
gdb_server_allow_memory_access_during_executionBoolean

Specifies whether memory can be access while target
is running. If set to No, target will be stopped each
time memory is accessed.

Auto Start GDB Server
gdb_server_autostart_serverBoolean

Specifies whether a GDB server should be started on
connect.

Breakpoint Types
gdb_breakpoint_typesEnumeration

Specifies the type of breakpoints to use.

Connect Timeout
gdb_server_connect_timeoutInteger

The length of time in seconds to attempt to connect to
server before failing.

GDB Server Command Line
gdb_server_command_lineCommandLine

The command line to start the gdb server

Host
gdb_server_hostnameString

The hostname of the GDB server to connect to.

Ignore Checksum Errors
gdb_server_ignore_checksum_errorsBoolean

Specifies whether an incorrect GDB server checksum
causes and error.

Log File
gdb_server_log_fileUnknown

Specifies a file to output a log of GDB server
transactions to.

Port
gdb_server_portInteger

The port number to use to connect to the GDB server.

Embedded Studio for ARM Reference Manual Appendices

418

Read Timeout
gdb_server_read_timeoutInteger

The length of time in seconds to attempt to read from
server before failing.

Register Access
gdb_server_register_accessEnumeration

Specifies how registers are accessed

Reset and Stop Command
gdb_server_reset_commandString

The remote GDB server command to use to reset and
stop the target.

Target XML File
gdb_server_target_xml_fileFileName

If specified, points to a target.xml file to use in place of
file returned by the GDB server.

Type
gdb_server_typeEnumeration

Specifies the type of GDB server being connected
to. J-Link, OpenOCD, ST-LINK and pyOCD gdb server
implementations are currently supported.

Write Timeout
gdb_server_write_timeoutInteger

The length of time in seconds to attempt to write to
server before failing.

J-Link

Property Description

Additional J-Link Options
JLinkExecuteCommandStringList

Specify additional J-Link options to allow enabling or
disabling advanced features and fine tuning.
For more information see J-Link Command Strings

Enable Adaptive Clocking
adaptiveEnumeration

Adaptive clocking is enabled.

Exclude Flash Cache Range
JLinkExcludeFlashCacheRangeString

Address range to exclude from flash cache.
This can be specified by either 'start_address-
end_address' or 'address,size'.
For example: 0x08000000,0x10000.

Host Connection
ConnectionEnumeration

Defines how to connect the host to the J-Link:

"USB": Connect to J-Link via USB
"USB S/N": Connect to J-Link with specified serial
number via USB e.g. USB 174300001
"IP S/N": Connect to J-Link with specified serial
number via IP e.g. IP 174300001
"IP n.n.n.n port": Connect to J-Link with specified
IP address and optional port number e.g. IP
192.168.20.20 19020

JTAG Instruction Register Size Before Target
arm_linker_jtag_pad_post_irIntegerRange

Specifies the number of bits in the instruction
register before the target (as seen from TDI), which
is the number of bits to pad the JTAG instruction
register with the BYPASS instruction after the target
instruction.

https://wiki.segger.com/J-Link_Command_Strings

Embedded Studio for ARM Reference Manual Appendices

419

JTAG Number Of Devices Before Target
arm_linker_jtag_pad_post_drIntegerRange

Specifies the number of devices before the target (as
seen from TDI), which is the number of bits to pad the
JTAG data register.

Log File
JLinkLogFileNameFileName

The file to output the J-Link log to.

Script File
JLinkScriptFileNameFileName

The file path of the optional J-Link script file to use.

Show Log Messages In Output Window
JLinkShowLogBoolean

Display the J-Link log messages to the output window.

Speed
speedIntegerRange

The required JTAG clock frequency in kHz (0 to auto-
detect best possible).

Supply Power
supplyPowerBoolean

The J-Link supplies power to the target.

Target Interface Type
arm_target_interface_typeEnumeration

Specifies the type of interface the target has. The
options are:

JTAG - Use JTAG interface
SWD - Use SWD interface
cJTAG - Use cJTAG interface

Loader

Property Description

Additional Load File Address[0]
debug_additional_load_file_addressString

The address to load the additional load file.

Additional Load File Address[1]
debug_additional_load_file_address1String

The address to load the additional load file.

Additional Load File Address[2]
debug_additional_load_file_address2String

The address to load the additional load file.

Additional Load File Address[3]
debug_additional_load_file_address3String

The address to load the additional load file.

Additional Load File Type[0]
debug_additional_load_file_typeEnumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File Type[1]
debug_additional_load_file_type1Enumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File Type[2]
debug_additional_load_file_type2Enumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File Type[3]
debug_additional_load_file_type3Enumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File[0]
debug_additional_load_fileProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Embedded Studio for ARM Reference Manual Appendices

420

Additional Load File[1]
debug_additional_load_file1ProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional Load File[2]
debug_additional_load_file2ProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional Load File[3]
debug_additional_load_file3ProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Check Load Sections Fit Target Description
target_check_load_sections_fitBoolean

Specifies whether load sections in the program match
the memory segments described in the memory map.

