Application Note

Using RTT on Cortex-A/R based devices

Document: ANO8005
Software Version: 1.00
Revision: 1
Date: February 15, 2016

|
/ SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

http://www.segger.com/Application Note.html
http://www.segger.com
http://www.segger.com

Disclaimer

Specifications written in this document are believed to be accurate, but are not guaranteed
to be entirely free of error. The information in this manual is subject to change for
functional or performance improvements without notice. Please make sure your manual
is the latest edition. While the information herein is assumed to be accurate, SEGGER
Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibility for any errors or
omissions. SEGGER makes and you receive no warranties or conditions, express, implied,
statutory or in any communication with you. SEGGER specifically disclaims any implied
warranty of merchantability or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the
prior written permission of SEGGER. The software described in this document is furnished
under a license and may only be used or copied in accordance with the terms of such a
license.

© 2016 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany
Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective
holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel. +49 2103-2878-0
Fax. +49 2103-2878-28
E-mail: support @egger.com

Internet: www. segger.com

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

Manual versions

If you find an error in the manual or a problem in the software, please inform us and we will
try to assist you as soon as possible. Contact us for further information on topics or functions

that are not yet documented.
Print date: February 15, 2016

Revision | Date By Description
1 160215 AG | Updated references to J-Link manual.
0 151109 | AG | Initial Version.

Application Note Using RTT on Cortex-A/R based devices

© 2016 SEGGER Microcontroller GmbH & Co. KG

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

Table of contents

1 Using RTT on Cortex-A/R based target devices

1.1 Introduction ...
1.2 Background memory access - Target support
1.3 Background memory access - J-Link support
1.4 MMU, Caches and Write-buffers
1.5 Virtual vs. Physical Addresses
1.6 Using RTT-block location auto-detection of J-
1.7 RTT Locking / Unlocking - Target side
1.8 Example project for Renesas RZ/A1H

Application Note Using RTT on Cortex-A/R based devices

LiNK i 12

© 2016 SEGGER Microcontroller GmbH & Co. KG

Chapter 1

Using RTT on Cortex-A/R
based target devices

This application note describes how to use RTT on Cortex-A/R based target devices. It is

assumed that it is already known what SEGGER Real Time Transfer (RTT) is and how it
works in general.

For more information about RTT in general, please refer to https://www.segger.com/jlink-
rtt.html

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

https://www.segger.com/jlink-rtt.html
https://www.segger.com/jlink-rtt.html

1.1 Introduction

In general, the RTT technology is target CPU core independent but some requirements need
to be fulfilled to allow RTT to be used on a certain CPU core. While it is possible to use
RTT on any ARM Cortex-M based device, for Cortex-A/R things are slightly different. In the
following, the requirements as well as limitations that need to be taken into consideration
when using RTT on Cortex-A/R based target devices, are explained.

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

8 CHAPTER 1 Background memory access - Target support

1.2 Background memory access - Target support

In order to use RTT, the target needs to support background memory accesses, meaning J-
Link needs to be able to read & write memory while the CPU is running / target application
is executing. On Cortex based target devices, this is done via a so-called AHB-AP which
is mainly a DMA that can be exclusively accessed by the debug interface. On Cortex-M,
the AHB-AP is a mandatory component while for Cortex-A/R it is an optional component,
so it is up to the silicon vendor to implement it on a specific device or not. Therefore for
Cortex-A/R it depends on the actual device if RTT can be used. For most devices supported
by J-Link, it is mentioned in the list of supported devices if background memory access is
supported (AHB-AP is present):

https://www.segger.com/jlink_supported_devices.html#Devicelist
Specifying existence and location of an AHB-AP

When using a device that is listed on the page above, there is nothing special that needs to
be done by the user. However, when using a device not listed there, the location of the AHB-
AP need to be specified manually. For more information about how to do that from within
various IDEs etc., please refer to UM8001 (J-Li nk User Gui de), chapter RTT, section ARM
Cortex - Background nenory access.

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

https://www.segger.com/jlink_supported_devices.html#DeviceList

1.3 Background memory access - J-Link support

Background memory access needs to be supported by the J-Link DLL + firmware in order
to use RTT on Cortex-A/R based target devices.

Background memory access in the DLL is supported since V5.10m (release) of the J-Link
software.

