embOS

Real-Time Operating System

CPU & Compiler specifics for Cortex-
M using IAR Embedded Workbench

Document: UM01014
Software Version: 5.18.0.0
Revision: 0
Date: October 14, 2022

Vi
SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/embOS.html
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2010-2022 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger . conm®

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: October 14, 2022

Software | Revision | Date By Description
5.18.0.0 0 221014 MM New software version.
5.16.1.0 4 220901 MM ﬁgg;ttigglal information for “"OS_PSPLI M _Set TaskCont ext Ext ensi on() "
5.16.1.0 3 220221 TS Chapter "ARM TrustZone support” updated.
>.16.1.0 2 220216 TS EEZEEZ: :I(_Zilg’)lrJa:r?j"cg?r:Leilc;re(sjbecifics" updated.
>.16.1.0 1 220201 MM EEEEEE: :énF’tSr;lrjwztz;;%?Iaetresr;ecifics" updated.
5.16.1.0 0 220125 MM EE:SEE[:(LZIFE){Ja;Ej::gEwd;ilt:g'specifics” updated.
5.14.0.0 0 210531 MM gﬁ;vpig:t‘\‘NAaI{I\e/IJSe—rl\sfllos?téck limit register PSPLIM” added.
5.10.1.0 1 210301 MM Added missing chapter "CPU and compiler specifics”.
Chapter “Libraries” updated.
5.10.1.0 0 200617 | TS/MM | Chapter “"CPU and compiler specifics -> IAR C-Spy stack check warning”
added.
5.06 1 190930 MC Chapter “Libraries” updated.
5.06 0 190514 MM New software version.
5.02a 0 180727 MM New software version.
5.00 0 180522 MM New software version.
4.40 0 180104 MC New software version.
4.38 0 170928 MC New software version.
4.36 0 170721 MC New software version.
4.34 0 170327 TS Chapter “Compiler specifics” updated.
4.30 0 161213 MC New software version.
4.26 0 161027 RH Chapters “Using embOS"” and “embOS C-Spy Plugin” updated.
4.22 0 160531 MC ggspgleurgsmVEF;;;&%ort, “CPU and compiler specifics”, and “embOS C-
4.16 0 160122 MC New software version.
4.14 0 151222 MC New software version.
4.12a 0 150917 TS New software version.
4.10 0 150505 TS Chapter “Compiler specifics” updated.
4.06b 0 150330 TS New software version.
4.06a 0 150317 TS Léwz;f?x:f;e\?érsion.
4.04a 0 150109 SC New generic embOS sources V4.04a.
4.02a 0 140918 TS New generic embOS sources V4.02a.
4.02 0 140819 TS New generic embOS sources V4.02.
4.00 0 140606 TS New generic embOS sources V4.00.
3.90 0 | 140228 AW | (a0t S project for EWARM V7.10.
3.88g 0 131104 TS New generic embOS sources V3.88g.
3.88c 0 130813 TS New generic embOS sources V3.88c.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

Software | Revision | Date By Description
New generic embOS sources V3.88b.
Chapter 4, “Thread safe system libraries with IAR compiler V6.4 or new-
3.88b 0 130528 | AW/TS er” corrected. One required linker parameter was missing in previous de-
scription.
New generic embOS sources V3.86n.

Chapter 4, “Thread safe system libraries with IAR compiler V6.4 or new-
3.86n 0 121210 AW er” added to describe the procedure to activate thread safe library sup-
port with newer IAR compiler.

3.86l 0 121126 TS Software: New embOS sources V3.86i.
3.86g 0 120806 AW Software: New embOS sources V3.86g.
Software: New embOS sources V3.86f.
3.86f 0 120726 AW Task events are 32bits wide for Cortex-M.
Software: New embOS sources V3.86e.
3.86e 0 120708 AW Modified hard fault handler added to RTOSInit.
Software: New embOS sources V3.86d.
3.86d 0 120510 AW OS_Ext endTaskCont ext _TLS VFP() corrected.
Software: Scheduler for Cortex-M4 with VFP corrected.
Chapter 4: New functions to save and restore VFP context of Cortex-M4
3.84cl 0 120203 AW in ISR handler:
OS_VFP_Save()
OS_VFP_Restore()
3.84c 1 120117 TS Software version updated.
Software: New scheduler uses main stack for GS_I| dl e() .
Chapter 5: Stacks, system stack descripton updated.
New Chapter 6.8.4 and 6.8.5: Interrupt peripheral identifier and priority
3.84.1 0 111103 AW values used with embOS described more in detail.
Chapter 7: Interrupt controller setup using CMSIS described more in de-
tail. New chapter 7.7.1 describes differences between embOS functions
and CMSIS functions.
Chapter 3.2.1: New libraries with VFPv4 support added.
Chapter 4.3, 4.4: Support for VFPv4 added:
3.84 0 111027 AW OS_Ext endTaskCont ext _TLS()
OS_Ext endTaskCont ext _TLS VFP()
OS_Ext endTaskCont ext _VFP()
3.82u 0 110701 AW Chapter CMSIS with IAR EWARM V6 added.
3.82s 0 110323 TS New library mode DPL added.
3.82m 0 101117 AW Thread local storage for new IAR workbench V6.
Library names updated for new IAR workbench V6.
3.82l 0 101027 AW Thread safe library support modified for IAR workbench V6.
3.82h 0 100722 TS embOS CM3 and embOS CM0 manual merged.
3.82a 1 100701 AW Chapter Stacks: Task stack size corrected.
3.82a 0 091026 TS First version.