Load ELF Address Limit
debug_load_file_offset_limitString

Restrict the Load ELF Offset.The Load ELF Offset will
not be added to addresses greater than or equal to this
address.

Load ELF Offset
debug_load_file_offsetString

The offset to add to the load addresses of the ELF
programs.This offset is added to any absolute
relocations of symbols (whose address is less than
Load ELF Offset Limit) if the load file contains
relocation sections.

Load ELF Sections
debug_load_sectionsEnumeration

The debugger will load ELF sections rather than ELF
programs.

Load File
external_build_file_nameProjFileName

The name of the main load file. This property will have
macro expansion applied to it. If it is not defined then
the output filepath of the linker command is used.

Load File Address
external_load_addressString

The address to download the main load file to.

Load File Type
external_load_file_typeEnumeration

The file type of the main load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

No Load Sections
target_loader_no_load_sectionsStringList

Names of (loadable) program sections or names of
memory segments not to load.

Simulator
Property Description

Memory Simulation File
arm_simulator_memory_simulation_filenameProjFileName

Specifies the dll that simulates the memory system.
This property will have macro expansion applied to it.
If not specified then the default memory simulation
will be used.

Memory Simulation Parameter
arm_simulator_memory_simulation_parameterString

Parameter passed to the memory simulation. This
property will have macro expansion applied to it.The
format of this is specific to the memory simulation.
The default memory simulation takes a list of RX|RWX
'hex start address', 'hex size in bytes', 'default hex
word value' for example RX 00000000, 10000000,
FFFFFFFF;RWX 10000000, 10000000, CDCDCDCD.

Embedded Studio for ARM Reference Manual Appendices

421

Memory Simulation Parameter Macros
arm_simulator_memory_simulation_parameter_macrosStringList

Macros to apply to the parameter passed to the
memory simulation on creation. If null then the macro
MemorySegments is set to the value of the address
ranges specified by the project.

Stop On Branch .
arm_simulator_stop_on_branch_dotBoolean

Stop when the simulator executes a b . instruction.

Stop On Memory Error
arm_simulator_stop_on_read_writeEnumeration

Specifies the simulator behaviour when a memory
error occurs.

Trace Buffer Size
arm_simulator_num_trace_entriesInteger

The number of trace entries to store.

Target Script

Property Description

Attach Script
target_attach_scriptJavaScript

The script that is executed when the target is attached
to.

Debug Begin Script
target_debug_begin_scriptJavaScript

The script that is executed when the debugger begins
a debug session.

Debug End Script
target_debug_end_scriptJavaScript

The script that is executed when the debugger ends a
debug session.

Load Begin Script
target_load_begin_scriptJavaScript

The script that is executed when the debugger begins
a load.

Load End Script
target_load_end_scriptJavaScript

The script that is executed when the debugger ends a
load.

Reset Script
target_reset_scriptJavaScript

The script that is executed when the target is reset.

Target Script File
target_script_fileFileName

The target script file, the contents of this file are
prepended to script project properties before they are
executed.

Target Trace

Property Description

ITM Stimulus Port To Display
arm_target_itm_stimulus_port_displayIntegerRange

Specifies the ITM Stimulus port to display in the debug
terminal -1 disables this

ITM Stimulus Ports Enable
arm_target_itm_stimulus_port_enableIntegerHex

Specifies the ITM Stimulus ports to enable.

ITM Stimulus Ports Privilege
arm_target_itm_stimulus_port_privilegeIntegerHex

Specifies the ITM Stimulus ports to enable.

Embedded Studio for ARM Reference Manual Appendices

422

ITM Timestamping
arm_target_itm_timestamping_enableEnumeration

Specifies ITM timestamping. The options are:

Disable - disable timestamping
Local - use the local timestamp clock
Global - use the global timestamp clock

ITM/DWT Data Trace PC
arm_target_dwt_data_trace_PCBoolean

Specifies whether to trace the PC on data trace.

ITM/DWT PC Sampling
arm_target_dwt_PC_sampling_enableEnumeration

Specifies the DWT PC sampling rate.

ITM/DWT Trace Exceptions
arm_target_dwt_trace_exceptionsBoolean

Specifies whether to trace exception entry and return.

MTB RAM Address
arm_target_mtb_ram_addressIntegerHex

Specifies the MTB RAM Address - note that this must
be aligned to the MTB RAM size.

MTB RAM Size
arm_target_mtb_ram_sizeEnumeration

Specifies the MTB RAM size in bytes.

SWO Baud Rate
arm_target_trace_SWO_speedIntegerRange

Specifies the baud rate of the SWO - zero selects auto
detection.