Background memory access in the J-Link firmware is supported in all current J-Link models
(Feb. 2016). In case of doubt, please get in touch with support @egger. com

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 1 MMU, Caches and Write-buffers

1.4 MMU, Caches and Write-buffers

As previously mentioned, AHB-APs are comparable to DMAs. This means memory accesses
through the AHB-AP while the CPU is running, bypass all MMUs, caches and write-buffers
that may be present on the device. So if a device, with one of the following components
being present, is used

e MPU/MMU
e D-cache
e Write-buffer

the RTT control block as well as the RTT buffers need to be placed in a memory section
that is:

¢ Non-cacheable (Not read cachable) / Non-bufferable (not write cachable)
e Specified as strongly-ordered memory

The definition as strongly-ordered memory is also important because the CPU must not
be allowed to change the order to memory accesses when accessing the RTT buffers and/
or control block. Otherwise it could for example happen that the write pointer in the RTT
control block is incremented before the actual data has been written to the buffer, resulting
in the PC application / J-Link DLL to read incorrect data from the buffer.

Configuring MMU in a project using embOS

The following gives and example how to configure a SEGGER Embedded Studio project
using embQS, for RTT on Cortex-A/R. The MMU configuration can be found in the
__low_ level _init(void); function in $PRQJ_DI R$\ Set up\ RTCSI ni t _<Devi ce>. c:

CS_ INTERWORK int _ low level _init(void) {
[...]
Il
/1 Initialize MWJ and caches
Il
Il
/1 Init MMJ and caches. This defines the virtual menory map, which is used during execution.
/1 Menory mapping shoul d be conpl ete, neaning 4096 entries.
/' Code below fills in ascendi ng VAddr order
Il
CS_ARM MW I ni t TT(_TTbl);

I Mbde VAddr PAddr Si ze[MB]
/1 CSO space, 64MB NOR Fl ash (16bit BUS on Eval - Board)
OS_ARM MWJ_AddTTEntries(_TTbhl, OS_ARM CACHEMODE_C NB, 0x000, 0x000, 0x040);

[...]

/1 Internal RAM

CS_ARM MWJ_AddTTEntries(_TThl, OS_ARM CACHEMODE C B, 0x200, 0x200, 0x009);
/1 Internal RAM 1 MB reserved for RTT control block and RTT buffers

CS_ARM MVJ_AddTTEntri es(_TThl, OS_ARM CACHEMODE NC_NB, 0x209, 0x209, 0x001);
/'l Rest of 4 GB addr. space

CS_ARM MVJ_AddTTEntri es(_TThl, OS_ARM CACHEMODE NC_NB, 0x20A, 0x20A, OxFF6);

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

11

1.5 Virtual vs. Physical Addresses

For RTT on Cortex-A/R all addresses are treated as physical addresses because background
memory accesses are like DMA accesses, therefore bypassing any MMU etc. It is strongly
recommended to set the linkker file of the IDE accordingly to link the RTT control block as
well as the RTT buffers to uncached, strongly-ordered memory.

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 1 Using RTT-block location auto-detection of J-Link

1.6 Using RTT-block location auto-detection of J-Link

It is not recommended to use the default RTT control block auto-search functionality of the
J-Link DLL for RTT on Cortex-A/R based target devices because of the following reasons:

e Data on Cortex-A/R based devices is usually located in external memory and might be
quite large so auto-detection may take some time

e The auto-search algorithm of the J-Link DLL searches internal RAM only.

e External memory is usually only available after being initialized by the startup code of
the target application. When using RTT control block auto-detection, J-Link may try to
access the external memory before it is initialized / available which might lead to data
aborts

Manually specifying RTT control block address

The address of the RTT control block can also be manually specified by the user. This is
usually done via macro files / ini files that are executed from within the IDE and which pass
the address to the J-Link DLL via special commands. For more information how to UMD8001
(J-Link User Guide), chapter RTT, section Locating the Control Bl ock.

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

13

1.7 RTT Locking / Unlocking - Target side

By default, the macros for locking and unlocking, when using RTT functions from multiple
threads/tasks on the target, are defined to be empty because it is user’s responsibility to
define up to which level RTT shall lock for an RTT API call (only task switching disabled, all
interrupts disabled, certain interrupt(s) disabled etc.).

The following macros need to be defined in SEGGER _RTT_Conf. h accordingly in the user
application when using RTT in a multi-threaded context on the target:

e SEGGER RTT_LOCK()
e SEGGER RTT_UNLOCK()

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 1 Example project for Renesas RZ/A1H

1.8 Example project for Renesas RZ/A1H

For an example project how to use RTT with a Renesas RZ/A1H target, please refer to:
https://w ki.segger.com i ndex. php?title=Using RTT on_RZ AlH

Application Note Using RTT on Cortex-A/R based devices © 2016 SEGGER Microcontroller GmbH & Co. KG

	Using RTT on Cortex-A/R based target devices
	Introduction
	Background memory access - Target support
	Background memory access - J-Link support
	MMU, Caches and Write-buffers
	Virtual vs. Physical Addresses
	Using RTT-block location auto-detection of J-Link
	RTT Locking / Unlocking - Target side
	Example project for Renesas RZ/A1H