embOS for Cortex-M and IAR

© 2010-2022 SEGGER Microcontroller GmbH

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Programming Lan-
guage by Kernighan and Richie (ISBN 0--13--1103628), which describes the standard in C pro-
gramming and, in newer editions, also covers the ANSI C standard.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

embOS for Cortex-M and IAR

© 2010-2022 SEGGER Microcontroller GmbH

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

Table of contents

1 USING €MDOS oo e 9
1.1 INStallation v e 10
A =3 A = o 1= 11
1.3 The example application OS_StartLEDBIINK.Cociviiiiiiiiiiiii e 12
1.4 Stepping through the sample application ... 13
2 Build your oWn @ppliCAtIONoeeiiiiiiiiiiiie i 17
2% NN 1 g o Ta [ol u o o PP PPRPIN 18
2.2 Required files for an embOS ... s 18
2.3 Change library MO . ..o e e 18
2.4 Select another CPU ... e e e 18
G T | o] > V=SSR 19
3.1 Naming conventions for prebuilt librari@sc.cooiiiiiiiiiiiiii 20
4 CPU and compiler SPECITICSouuiiiiiieiiiiiii ittt 21
4.1 IAR C-Spy stack check Warning ...ccocoviiiiiiiiiii i e e e e 22
4.2 Standard system librariescciiriiiiii 22
4.3 Interrupt and thread Safelycciviiiiiiiiii i e 23
4.4 Thread-Local StOrage TLS ...ttt e e e e e e e neeens 24
4.5 ARM erratuUm 837070 ..oiiuiiiiiiiiiti i e 27
4.6 ARMv8-M Stack limit register PSPLIM ... e e 28
4.7 ARM TruStZONe SUP PO e e e s e 31
IS] = od 1€ PSPPSR 34
5.1 Task stack for CorteX-M ... e e e 35
5.2 System stack for CorteX=-M ..o 35
5.3 Interrupt stack for CorteX-M ..o i e e 35
LI |01 =T ¢ U] £ OO P PP PPPPPTRTRTR 36
6.1 What happens when an interrupt OCCUIS?civviiiiiiiiiiii i e e e 37
6.2 Defining interrupt handlers in C ... e 37
6.3 Interrupt vector Table ..o e 37
6.4 Interrupt-stack sWitChing ..o e 38
6.5 Zero latenCy INTEITUPES viiiiiiii i e 38
6.6 INterrUPt PrioritiES oot e e e e e 38
6.7 INterrupl NESEING ..oieiiiiiii s 41
6.8 Interrupt handling AP ... e 42

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

A O3\, 1 1 T PSP 48
2% RN 1 g o o [T u o I PP 49
7.2 The generic CMSIS start project ..oviiiiiiii i e 50
7.3 Device specific files needed for embOS with CMSIS ... 50
7.4 Device specific functions/variables needed for embOS with CMSISc..e. 50
7.5 CMSIS generic functions needed for embOS with CMSIS ..., 51
7.6 Customizing the embOS CMSIS generic start projectcooviviiiiiiiiiiiiiiiiiiie i 51
7.7 Adding CMSIS to other embOS start projectsccvvviiiiiiiiiiiiiii e 51
7.8 Interrupt and exception handling with CMSIS ... e 53

7.8.1 Enable and disable iNterruptscccviiiiiiiiiiiiii i e 53
7.8.2 Setting the Interrupt priority .cooiviiiiiiiii 53

8 Floating PoiNt (FP) SUPPOITcceieeeeeeiiieiei ettt e e e e e e e e e e e e e e s 54
8.1 ARM Floating-point EXEENSION ..iviieiiiiiiiiiiii i s s se e 55
8.2 Using embOS libraries with floating-point supportcccoviiiiiiiiiiiieens 55
8.3 Using the FPU in interrupt service routingsccooiviiiiiiiiiiiiii e 55
8.4 FPU default behavior ..o e 55

O RTT ANd SYSIEMVIBW ...ttt e e e e e e e e e e e e e ettt e e e e e e eeeeeaeeeas 56
9.1 SEGGER Real Time Transier .uiiriiriiiiiii i s raesaae e rasesneveranssneseenneaneannenes 57
9.2 SEGGER SYStEMVIEW 1.ttt et e e s e et e e e 57

O B = Tod o oo o F- | = S 58
10.1 RESOUINCE USAGE .uiiriiuiiitiiiitiieiatitsstrasaassranaass st san s raeaass st saeaassteaansanssness 59

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 1
Using embQOS

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

10 CHAPTER 1 Installation

1.1 Installation

This chapter describes how to start with embQOS. You should follow these steps to become
familiar with embOS.

embOS is shipped as a zip-file in electronic form.
To install it, proceed as follows:

Extract the zip-file to any folder of your choice, preserving the directory structure of this
file. Keep all files in their respective sub directories. Make sure the files are not read only
after copying.

Note

The BSP projects at / St art/ Boar dSupport/ <Devi ceManuf act ur er >/ <Devi ce> as-
sume that the /Start/Lib and Start//Inc folders are located relative to the BSP
folder. If you copy a BSP folder to another location, you will need to adjust these
paths in the project.

Assuming that you are using an IDE to develop your application, no further installation
steps are required. You will find many prepared sample start projects, which you should
use and modify to write your application. So follow the instructions of section First Steps
on page 11.

You should do this even if you do not intend to use the IDE for your application development
to become familiar with embOS.

If you do not or do not want to work with the IDE, you should: Copy either all or only the
library-file that you need to your work-directory. The advantage is that when switching to
an updated version of embOS later in a project, you do not affect older projects that use
embOS, too. embOS does in no way rely on an IDE, it may be used without the IDE using
batch files or a make utility without any problem.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

11 CHAPTER 1 First Steps

1.2 First Steps

After installation of embOS you can create your first multitasking application. You have
received several ready to go sample start workspaces and projects and every other files
needed in the subfolder St art . It is a good idea to use one of them as a starting point for
all of your applications. The subfolder Boar dSupport contains the workspaces and projects
which are located in manufacturer- and CPU-specific subfolders.

To start with, you may use any project from Boar dSupport subfolder.

To get your new application running, you should proceed as follows:

Create a work directory for your application, for example c: \ wor k.
Copy the whole folder St art which is part of your embQOS distribution into your work
directory.
Clear the read-only attribute of all files in the new St art folder.
Open one sample workspace/project in
St art \ Boar dSuppor t\ <Devi ceManuf act ur er >\ <CPU> with your IDE (for example, by
double clicking it).
e Build the project. It should be built without any error or warning messages.

After generating the project of your choice, the screen should look like this:

‘:j'zIAR Embedded Workbench IDE [_ (O] x|
File Edit Wiew Project Tools ‘Window Help

]Dﬁ‘vﬂﬁ|§|éﬂﬁ|ﬂ“|l N4y vuE e » S BENERES L L
Wiorl:

= - X

B [J Start_LPC1000 - Debug
I—EDApplication

| Excluded

| Start LEDBlink.c
F= b

DSetup
DOutput

Start_LPC1000 I

x

| Messages | File | L| ;I
Updating build tree...
BSP.c
a5 _Error.c
RTOSInit_LPC1000.c
RTOSVect.c
Start_LEDBlink.c
Linking
Start LPC1000.0ut

Total number of errors: 0
Total number of warnings: 0 —

o iworklembOSembOS_CMO_TARYCPUY Start\BoardSupport WX PLPC1 000 pplication’Skart_LEDElnk. c |Errors 0, Warnings 0 5

For additional information you should open the ReadMe.txt file which is part of every specific
project. The ReadMe file describes the different configurations of the project and gives
additional information about specific hardware settings of the supported eval boards, if
required.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

12 CHAPTER 1 The example application OS_StartLEDBIink.c

1.3 The example application OS_StartLEDBIink.c

The following is a printout of the example application CS_St art LEDBI i nk. c. It is a good
starting point for your application. (Note that the file actually shipped with your port of
embOS may look slightly different from this one.)