Trace Clock Speed
arm_target_trace_clock_speedIntegerRange

The speed of the trace clock. This is usually the same as
the CPU clock and is used to program the prescaler for
the SWO

Trace Interface Type
arm_target_trace_interface_typeEnumeration

Specifies the type of trace interface the target has. The
options are:

SWO - Use asynchronous SWO trace interface.
TracePort - Use synchronous parallel trace
interface.
ETB - Use on-chip embedded trace buffer.
MTB - Use on-chip MTB - Cortex-M0+ only.
None

Trace Port Size
arm_target_trace_port_sizeEnumeration

Specifies the trace port size the target has. The options
are:

1-bit
2-bit
4-bit
8-bit
16-bit
24-bit
32-bit

Embedded Studio for ARM Reference Manual Appendices

423

System Macros

System Macro Values
Property Description

$(Date)
$(Date)String

Day Month Year e.g. 21 June 2011.

$(DateDay)
$(DateDay)String

Day e.g. 21.

$(DateMonth)
$(DateMonth)String

Month e.g. 01 to 12.

$(DateYear)
$(DateYear)String

Year e.g. 2011.

$(DesktopDir)
$(DesktopDir)String

Path to users desktop directory.

$(DocumentsDir)
$(DocumentsDir)String

Path to users documents directory.

$(EmbeddedStudioVersionNumber)
$(EmbeddedStudioVersionNumber)String

The release version number.

$(HomeDir)
$(HomeDir)String

Path to users home directory.

$(HostArch)
$(HostArch)String

The CPU architecture that SEGGER Embedded Studio is
running on e.g. x86.

$(HostArchClass)
$(HostArchClass)String

The class of CPU architecture that SEGGER Embedded
Studio is running on e.g. intel, arm.

$(HostDLL)
$(HostDLL)String

The file extension for dynamic link libraries on the CPU
that SEGGER Embedded Studio is running on e.g. .dll.

$(HostDLLExt)
$(HostDLLExt)String

The file extension for dynamic link libraries used by the
operating system that SEGGER Embedded Studio is
running on e.g. .dll, .so, .dylib.

$(HostEXE)
$(HostEXE)String

The file extension for executables on the CPU that
SEGGER Embedded Studio is running on e.g. .exe.

$(HostOS)
$(HostOS)String

The name of the operating system that SEGGER
Embedded Studio is running on e.g. win.

$(JLinkDir)
$(JLinkDir)String

Path to J-Link software.

$(Micro)
$(Micro)String

The SEGGER Embedded Studio target e.g. ARM.

$(PackagesDir)
$(PackagesDir)String

Path to the users packages directory.

Embedded Studio for ARM Reference Manual Appendices

424

$(Platform)
$(Platform)String

The target platform.

$(ProductNameShort)
$(ProductNameShort)String

The product name.

$(StudioArchiveFileExt)
$(StudioArchiveFileExt)String

The filename extension of a studio archive file.

$(StudioBuildToolExeName)
$(StudioBuildToolExeName)String

The filename of the build tool executable.

$(StudioBuildToolName)
$(StudioBuildToolName)String

The name of the build tool executable.

$(StudioDir)
$(StudioDir)String

The install directory of the product.

$(StudioExeName)
$(StudioExeName)String

The filename of the studio executable.

$(StudioLicenseToolExeName)
$(StudioLicenseToolExeName)String

The filename of the license tool executable.

$(StudioLicenseToolName)
$(StudioLicenseToolName)String

The name of the license tool executable.

$(StudioMajorVersion)
$(StudioMajorVersion)String

The major release version of software.

$(StudioMinorVersion)
$(StudioMinorVersion)String

The minor release version of software.

$(StudioName)
$(StudioName)String

The full name of studio.

$(StudioNameShort)
$(StudioNameShort)String

The short name of studio.

$(StudioPackageFileExt)
$(StudioPackageFileExt)String

The filename extension of a studio package file.

$(StudioProjectFileExt)
$(StudioProjectFileExt)String

The filename extension of a studio project file.

$(StudioScriptToolExeName)
$(StudioScriptToolExeName)String

The filename of the script tool executable.

$(StudioScriptToolName)
$(StudioScriptToolName)String

The name of the script tool executable.

$(StudioSessionFileExt)
$(StudioSessionFileExt)String

The filename extension of a studio session file.

$(StudioSimulatorExeName)
$(StudioSimulatorExeName)String

The filename of the simulator executable.

$(StudioSimulatorName)
$(StudioSimulatorName)String

The name of the simulator executable.

Embedded Studio for ARM Reference Manual Appendices

425

$(StudioUserDir)
$(StudioUserDir)String

The directory containing the user data.

$(TargetID)
$(TargetID)String

ID number representing the SEGGER Embedded Studio
target.

$(Time)
$(Time)String

Hour:Minutes:Seconds e.g. 15:34:03.

$(TimeHour)
$(TimeHour)String

Hour e.g. 15.

$(TimeMinute)
$(TimeMinute)String

Minute e.g. 34.

$(TimeSecond)
$(TimeSecond)String

Seconds e.g. 03.

$(UnixTime)
$(UnixTime)String

Seconds since 00:00, Jan 1 1970 UTC

Embedded Studio for ARM Reference Manual Appendices

426

Build Macros

(Build Macro Values)

Property Description

$(AR)
$(AR)String

The path to the binutils ar command.

$(AS)
$(AS)String

The path to the binutils as command.

$(Arch)
$(Arch)String

The lower case value of the ARM Architecture project
property.

$(AsmOptions)
$(AsmOptions)String

A space seperated list of assembler options for the
external assemble command.

$(CC)
$(CC)String

The path to the cc command.

$(CC1)
$(CC1)String

The path to the gcc cc1 command.

$(CLANG)
$(CLANG)String

The path to the clang command.

$(CLANGTIDY)
$(CLANGTIDY)String

The path to the clang-tidy command.

$(COnlyOptions)
$(COnlyOptions)String

A space seperated list of compiler options for the
external c compile command.

$(COptions)
$(COptions)String

A space seperated list of compiler options for the
external c and c++ compile commands.

$(CombiningOutputFilePath)
$(CombiningOutputFilePath)String

The full path of the output file of the combining
command.

$(CombiningRelInputPaths)
$(CombiningRelInputPaths)String

The relative inputs to the combining command.

$(Configuration)
$(Configuration)String

The build configuration e.g. ARM Flash Debug.

$(CoreType)
$(CoreType)String

The lower case value of the ARM Core Type project
property.

$(Defines)
$(Defines)String

The preprocessor defines property value for the
external compile command.

$(DependencyPath)
$(DependencyPath)String

The path of the dependency file for the external
compile command.

$(EXE)
$(EXE)String

The default file extension for an executable file
including the dot e.g. .elf.

Embedded Studio for ARM Reference Manual Appendices

427

$(Endian)
$(Endian)String

The lower case value of the Byte Order project
property.

$(FPABI)
$(FPABI)String

The value of the ARM FP ABI Type project property.

$(FPU)
$(FPU)String

The lower case value of the ARM FPU Type project
property.

$(FPU2)
$(FPU2)String

Alternative value of the ARM FPU Type project
property.

$(FPU3)
$(FPU3)String

Alternative value of the ARM FPU Type project
property.

$(FolderName)
$(FolderName)String

The folder name of the containing folder.

$(FolderPath)
$(FolderPath)String

The folder path of the containing folders.

$(GCC)
$(GCC)String

The path to the gcc command.

$(GCCPrefix)
$(GCCPrefix)String

The macro-expanded value of the GCC Prefix project
property.

$(GCCTarget)
$(GCCTarget)String

The macro-expanded value of the GCC Target project
property.

$(GCCVersion)
$(GCCVersion)String

The macro-expanded value of the GCC Version project
property.

$(GPLUSPLUS)
$(GPLUSPLUS)String

The path to the g++ command.

$(IncludeFiles)
$(IncludeFiles)String

The user includes property value for the external
compile command.

$(Includes)
$(Includes)String

The user directories property value for the external
compile command.

$(InputDir)
$(InputDir)String

The absolute directory of the input file.

$(InputExt)
$(InputExt)String

The extension of an input file not including the dot e.g
cpp.

$(InputFileName)
$(InputFileName)String

The name of an input file relative to the project
directory.

$(InputName)
$(InputName)String

The name of an input file relative to the project
directory without the extension.

$(InputPath)
$(InputPath)String

The absolute name of an input file including the
extension.

$(IntDir)
$(IntDir)String

The macro-expanded value of the Intermediate
Directory project property.

Embedded Studio for ARM Reference Manual Appendices

428

$(LD)
$(LD)String

The path to the binutils ld command.

$(LIB)
$(LIB)String

The default file extension for a library file including the
dot e.g. .lib.

$(LIBLTO)
$(LIBLTO)String

The path to the LTO dll.

$(LTO1)
$(LTO1)String

The path to the gcc lto1 command.

$(LibArch)
$(LibArch)String

The library architecture.

$(LibEndianExt)
$(LibEndianExt)String

The endian specific library extension.

$(LibExt)
$(LibExt)String

The architecture and build specific library extension.

$(LinkLibraries)
$(LinkLibraries)String

The value of the Standard Libraries Directory project
property.

$(LinkOptions)
$(LinkOptions)String

A space seperated list of compiler options for the
external link command.

$(LinkerScriptPath)
$(LinkerScriptPath)String

The full path of the linker script file for the link
command.

$(MapPath)
$(MapPath)String

The full path of the map file of the external link
command.

$(MemorySegments)
$(MemorySegments)String

The value of the Memory Segments property supplied
to pre/post link command.

$(OBJ)
$(OBJ)String

The default file extension for an object file including
the dot e.g. .o.

$(OBJCOPY)
$(OBJCOPY)String

The path to the binutils objcopy command.

$(OBJDUMP)
$(OBJDUMP)String

The path to the binutils objdump command.

$(Objects)
$(Objects)String

A space seperated list of files for the external archive or
link command.

$(ObjectsFilePath)
$(ObjectsFilePath)String

The full path containing the files for the external
archive or link command.

$(OutDir)
$(OutDir)String

The macro-expanded value of the Output Directory
project property.

$(PackageExt)
$(PackageExt)String

The file extension of a package file e.g. emPackage.