What happens is easy to see:

After initialization of embOS two tasks are created and started. The two tasks are activated
and execute until they run into the delay, then suspend for the specified time and continue
execution.

/***

* SEGGER M crocontrol |l er GrbH *
* The Enbedded Experts *

Rk S b Sk S SRk S S kR R O R I

-------------------------- END- OF- HEADER -------------mmmmmmmmm oo

File . OS_StartLEDBI i nk.c

Pur pose : enbOS sanpl e program running two sinple tasks, each toggling
a LED of the target hardware (as configured in BSP.c).

*/

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; // Task control bl ocks

static void HPTask(void) {
while (1) {
BSP_Toggl eLED(0) ;
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
BSP_Toggl eLED(1) ;
OS_TASK_Del ay(200);
}
}

/***

*

* mai n()
*/
int main(void) {
oS Init(); /1 Initialize enbOS

CS InitHW); // Initialize required hardware

BSP I nit(); /1 Initialize LED ports
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS Start(); /1 Start embOS

return O;

}

/*************************** End Of flle ****************************/

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

CHAPTER 1 Stepping through the sample application

1.4 Stepping through the sample application

When starting the debugger, you will see the nai n() function (see example screenshot
below). The mai n() function appears as long as project option Run to nmi n is selected,
which it is enabled by default. Now you can step through the program.

OS I nit() is part of the embOS library and written in assembler; you can therefore only
step into it in disassembly mode. It initializes the relevant OS variables.

CS InitHW) is part of RTOSI nit.c and therefore part of your application. Its primary
purpose is to initialize the hardware required to generate the system tick interrupt for
embOS. Step through it to see what is done.

0S_Start () should be the last line in mai n() , because it starts multitasking and does not
return.

?}:IAR Embedded Workbench IDE M=l
Eile Edit Wiew Project Debug Disassembly J-Link embOS Tools Window Help
DeEdE & 2R o A4Sy evmEe o0 (5E0NKES| L

S22 L2528 X

== DebugLog [Build ‘Watch

Ready

Workspace RTOSINE_LPC1000.¢ Start_LEDBIink.c =
IDebug 'I j 49 static void LPTask{void} { j
- = : 5@ while {13 { -
Files | o | i3 | i Lh BEP_ToggleLED(1>;
B J start_LPC10... ¥ : gg N 08 _Delay (288>;
I—EJ[:IApplication i 54
| [:IEchuded ' gg/
| Lo DEra | ¢ oo
@ (L | B8 main
DSetup ; 23*
L@] output i 61
| 62 int mainCuoid) {
= 63 08 IncDICD: »#* Initially disable interruy
i 64 OS_InitKern{); »% Initialize 08
: 65 O05_InitHW(D>; ## Initialize Hardware for OFf
| b6 BSP_Init{>; ##* Initialize LED ports
i 67 /% You need to create at least one task hefore calling 05_Sta:
68 OS5_CREATETASKC(ATCEHP. "HP Task",., HPTazk. 180, StackHP>;
| 69 OS5_CREATETASK(&TCEBLF. "LP Task". LPTask. G5B, StackLP>;
i 78 0S_Startid; % Start multitasking
E 7?1 return B; -
Start_LPC1000 | Ikl (3] | 4
* Expression | Walue | Location | Type il
!— Tirne Ox00000000 Ox10000aCe int -
x
Y,

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

14

CHAPTER 1 Stepping through the sample application

Before you step into GS_St art (), you should set two breakpoints in the two tasks as shown
below.

#Z 1AR Embedded Workbench IDE
Eile Edit Wiew Project Debug Disassembly J-Link embOS Tools Window Help
D & =R o o A4Sy evmEe o0 (5E0NKES| L
S22 LER X
RTOSInik_LPC1000,c Start_LEDBIink.c T
\ 37 j
- = : 38 0S8 _STACKPTR dint StackHPL[1281, StackLPL[1281; #% Task st
Files e i 39 05_TASK TCEHP. TCBLP; ##% Task—control-blc
B J start_LPC10... ¥ : 3?
’—E.||_[Elnqpl3|icati0n i 42 static void HPTask{uoid)> {
& 57 Excluded | 43 while {13 {
: 44 BSP_Toggle LEDCAD 5
| St PRIy - S
= b P46 >
DSetup ; 23}
DOutput | 4% static void LPTask{void> {
: E@ wvwhile <13 {
i 51 BEP_ToggleLEDC1>;
® o2 pEmDeRdimGEm;
i 53 > int 200 = 0x0
| 543
: 55
: 56~
. 57 =
i 58 = main
E 59 = -
Start_LPC1000 I | |;]‘ | "
* Expression | Walue | Location Type il
5 I— Tirne Ox00000000 Ox10000aCe int -
*| Debug Log |Build Wakch x
Ready | /,:

As CS_Start () is part of the embOS library, you can step through it in disassembly mode
only.

Click GO, step over CS_Start(), or step into OS_Start () in disassembly mode until you
reach the highest priority task.