$(PostLinkOutputFilePath)
$(PostLinkOutputFilePath)String

The full path of the output file of the post link
command.

Embedded Studio for ARM Reference Manual Appendices

429

$(ProjectDir)
$(ProjectDir)String

The absolute value of the Project Directory project
property of the current proje ct. If this isn't set then the
directory containing the solution file.

$(ProjectName)
$(ProjectName)String

The project name of the current project.

$(ProjectNodeName)
$(ProjectNodeName)String

The name of the selected project node.

$(RANLIB)
$(RANLIB)String

The path to the binutils ranlib command.

$(RelDependencyPath)
$(RelDependencyPath)String

The relative path of the dependency file for the
external compile command.

$(RelInputDir)
$(RelInputDir)String

The relative path to the directory containing the input
file from the project directory or dot if not relative.

$(RelInputPath)
$(RelInputPath)String

The relative path to the input file from the project
directory or the full path if not relative.

$(RelLinkerScriptPath)
$(RelLinkerScriptPath)String

The relative path of the linker script file for the link
command.

$(RelMapPath)
$(RelMapPath)String

The relative path of the map file of the external link
command.

$(RelObjectsFilePath)
$(RelObjectsFilePath)String

The relative path containing the files for the external
archive or link command.

$(RelTargetPath)
$(RelTargetPath)String

The project directory relative path of the output file of
the link or compile command.

$(RootOutDir)
$(RootOutDir)String

The macro-expanded value of the Root Output
Directory project property.

$(RootRelativeOutDir)
$(RootRelativeOutDir)String

The relative path to get from the path specified by
the Output Directory project property to the path
specified by the Root Output Directory project
property.

$(SASM)
$(SASM)String

The path to the SEGGER assembler.

$(SCC)
$(SCC)String

The path to the SEGGER compiler.

$(SLINK)
$(SLINK)String

The path to the SEGGER linker.

$(STRIP)
$(STRIP)String

The path to the binutils strip command.

$(SolutionDir)
$(SolutionDir)String

The absolute path of the directory containing the
solution file.

$(SolutionExt)
$(SolutionExt)String

The extension of the solution file without the dot.

Embedded Studio for ARM Reference Manual Appendices

430

$(SolutionFileName)
$(SolutionFileName)String

The filename of the solution file.

$(SolutionName)
$(SolutionName)String

The basename of the solution file.

$(SolutionPath)
$(SolutionPath)String

The absolute path of the solution file.

$(StageOutputFilePath)
$(StageOutputFilePath)String

The full path of the output file of the stage command.

$(TargetPath)
$(TargetPath)String

The full path of the output file of the link or compile
command.

$(ToolChainDir)
$(ToolChainDir)String

The macro-expanded value of the Tool Chain
Directory project property.

$(Undefines)
$(Undefines)String

The preprocessor undefines property value for the
external compile command.

Embedded Studio for ARM Reference Manual Appendices

431

BinaryFile
The following table lists the BinaryFile object's member functions.

BinaryFile.crc32(offset, length) returns the CRC-32 checksum of an address range length bytes long, starting
at offset. This function computes a CRC-32 checksum on a block of data using the standard CRC-32 polynomial
(0x04C11DB7) with an initial value of 0xFFFFFFFF. Note that this implementation doesn't reflect the input or the
output and the result is inverted.

BinaryFile.length() returns the length of the binary file in bytes.

BinaryFile.load(path) loads binary file from path.

BinaryFile.loadAppend(path) loads binary file from path and appends it to the binary image.

BinaryFile.peekBytes(offset, length) returns byte array containing length bytes peeked from offset.

BinaryFile.peekUint32(offset, littleEndian) returns a 32-bit word peeked from offset. The littleEndian argument
specifies the endianness of the access, if true or undefined it will be little endian, otherwise it will be big endian.

BinaryFile.pokeBytes(offset, byteArray) poke byte array byteArray to offset.

BinaryFile.pokeUint32(offset, value, littleEndian) poke a value to 32-bit word located at offset. The littleEndian
argument specifies the endianness of the access, if true or undefined it will be little endian, otherwise it will be
big endian.

BinaryFile.resize(length, fill) resizes the binary image to length bytes. If the operation extends the size, the
binary image will be padded with bytes of value fill.

BinaryFile.save(path) saves binary file to path.

BinaryFile.saveRange(path, offset, length) saves part of the binary file to path. The offset argument specifies
the byte offset to start from. The length argument specifies the maximum number of bytes that should be
saved.

Embedded Studio for ARM Reference Manual Appendices

432

CWSys
The following table lists the CWSys object's member functions.

CWSys.appendStringToFile(path, string) appends string to the end of the file path.

CWSys.copyFile(srcPath, destPath) copies file srcPath to destPath.

CWSys.crc32(array) returns the CRC-32 checksum of the byte array array. This function computes a CRC-32
checksum on a block of data using the standard CRC-32 polynomial (0x04C11DB7) with an initial value of
0xFFFFFFFF. Note that this implementation doesn't reflect the input or the output and the result is inverted.