JZ 1AR Embedded Workbench IDE
File Edit Wiew Project Debug Disassembly J-Link embOS Tools Window Help

D@ S & 2R o A4Sy o uE D @& 0T E S e

S22 LE52 X

L = RTOSIni_LPC1000,¢ Start_LEDBIink.c T
IDebug 'I ' 37 (j
- o T | 38 05_STACKPTIR int StackHPL[1281, StackLPL[i1281; #% Task stes
Files | S| S E 39 05_TASK TCBHP. TCHLP; »#* Task—control-hlc
B [start_LPC10... ¥ : 3?
I—EJ[:IADD“C@tiUn i 42 static void HPTask{uvoid)> {
Excluded ! 43 while (1> ¢
| | Bl Exclude | 44 BSP_ToggleLEDCA);
@ a5 25 Delay €563
E 46 >
DSetup E 23}
[:IOutput | 49 static void LPTask{uvoid} {
0 58 while <1> {
.: 51 BEP_ToggleLEDC1>;
82 pEEDSISURGED:
0 53 ’
0 543
i 55
i 56 ~
i 57 =
i 58 = main
E 59 = <
Start_LPC1000 I | |4'r | 3
Expression | Walue | Location Type il
= I— Time Ox00000000 0x100008CC int i
3| Debug Log |Bulld Watch *
Ready //:

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

15 CHAPTER 1 Stepping through the sample application

If you continue stepping, you will arrive at the task that has lower priority:

#Z 1AR Embedded Workbench IDE
Eile Edit Wiew Project Debug Disassembly J-Link embOS Tools Window Help

D HE S| s R0 | EEARAA=LE X I R Ay
Ml@%ﬁ“”ﬂx

= RTOSInit_LPC1000.c B &Nl 1] &

IDebug 'I T 37 j
- = : 38 0S8 _STACKPTR dint StackHPL[1281, StackLPL[1281; #% Task st
Files L] . 39 05_TASK TCBHF. TCHLP; ## Task—control-blc
B (@ start_LPC10... ¥ A
I—EDAppllcatIDn | 42 static void HPTask{void> £

. 43 while {13 {
- .I 44 BSP_Toggle LEDCAD 5
i 45 *;
: 46 ¥
: 47
i 48
DOutput | 49 static void LPTask{void> {
: E@ wvwhile <13 {
.: 51 BSP_ToggleLEDC1>;
| 82 OS_Delay <zum;
. 53 > ’
| 543
: 55
: 56~
. 57 =
i 58 = main
E 09 -
Start_LPC1000 I |0 |;]‘ | »
Expression | Walue | Location Type il
= I— Tirne Ox00000000 Ox10000aCe int hd
% Debug Log |Build Watch &3
Ready | //:

Continue to step through the program, there is no other task ready for execution. embOS
will therefore start the idle-loop, which is an endless loop always executed if there is nothing
else to do (no task is ready, no interrupt routine or timer executing).

You will arrive there when you step into the OS_TASK Del ay() function in disassembly
mode. OS_Idl e() is part of RTCSI ni t. c. You may also set a breakpoint there before step-
ping over the delay in LPTask() .

JZ 1AR Embedded Workbench IDE
File Edit Wiew Project Debug Disassembly J-Link embOS Tools Window Help
D@EW@M%EHHW 7y enmEp2EH BURS (D
D ‘ | -,_,_.-» —+1 +++| x|
- RTOSINit_LPC1000.c FEalNa o=yl T
IDebug vI T 248 > j
. 249 -
Files | B | 25@
| 251 =
B @ Start_LPC10... ¥ | 252 Idle loop <OS_Idle>
3 [J application | 253 =
A Excluded | 254 = Please note:
E xelude . 255 = This is basically the “core" of the idle loop.
C]Start L. | 256 % This core loop can he changed. but:
= CJLib . 257 = The idle loop does not have a stack of its own, therefo:r
—E.![:ISetu . 208 = functionality should bhe implemented that relies on the
X P | 259 = to be preserved. However. a simple program loop can be
BSP.C E 260 = (like toggeling an output or incrementing a counterd
— B rcia., | 261/ . .
3 .. 262void 05_Idled<void> € ## ldle loop: Wo task iz ready to execo
. 263 {
e 264 >
L@ B rTosve., 2
—E (] Cutput L 267
| 268 =
. 269 = Get time [cycles]
27 = -
Start_LF'C‘IDDDI IFUIE]";[e | e : TR Ttaad b
Expression | Walue | Location | Type | il
!— Time Ox00000000 0x100008CC int -
Debug Log | Build wWatch =
Ready 4

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

16

embOS for Cortex-M and IAR

CHAPTER 1 Stepping through the sample application

If you set a breakpoint in one or both of our tasks, you will see that they continue execution
after the given delay.

As can be seen by the value of embOS timer variable OS_d obal . Ti me, shown in the Watch
window, HPTask() continues operation after expiration of the delay.

#Z 1AR Embedded Workbench IDE
Eile Edit Wiew Project Debug Disassembly J-Link embOS Tools Window Help

DeeEd & & ERo o Ay emEe 20 BEUES| D
=| ‘|E%£$EB|X|
Workspace RTOSIRE_LPC1000,¢ Start_LEDBIink.c =
IDebug 'I : 37 j
: ! 38 0S_STACKPTR int StackHP[1281, StackLP[1281; /% Task ste~
| O
Files ¢ B | | | 390S_TASK TCBHP, TCBLP; #% Task-control-hlc
B J start_LPC10... ¥ : 3?
& (1 Application | 42 static void HPTask{uoid)> {
=
[57 Excluded E 43 while 1> {
Stsrt L. o 23 BSP_TniileLEDEB).
@ CILik L 46 >
2 (] setup ; 23}
BEP.C | 49 static void LPTask<void) {
: ; 5@ while <12 {
— Bpcin.. |5 BSP_ToggleLED(1);
05_Err.. o 52 _ DEEDeRmGED;
osim.. ||| AR
RTOSVe... gg}l
@ [(Joutput : 56
| B7=
i 58 = main
| L9 =
Start_LPC1000 | Il (4T |

Expression | Walue | Location Type
I— Tirne S0 Ox10000aCe int

| Debug Log | Build Watch

Ready

A x‘|LI_|‘_

© 2010-2022 SEGGER Microcontroller GmbH

Chapter 2

Build your own application

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

18

2.1

2.2

2.3

2.4

CHAPTER 2 Introduction

Introduction

This chapter provides all information to set up your own embQOS project. To build your
own application, you should always start with one of the supplied sample workspaces and
projects. Therefore, select an embOS workspace as described in chapter First Steps on
page 11 and modify the project to fit your needs. Using an embOS start project as starting
point has the advantage that all necessary files are included and all settings for the project
are already done.

Required files for an embOS

To build an application using embOS, the following files from your embQS distribution are
required and have to be included in your project:

e RTGCS. h from the directory .\Start\Inc. This header file declares all embOS API
functions and data types and has to be included in any source file using embQOS
functions.

e RTOSInit*. c from one target specific .\ St art\ Boar dSuppor t \ <Manuf act ur er >\ <MCU>
subfolder. It contains hardware-dependent initialization code for embOS. It initializes
the system timer interrupt but can also initialize or set up the interrupt controller, clocks
and PLLs, the memory protection unit and its translation table, caches and so on.

e OS Error.c from one target specific subfolder .\Start\BoardSupport
\ <Manuf act ur er >\ <MCU>. The error handler is used only if a debug library is used in
your project.

e One embOS library from the subfolder .\ Start\Li b.

e Additional CPU and compiler specific files may be required according to CPU.

When you decide to write your own startup code or use a low level i ni t () function, ensure
that non-initialized variables are initialized with zero, according to C standard. This is re-
quired for some embQOS internal variables. Your mai n() function has to initialize embQOS by
calling GS I nit() and GS_ I nit HWN) prior to any other embQOS functions that are called.

Change library mode

For your application you might want to choose another library. For debugging and program
development you should always use an embOS debug library. For your final application you
may wish to use an embOS release library or a stack check library.

Therefore you have to select or replace the embQOS library in your project or target:

o If your selected library is already available in your project, just select the appropriate
project configuration.

e To add a library, you may add the library to the existing Lib group. Exclude all other
libraries from your build, delete unused libraries or remove them from the configuration.

e Check and set the appropriate OS_LI BMODE_* define as preprocessor option and/or
modify the OS_Confi g. h file accordingly.

Select another CPU

embOS contains CPU-specific code for various CPUs. Manufacturer- and CPU-specific sample
start workspaces and projects are located in the subfolders of the .\ St ar t \ Boar dSupport
directory. To select a CPU which is already supported, just select the appropriate workspace
from a CPU-specific folder.

If your CPU is currently not supported, examine all RTCSI ni t. ¢ files in the CPU-specific
subfolders and select one which almost fits your CPU. You may have to modify OS_| ni t H
W), the interrupt service routines for the embOS system tick timer and the low level ini-
tialization.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 3

Libraries

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

20

CHAPTER 3

Naming conventions for prebuilt libraries

3.1 Naming conventions for prebuilt libraries

embOS is shipped with different pre-built libraries with different combinations of features.

The libraries are named as follows:

0s<Ar chi t ect ure>_t <Endi anness><VFP_support >_<Li bMbde><Err at a><Tr ust Zone>. a

Parameter

Meaning

Values

Architecture

Specifies the ARM architecture

6m
7m

: Cortex-M0/M0O+/M1
: Cortex-M3/M4/M7

8mbl : Cortex-M23 (IAR V8.x only)
8mml: Cortex-M33 (IAR V8.x only)

. b : Big endian
Endi anness Byte order | . Little endian
. . : No hardware VFP support
VFP t Float t t -
—stppor oating point suppor v : VFPv4 (Cortex-M4/M7/M33 only)
xr : Extreme Release
r : Release
s : Stack check
sp : Stack check + profiling
Li bMbde Specifies the library mode d : Debug
dp : Debug + profiling + Stack check
dt : Debug + profiling + Stack check
+ trace
dpl : Debug + profiling + Stack check
built with low optimization level
Specifies whether a . .
Errata workaround for ARM errata 837070 : Erratun; 837030 aprllzd.
was applied. : No workaround applied.
Tr ust Zone Specifies whether ARM Trust- | _tz: ARM TrustZone support applied.
Zone support is included. No ARM TrustZone support.
Example

os7mtl __dp. ais the library for a project using Cortex-M3 core, thumb mode, little endian
mode with debug and profiling support.

Note

embOS for Cortex-M and IAR

With earlier versions of embOS for Cortex-M, the workaround for ARM erratum 837070
was applied by default for ARMvV7[E]-M devices. If libraries including the workaround
are desired, a suitable set of libraries is provided but projects will need to be updated
accordingly. Please refer to chapter ARM erratum 837070 for more details.

© 2010-2022 SEGGER Microcontroller GmbH

Chapter 4

CPU and compiler specifics

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

22 CHAPTER 4 IAR C-Spy stack check warning

4.1 IAR C-Spy stack check warning

IAR’s C-Spy debugger provides a stack check feature which throws a warning when the
stack pointer does not point to memory within the CSTACK scope anymore. This renders
the C-Spy stack check useless, as C-Spy is not aware of any task stacks the application is
using. Depending on the IAR version used, this warning can be disabled by removing the
check mark for Tool s > Options...> Stack > 'Warn when stack pointer is out of
bounds’ or Project > Options > Debugger > Plugins > Stack.

4.2 Standard system libraries
embOS for Cortex-M and IAR may be used with IAR standard libraries.

If non thread-safe functions are used from different tasks, embQOS functions may be used
to encapsulate these functions and guarantee mutual exclusion.

The system libraries from the IAR Embedded Workbench come with built-in hook functions,
which enable thread-safe calls of all system functions automatically when supported by the
operating system.

embOS compiled for IAR Embedded Workbench is prepared to use these hook functions.
Adding source code modules, which are delivered with embOS, activate the automatic
thread locking functionality of the new IAR DLib.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

23 CHAPTER 4 Interrupt and thread safety

4.3 Interrupt and thread safety

Using embOS with specific calls to standard library functions (e.g. heap management func-
tions) may require thread-safe system libraries if these functions are called from several
tasks or interrupts. IAR’s system library provides functions, which can be overwritten to
implement a locking mechanism making the system library functions thread-safe. To use
the thread-safe system library the option “Enabl e thread support in |ibrary” mustbe
setin project settings -> Library configuration.

The Setup directory in each embOS BSP contains the files xnt x. ¢, xnmt x2. ¢ and xnt x3. ¢
which overwrite these functions. By default they disable and restore embOS interrupts to
ensure thread-safety in tasks, embQOS interrupts, OS_| dl e() and software timers. Zero la-
tency interrupts are not disabled and therefore unprotected. If you need to call e.g. mal-
loc() also from within a zero latency interrupt additional handling needs to be added. If you
don’t call such functions from within embOS interrupts, CS_Idl e() or software timers, you
can instead use thread-safety for tasks only. This reduces the interrupt latency because a
mutex is used instead of disabling embQOS interrupts.

You can choose the safety variant with the macro OS_| NTERRUPT_SAFE.

e When defined to 1 thread-safety is guaranteed in tasks, embOS interrupts, CS I dl e()
and software timers.

e When defined to 0 thread-safety is guaranteed only in tasks. In this case you must not
call e.g. heap functions from within an ISR, GS_| dl e() or embOQOS software timers.

xnt x. ¢ contains the hooks used for the heap, the file system structure, the initialization
of statics in C++ functions, etc.

xm x2. ¢ contains the hooks used for file streams.

xmt x3. ¢ contains hooks used for certain C++ objects. These locks are only available for
newer IAR EWARM version.