CWSys.fileExists(path) returns true if file path exists.

CWSys.fileSize(path) return the number of bytes in file path.

CWSys.getRunStderr() returns the stderr output from the last CWSys.run() call.

CWSys.getRunStdout() returns the stdout output from the last CWSys.run() call.

CWSys.makeDirectory(path) create the directory path.

CWSys.packU32(array, offset, number, le) packs number into the array at offset.

CWSys.popup(text, caption) prompt the user with text and return true for yes and false for no.

CWSys.readByteArrayFromFile(path) returns the byte array contained in the file path.

CWSys.readStringFromFile(path) returns the string contained in the file path.

CWSys.removeDirectory(path) remove the directory path.

CWSys.removeFile(path) deletes file path.

CWSys.renameFile(oldPath, newPath) renames file oldPath to be newPath.

CWSys.run(cmd, wait) runs command line cmd optionally waits for it to complete if wait is true.

CWSys.unpackU32(array, offset, le) returns the number unpacked from the array at offset.

CWSys.writeByteArrayToFile(path, array) creates a file path containing the byte array array.

CWSys.writeStringToFile(path, string) creates a file path containing string.

Embedded Studio for ARM Reference Manual Appendices

433

Debug
The following table lists the Debug object's member functions.

Debug.evaluate(expression) evaluates debug expression and returns it as a JavaScript value.

Debug.getfunction(address) return function name containing address.

Embedded Studio for ARM Reference Manual Appendices

434

ElfFile
The following table lists the ElfFile object's member functions.

ElfFile.crc32(address, length, virtualNotPhysical, padding, programNotSection) returns the CRC-32
checksum of an address range length bytes long, located at address. If virtualNotPhysical is true or undefined,
address is a virtual address otherwise it is a physical address. If padding is defined, it specifies the byte value
used to fill gaps in the program. If programNotSection is true or undefined, data is read using program headers
rather than section headers. This function computes a CRC-32 checksum on a block of data using the standard
CRC-32 polynomial (0x04C11DB7) with an initial value of 0xFFFFFFFF. Note that this implementation doesn't
reflect the input or the output and the result is inverted.

ElfFile.findProgram(address) returns an object with start, the data and the size to allocate of the Elf program
that contains address.

ElfFile.getEntryPoint() returns the entry point in the ELF file.

ElfFile.getSection(name) returns an object with start and the data of the Elf section corresponding to the
name.

ElfFile.isLittleEndian() returns true if the Elf file has numbers encoded as little endian.

ElfFile.load(path) loads Elf file from path.

ElfFile.peekBytes(address, length, virtualNotPhysical, padding, programNotSection) returns byte array
containing length bytes peeked from address. If virtualNotPhysical is true or undefined, address is a virtual
address otherwise it is a physical address. If padding is defined, it specifies the byte value used to fill gaps in
the program. If programNotSection is true or undefined, data is read using program headers rather than section
headers.

ElfFile.peekUint32(address, virtualNotPhysical) returns a 32-bit word peeked from address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.pokeBytes(address, byteArray, virtualNotPhysical) poke byte array byteArray to address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.pokeUint32(address, value, virtualNotPhysical) poke a value to 32-bit word located at address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.save(path) saves Elf file to path.

ElfFile.symbolValue(symbol) returns the value of symbol in Elf file.

Embedded Studio for ARM Reference Manual Appendices

435

TargetInterface
The following table lists the TargetInterface object's member functions.

TargetInterface.crc32(address, length) reads a block of bytes from target memory starting at address for
length bytes, generates a crc32 on the block of bytes and returns it.

TargetInterface.delay(ms) waits for ms milliseconds

TargetInterface.error(message) terminates execution of the script and outputs a target interface error
message to the target log.

TargetInterface.executeFunction(address, parameter, timeout) calls a function at address with the parameter
and returns the function result. The timeout is in milliseconds.

TargetInterface.expandMacro(string) returns the string with macros expanded.

TargetInterface.findByte(address, length, byte) returns the index of the byte in the specified target memory
range.

TargetInterface.findNotByte(address, length, byte) returns the index of the byte that isn't in the specified
target memory range.

TargetInterface.getProjectProperty(savename) returns the value of the savename project property.

TargetInterface.getTargetProperty(savename) returns the value of the savename target property.

TargetInterface.go() allows the target to run.

TargetInterface.isStopped() returns true if the target is stopped.

TargetInterface.message(message) outputs a target interface message to the target log.

TargetInterface.peekBinary(address, length, filename) reads a block of bytes from target memory starting at
address for length bytes and writes them to filename.

TargetInterface.peekByte(address) reads a byte of target memory from address and returns it.

TargetInterface.peekBytes(address, length) reads a block of bytes from target memory starting at address for
length bytes and returns the result as an array containing the bytes read.

TargetInterface.peekMultUint16(address, length) reads length unsigned 16-bit integers from target memory
starting at address and returns them as an array.

TargetInterface.peekMultUint32(address, length) reads length unsigned 32-bit integers from target memory
starting at address and returns them as an array.

TargetInterface.peekUint16(address) reads a 16-bit unsigned integer from target memory from address and
returns it.

TargetInterface.peekUint32(address) reads a 32-bit unsigned integer from target memory from address and
returns it.

TargetInterface.peekWord(address) reads a word as an unsigned integer from target memory from address
and returns it.

TargetInterface.pokeBinary(address, filename) reads a block of bytes from filename and writes them to target
memory starting at address.

TargetInterface.pokeByte(address, data) writes the byte data to address in target memory.

Embedded Studio for ARM Reference Manual Appendices

436

TargetInterface.pokeBytes(address, data) writes the array data containing 8-bit data to target memory at
address.

TargetInterface.pokeMultUint16(address, data) writes the array data containing 16-bit data to target memory
at address.

TargetInterface.pokeMultUint32(address, data) writes the array data containing 32-bit data to target memory
at address.

TargetInterface.pokeUint16(address, data) writes data as a 16-bit value to address in target memory.

TargetInterface.pokeUint32(address, data) writes data as a 32-bit value to address in target memory.

TargetInterface.pokeWord(address, data) writes data as a word value to address in target memory.

TargetInterface.readBinary(filename) reads a block of bytes from filename and returns them in an array.

TargetInterface.reset() resets the target.

TargetInterface.resetAndStop() resets and stops the target.

TargetInterface.runFromAddress(address, timeout) start the target executing at address and waits for a
breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.runFromToAddress(from, to, timeout) start the target executing at address from and waits for
the breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.runToAddress(address, timeout) sets a breakpoint at address, starts the target executing and
waits for the breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.setTargetProperty(savename) set the value of the savename target property.

TargetInterface.stop() stops the target.

TargetInterface.writeBinary(array, filename) write the bytes in array to filename.

Embedded Studio for ARM Reference Manual Appendices

437

WScript
The following table lists the WScript object's member functions.

WScript.Echo(s) echos string s to the output terminal.

	Contents
	Introduction
	What is SEGGER Embedded Studio for ARM?
	What we don't tell you
	Getting Started
	Text conventions

	SEGGER Embedded Studio User Guide
	SEGGER Embedded Studio standard layout
	Menu bar
	Title bar
	Status bar
	Editing workspace
	Docking windows
	Dashboard

	SEGGER Embedded Studio help and assistance
	Creating and managing projects
	Solutions and projects
	Creating a project
	Adding existing files to a project
	Adding new files to a project
	Removing a file, folder, project, or project link

	Building your application
	Creating variants using configurations
	Project options
	Configurations and project options
	Project macros
	Dependencies and build order
	Linking and section placement

	Using source control
	Source control capabilities
	Configuring source-control providers
	Connecting to the source-control system
	File source-control status
	Source-control operations
	Adding files to source control
	Updating files
	Committing files
	Reverting files
	Locking files
	Unlocking files
	Removing files from source control
	Showing differences between files
	Source-control properties
	Subversion provider
	CVS provider

	Package management
	Exploring your application
	Project explorer
	Source navigator window
	References window
	Symbol browser window
	Stack usage window
	Memory usage window
	Bookmarks window
	Code Outline Window
	Analyzing Source Code

	Editing your code
	Basic editing
	Moving the insertion point
	Adding text
	Deleting text
	Using the clipboard
	Undo and redo
	Drag and drop
	Searching

	Advanced editing
	Indenting source code
	Commenting out sections of code
	Adjusting letter case

	Using bookmarks
	Find and Replace window
	Clipboard Ring window
	Mouse-click accelerators
	Regular expressions

	Debugging windows
	Locals window
	Globals window
	Watch window
	Register window
	Memory window
	Breakpoints window
	Call Stack window
	Threads window
	Execution Profile window
	Execution Trace window
	Debug file search editor
	Debug Terminal window

	Breakpoint expressions
	Debug expressions
	Utility windows
	Terminal emulator window

	Command-line options
	-D (Define macro)
	-noclang (Disable Clang support)
	-noload (Disable loading of last project)
	-packagesdir (Specify packages directory)
	-permit-multiple-studio-instances (Permit multiple studio instances)
	-rootuserdir (Set the root user data directory)
	-save-settings-off (Disable saving of environment settings)
	-set-setting (Set environment setting)
	-templatesfile (Set project templates path)

	Uninstalling SEGGER Embedded Studio for ARM
	ARM target support
	Target startup code
	Startup code
	Section Placement