Alternatively, embOS delivers its own thread-safe functions for heap management. These
are described in the embOS generic manual.

4.3.1 IAR compiler V6.10 to V7.80

With IAR compiler version V6.40 to V7.80, the thread-safe system library hook functions
delivered with embQOS are not automatically linked in, even if they are included in the
project.

To enable the automatic thread-safe locking functions, the project options for the linker
have to be setup to replace the default locking functions from the system libraries by the
functions delivered with embOS.

Activate the checkbox “Use conmand |ine options” in the dialog Project -> Options
-> Linker -> Extra options then, in the “Command |ine options:” field, add the
following lines:

--redirect __iar_Locksyslock=__iar_Locksysl ock _mntx
--redirect __iar_Unl ocksysl ock=__iar_Unl ocksysl ock_nt x
--redirect __iar_Lockfilelock=__iar_Lockfilelock ntx
--redirect __iar_Unlockfilelock=__iar_Unlockfilelock_ntx
--keep __iar_Locksysl ock_nt x

4.3.2 IAR compiler V8.10 and newer

To enable the automatic thread-safe locking functions the function OS_I NI T_SYS_LOCKS()
must be called.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

24 CHAPTER 4 Thread-Local Storage TLS

4.4 Thread-Local Storage TLS

The DLib for Cortex-M supports usage of thread-local storage. Several library objects and
functions need local variables which have to be unique to a thread. Thread-local storage
will be required when these functions are called from multiple threads.

embOS for IAR is prepared to support the tread-local storage, but does not use it per
default. This has the advantage of no additional overhead as long as thread-local storage is
not needed by the application. The embOS implementation of thread-local storage allows
activation of TLS separately for each task.

Only tasks that are accessing TLS variables, for instance by calling functions from the
system library, need to initialize their TLS by calling an initialization function when the task is
started. For each task that uses TLS the memory for the thread-local storage is allocated by
the IAR runtime environment on the heap. Therefore, thread-safe heap management should
be used together with TLS. For information on thread-safety, please refer to Interrupt and
thread safety on page 23.

When the task terminates by a call of OS_TASK Ter ni nat e(), the memory used for TLS is
automatically freed and put back into the free heap memory.

Library objects that need thread-local storage when used in multiple tasks are for example:

e error functions - errno, strerror.

e locale functions - localeconv, setlocale.

o time functions - asctime, localtime, gmtime, mktime.

e multibyte functions - mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb, wcsrtomb,
wctomb.

e rand functions - rand, srand.

e etc functions - atexit, strtok.

C++ exception engine.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

25

CHAPTER 4 Thread-Local Storage TLS

4.4.1 OS_TLS_Set()

Description

OS TLS Set () is used by a task to initialize Thread-local storage for the current task.

Prototype

void OS_TLS Set(void);

Additional information

OS _TLS Set () shall be the first function called from a task when TLS should be used
in the specific task. This function has to be only used in combination with 05 TASK Ad-
dCont ext Ext ensi on() or OS_TASK_Set Cont ext Ext ensi on() and OS_TLS_Cont ext Ext en-
si on as argument to these functions. When OS_TLS_ Set TaskCont ext Ext ensi on() is used,
OS_TLS Set () will be called automatically.

Example

static void Task(void) {
OS_TLS Set ();
OS_TASK_Set Cont ext Ext ensi on(&0S_TLS_Cont ext Ext ensi on) ;
while (1) {
}
}

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

26

CHAPTER 4 Thread-Local Storage TLS

442 OS TLS SetTaskContextExtension()

Description

OS_TLS Set TaskCont ext Ext ensi on() may be called from a task to initialize thread-local
storage for the current task and set the respective task context extension.

Prototype

voi d OS_TLS_ Set TaskCont ext Ext ensi on(voi d);

Additional information

OS5 _TLS Set TaskCont ext Ext ensi on() shall be the first function called from a task when
TLS should be used in the specific task. If the task already contains a task context extension,
OS_TLS Set TaskCont ext Ext ensi on() cannot be used. Instead, OS_TASK _AddCont ext Ex-
t ensi on() needs to be called with OS_TLS Cont ext Ext ensi on as argument. Furthermore,
OS_TLS Set () needs to be called to initialize TLS for this task.

Example

The following printout demonstrates the usage of task specific TLS in an application.

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control bl ocks

static void HPTask(void) {
OS_TLS_Set TaskCont ext Ext ensi on() ;
while (1) {
errno = 42; // errno specific to HPTask
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
OS_TLS_Set TaskCont ext Ext ensi on() ;
while (1) {
errno = 1; // errno specific to LPTask
OS_TASK_Del ay(200);

}
}
int main(void) {
errno = 0; [l errno not specific to any task
CS Init(); /1 Initialize enbOS
Cs InitHW); /1 Initialize required hardware

OS_TASK _CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK _CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enmbCS

return O;

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

27 CHAPTER 4 ARM erratum 837070

4.5 ARM erratum 837070

Specific embOS ARMv7-M libraries use a workaround for the Cortex-M7 erratum 837070
(refer to Naming conventions for prebuilt libraries on page 20). When an embOS library
without this workaround is used with a device that requires the workaround, debug builds
of embOS will call S_Error () with the error code OS_ERR LI B_| NCOVPATI BLE.

Cortex-M7 devices that implement the ARM core rOp0 or rOp1 are affected by the erratum,
while later versions of these devices are unaffected. The workaround sets PRI MASK before
writing to BASEPRI and unconditionally clears PRI MASK afterwards; it therefore adds a min-
imal latency to Zero latency interrupts.

When working with an affected device, the define USE_ERRATUM 837070 shall be setto 1 in
the preprocessor settings or inside OS_Conf i g. h, regardless of whether the embOS source
code or an embOS library is being used.

Additionally, if working with the embOS source code, it also is possible to restore any previ-
ous value of PRI MASK after modification of BASEPRI . To do so, the define OS_PRESERVE_PRI -
MASK shall be set to 1 in the preprocessor settings or inside OS_Confi g. h.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

28 CHAPTER 4 ARMvV8-M Stack limit register PSPLIM

4.6 ARMv8-M Stack limit register PSPLIM

When the ARMv8-M Security Extension is included, there are two PSPLI Mregisters in the
processor:

e PSPLI M NS for the Non-secure state.
e PSPLI M S for the Secure state.

The hardware continuously compares the process stack register (PSP) against this process
stack limit register (PSPLI M). If the PSP is lower than the PSPLI M register value a stack
overflow occurred and a fault exception is generated.

embOS Cortex-M comes with a task context extension for the PSPLIM register. Each task
context can be extended by the call of GS_PSPLI M Set TaskCont ext Ext ensi on() . The task
context extension saves and restores the PSPLI Mregister on the according task stack. When
a task gets deactivated the PSPLI M register is set to zero which deactivates the PSPLI M
stack check for other tasks which do not use this extension.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

29

CHAPTER 4 ARMvV8-M Stack limit register PSPLIM

4.6.1 OS_PSPLIM_Set()

Description
Sets the PSPLI Mregister.

Prototype

voi d OS_PSPLI M Set (const voi d OS_STACKPTR* pSt ack);

Additional information

The PSPLI Mregister is banked between security states. OS_PSPLI M Set () initially sets the
PSPLI Mregister of the currently active security state to the parameter pSt ack.

If you like to use the PSPLIM register for more than one task the task context needs to
be extended with e.g. OS_TASK AddCont ext Ext ensi on() or OS_PSPLI M Set TaskCont ex-
t Ext ensi on() .

The PSPLI Mregister can only be written in privileged state. Unprivileged writes to PSPLI M
are ignored.

Example

static OS_STACKPTR int StackHP[128];
static OS _TASK TCBHP;

static void HPTask(void) {
OS_EXTEND_TASK_CONTEXT_LI NK PSPLI M _Cont ext Ext ensi onLi nk;

OS_TASK_AddCont ext Ext ensi on(&PSPLI M_Cont ext Ext ensi onLi nk,
&0S_PSPLI M _Cont ext Ext ensi on) ;
OS_PSPLI M Set (St ackHP) ;
while (1) {
BSP_Toggl eLED(0) ;
OS_TASK Del ay(50);
}
}

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

30

CHAPTER 4 ARMvV8-M Stack limit register PSPLIM

4.6.2 OS_PSPLIM_SetTaskContextExtension()

Description
Extends the task context with the stack check limit register PSPLI M

Prototype

voi d OS_PSPLI M Set TaskCont ext Ext ensi on(const voi d* pStack);

Additional information

OS_PSPLI M Set TaskCont ext Ext ensi on() initially sets the PSPLI Mregister to the parame-
ter pSt ack. This is not done when the task context is extended with OS_TASK_AddCon-
t ext Ext ensi on() or OS_TASK_ Set Cont ext Ext ensi on() . In that case the PSPLI M register
should be set manually with OS_PSPLI M Set () .

After using this function, any further task context extensions cannot be added by calling
OS_TASK_Set Cont ext Ext ensi on(), but can be added using OS_TASK_ AddCont ext Ext en-
si on() instead.

If a task has already another task context extension set, the PSPLI Mtask context exten-
sion can be added by passing the predefined OS_PSPLI M Cont ext Ext ensi on structure to
OS_TASK_AddCont ext Ext ensi on() .

OS_PSPLI M Set TaskCont ext Ext ensi on() handles the PSPLIM register of the security state
the embOS runs in. By default, embQOS runs in the secure world, thus saving and restoring
the PSPLI M s register on context switches. If TrustZone is used, i.e. embQOS and tasks run
in the non-secure world, then the PSPLI M ns register is saved and restored on context
switches. However, non-secure tasks can also set a dedicated task context extension for
TrustZone which additionally saves and restores PSP_s, PSPLI M s and CONTROL_s of the
non-secure task so that it can perform calls into the secure world. For more information
about TrustZone and the TrustZone context extension, please refer to ARM TrustZone sup-
port on page 31.

Example

static OS_STACKPTR int StackHP[128];
static OS _TASK TCBHP;

static void HPTask(void) {
OS_PSPLI M _Set TaskCont ext Ext ensi on(St ackHP) ;
while (1) {
BSP_Toggl eLED(0) ;
OS_TASK_Del ay(50);
}
}

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

31 CHAPTER 4 ARM TrustZone support

4.7 ARM TrustZone support

embOS Cortex-M comes with libraries for Arm TrustZone support. With it embOS runs
completely in the non-secure world but tasks can call functions from the secure world.
When using the embOS sources the define OS_SUPPORT_TRUSTZONE = 1 must be used.

If an embOS task wants to call secure functions the secure register PSP_s, PSPLI M s and
CONTROL_s must be set beforehand and the task context must be extended to save and
restore these register at every context switch. An embOS task runs in secure state on a
separate stack which is located in the secure memory.

You can use OS_ARM TZ Set SecureStat ePSP() or OS_ARM TZ_Set TaskCont ext Ext en-
si on() to set the secure register. Additionally, OS_ARM TZ_Set TaskCont ext Ext ensi on()
extends the task context. OS_ARM TZ_ Set Secur eSt at ePSP() sets the secure register on-
ly and the task context must be extended with OS_TASK AddCont ext Ext ensi on() or
OS_TASK_Set Cont ext Ext ensi on() and the context extension OS_ARM TZ_Cont ext Ext en-
si on.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

32 CHAPTER 4 ARM TrustZone support

4.7.1 OS_ARM_TZ_SetSecureStatePSP()

Description

OS_ARM TZ Set Secur eSt at ePSP() sets the secure PSP_s, PSPLI M s and CONTROL_s regis-
ter

Prototype

voi d OS_ARM TZ_Set Secur eSt at ePSP(OS_ARM TZ_SECURE_API _LI ST* Api Li st,
const voi d* pSt ack,
unsi gned | ong St ackSi ze) ;

Additional information

The parameter ApilList must point to a function pointer list with secure functions for access-
ing the secure process stack pointer, secure process stack limit register and the secure
control register. The parameter pSt ack must point to a stack which is located in the se-
cure memory. This stack is used whenever the task calls a function in the secure world.
OS_ARM TZ_Set Secur eSt at ePSP() must be called before the task calls any functions from
the secure world. The task context must be extended before with the task context OS_AR-
M _TZ_Cont ext Ext ensi on (e.g. with using OS_TASK_Set Cont ext Ext ensi on()).