	Using the SEGGER Assembler
	Using the SEGGER Linker
	Using the SEGGER Runtime Library
	Utilities Reference
	Compiler driver
	File naming conventions
	Command-line options
	-allow-multiple-definition (Allow multiple symbol definition)
	-ansi (Warn about potential ANSI problems)
	-ar (Archive output)
	-arch (ARM architecture)
	-be (ARM Big Endian)
	-builtins (Use Builtins)
	-c (Compile to object code, do not link)
	-clang (Use clang compiler/assembler)
	-cmselib (ARM Create CMSE import library)
	-codec (Set file codec)
	-common (Allocate globals in common)
	-cpu (ARM cpu core)
	-d (Define linker symbol)
	-debugio (ARM Define debugio implementation)
	-depend (Generate dependency file)
	-D (Define macro symbol)
	-emit-relocs (Emit relocations)
	-e (Set entry point symbol)
	-exceptions (Enable C++ Exception Support)
	-E (Preprocess)
	-fill (Fill gaps)
	-fabi (ARM Floating Point Code Generation)
	-fpu (ARM FPU)
	-framepointer (Enable generation of framepointer)
	-F (Set output format)
	-g (Generate debugging information)
	-hascmse (ARM Generate cmse instructions)
	-hascrc (ARM Generate crc instructions)
	-hascrypto (ARM Generate crypto instructions)
	-hasdsp (ARM Generate dsp instructions)
	-hasidiv (ARM Generate integer divide instructions)
	-hassmallmultiplier (ARM Do not generate multiply instructions)
	-help (Display help information)
	-instrument (Instrument functions)
	-I (Define user include directories)
	-I- (Exclude standard include directories)
	-J (Define system include directories)
	-kasm (Keep assembly code)
	-kldscript (Keep linker script)
	-kpp (Keep preprocessor output)
	-K (Keep linker symbol)
	-l- (Do not link standard libraries)
	-longcalls (ARM Generate long calling sequences)
	-lto (Enable link time optimization)
	-L (Set library directory path)
	-memorymap (Memory map file)
	-memorymapmacros (Memory map macros)
	-M (Display linkage map)
	-n (Dry run, no execution)
	-nointerwork (ARM No interwork code for v4t)
	-nowarn-mismatch (ARM No warning on architecture mismatch)
	-nowarn-enumsize (ARM No warning on enum size mismatch)
	-nowarn-wcharsize (ARM No warning on wide character size mismatch)
	-nostderr (No stderr output)
	-O (Optimize output)
	-o (Set output file name)
	-patch (Run patch command)
	-placement (Section placement file)
	-placementmacros (Section placement macros)
	-placementsegments (Section placement segments)
	-printf (Select printf capability)
	-rtti (Enable C++ RTTI Support)
	-R (Set section name)
	-scanf (Select scanf capability)
	-segger (Use SEGGER assembler/compiler/linker)
	-shortenums (ARM Minimal sized enums)
	-shortwchar (ARM 16-bit wide chars)
	-simd (ARM Generate vector processing code)
	-std (Select language standard)
	-strip (Strip symbols from executable)
	-symbols (Link symbols)
	-thumb (ARM Generate thumb code)
	-T (Supply linker script)
	-U (Undefine macro symbol)
	-unwindtables (Generate unwind tables)
	-v (Verbose execution)
	-vectorize (ARM Generate vector processing code)
	-w (Suppress warnings)
	-we (Treat warnings as errors)
	-W (Pass option to tool)
	-x (Specify file types)

	Command-Line Project Builder
	Building with a SEGGER Embedded Studio project file
	Building without a SEGGER Embedded Studio project file
	Command-line options
	-batch (Batch build)
	-config (Select build configuration)
	-clean (Remove output files)
	-D (Define macro)
	-echo (Show command lines)
	-file (Build a named file)
	-packagesdir (Specify packages directory)
	-project (Specify project to build)
	-property (Set project property)
	-rebuild (Always rebuild)
	-show (Dry run, don't execute)
	-solution (Specify solution to build)
	-studiodir (Specify SEGGER Embedded Studio directory)
	-template (Specify project template)
	-time (Time the build)
	-threadnum (Specify number of build threads)
	-type (Specify project type)
	-verbose (Show build information)

	Command-Line Simulator
	Command-line options
	file (Elf executable file)
	-segments (Specify memory segments)
	args (User arguments)

	Command-Line Scripting
	Command-line options
	-define (Define global variable)
	-help (Show usage)
	-load (Load script file)
	-define (Verbose output)

	emScript classes
	Example uses

	Embed
	Command-Line License Manager
	Linker script file generator
	Command-line options
	-check-section-overflow
	-check-segment-overflow
	-disable-missing-runin-error
	-memory-map-macros
	-no-check-unplaced-sections
	-no-ctors
	-no-dtors
	-section-placement-file
	-section-placement-macros
	-symbols

	Package generator
	Package manager

	Appendices
	Technical
	File formats
	Memory Map file format
	Section Placement file format
	Project file format
	Project Templates file format
	Property Groups file format
	Package Description file format
	External Tools file format
	Debugger Type Interpretation file format

	Environment Options
	Building Environment Options
	Debugging Environment Options
	IDE Environment Options
	Programming Language Environment Options
	Source Control Environment Options
	Text Editor Environment Options
	Windows Environment Options

	Project Options
	Code Options
	Debug Options

	Macros
	System Macros
	Build Macros

	Script classes
	BinaryFile
	CWSys
	Debug
	ElfFile
	TargetInterface
	WScript