Example:

I
/1 Locate secure task stack in secure nenory.
I
static __no_init OS_STACKPTR int StackHP_s[256] @"RAM S";
I
/1 These functions nust be placed in the secure nenory.
I
static OS_ARM TZ_SECURE_API LI ST Arm TZ_Api List = {
Arm TZ_ Get CONTROL_s

, Arm TZ_Get PSP_s

, Arm TZ_Get PSPLI M s

, Arm TZ_Set CONTROL_s

, Arm TZ_Set PSP_s

, Arm TZ_Set PSPLI M s
I 7

static void Task(void) {
I
/1l Extend the task context for the secure world and set the secure register
I
OS_TASK_Set Cont ext Ext ensi on(&0S_ARM TZ_Cont ext Ext ensi on) ;
OS_ARM TZ_Set Secur eSt at ePSP(&Ar m TZ_Api Li st, StackHP_s, sizeof (StackHP_s));
while (1) {
I ncrement Counter_s(); // Call secure function and increnment secure counter
OS_TASK Del ay(10);
}
}

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

33 CHAPTER 4 ARM TrustZone support

4.7.2 OS_ARM TZ SetTaskContextExtension()

Description

OS_ARM TZ Set TaskCont ext Ext ensi on() sets the secure PSP_s, PSPLI M s and CONTROL_s
register and extends the task context to save and restore these register.

Prototype
voi d OS_ARM TZ_Set TaskCont ext Ext ensi on(OS_ARM TZ_SECURE_API _LI ST* Api Li st,
const voi d* pSt ack,
unsi gned | ong St ackSi ze) ;

Additional information

The parameter ApilList must point to a function pointer list with secure functions for access-
ing the secure process stack pointer, secure process stack limit register and the secure
control register. The parameter pSt ack must point to a stack which is located in the secure
memory. This stack is used whenever the task calls a function in the secure world. 0S_AR-
M TZ_Set TaskCont ext Ext ensi on() must be called before the task calls any functions from
the secure world.

Example:

I
/1 Locate secure task stack in secure nenory.
I
static __no_init OS_STACKPTR int StackHP_s[256] @"RAM S";
I
/1 These functions nust be placed in the secure nenory.
I
static OS_ARM TZ_SECURE_API LI ST Arm TZ_Api List = {
Arm TZ_ Get CONTROL_s

, Arm TZ_Get PSP_s

, Arm TZ_Get PSPLI M s

, Arm TZ_Set CONTROL_s

, Arm TZ_Set PSP_s

, Arm TZ_Set PSPLI M s
I 7

static void Task(void) {
Il
/'l Extend the task context for the secure world.
Il
OS_ARM TZ_Set TaskCont ext Ext ensi on(&Ar m TZ_Api Li st, StackHP_s, sizeof (StackHP_s));
while (1) {
I ncrement Counter_s(); // Call secure function and increnment secure counter
OS_TASK_Del ay(10);
}
}

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 5

Stacks

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

35

5.1

5.2

5.3

CHAPTER 5 Task stack for Cortex-M

Task stack for Cortex-M

Each task uses its individual stack. The stack pointer is initialized and set every time a task
is activated by the scheduler. The stack-size required for a task is the sum of the stack-
size of all routines, plus a basic stack size, plus size used by exceptions.

The basic stack size is the size of memory required to store the registers of the CPU plus
the stack size required by calling embOS-routines.

For Cortex-M CPUs, this minimum basic task stack size is about 88 bytes. Because any
function call uses some amount of stack and every exception also pushes at least 32 bytes
onto the current stack, the task stack size has to be large enough to handle one exception
too. For privileged tasks, we recommend at least 512 bytes stack as a start. Unprivileged
tasks will require an additional 128 bytes of task stack.

Note

Stacks for Cortex-M devices need to be 8-byte aligned. embQOS ensures that task
stacks are properly aligned. However, since this can result in unused bytes, the ap-
plication should ensure that task stacks are properly aligned. This can be achieved by
defining an array using a 64-bit data type like OS_U64.

System stack for Cortex-M

The embOS system executes in thread mode, the scheduler executes in handler mode.
The minimum system stack size required by embOS is about 160 bytes (stack check &
profiling build). However, since the system stack is also used by the application before the
start of multitasking (the call to OS_Start()), and because software timers and C-level
interrupt handlers also use the system stack, the actual stack requirements depend on the
application.

The size of the system stack can be changed by modifying the project settings or linker
file. We recommend a minimum stack size of 256 bytes for the system stack.

Interrupt stack for Cortex-M

If a normal hardware exception occurs, the Cortex-M core switches to handler mode which
uses the main stack pointer. With embOS, the main stack pointer is initialized to use the
CSTACK which is defined in the linker command file. The main stack is also used as stack by
the embOS scheduler and during idle times, when no task is ready to run and OS_| dl e()
is executed.

Note

When using an embOS Safe build, please note that the stack-check-limit is config-
urable through OS_STACK Set CheckLi mi t () and by default is configured at 70 percent
of the total stack size. This will impact the minimum size requirement for both task
stacks and the CSTACK.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 6

Interrupts

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

37 CHAPTER 6 What happens when an interrupt occurs?

6.1 What happens when an interrupt occurs?

The CPU-core receives an interrupt request from the interrupt controller.

As soon as the interrupts are enabled, the interrupt is accepted and executed.

The CPU pushes R0-R3, R12, LR, Return Address and xPSR onto the current stack.
The CPU loads the according EXC_RETURN value into LR.

The CPU switches to handler mode and main stack.

The CPU jumps to the vector address delivered by the NVIC.

The interrupt handler is processed.

The interrupt handler ends with a return from interrupt.

The CPU uses the EXC_RETURN value in LR to switch back to the mode and stack which
was active before the exception was entered.

e The CPU restores R0-R3, R12, LR, Return Address and xPSR from the stack and
continues execution of the interrupted application.

6.2 Defining interrupt handlers in C

Interrupt handlers for Cortex-M cores are written as normal C-functions which do not take
parameters and do not return any value. Interrupt handlers which call an embOS function
need a prologue and an epilogue function as described in the generic manual and in the
examples below.

Example

Simple interrupt routine:

static void _Systick(void) {
OS INT_EnterNestable(); // InformenbGS that interrupt code is running
CS_TI CK_Handl e(); /1 May be interrupted
OS_INT_LeaveNestable(); // InformenbQS that interrupt handler is left
}

6.3 Interrupt vector table

After reset, ARM Cortex-M CPUs use an initial interrupt vector table located in ROM at
address 0x00. It contains the initial stack pointer as well as the addresses of all exception
handlers, which are defined in a C source or assembly file in the CPU specific subdirectory.
All interrupt handler function addresses have to be present in that file at compile time as
long as the table is kept in ROM.

If the vector table is copied to RAM, however, interrupt handlers can be installed dynamically
at runtime. To do so, the vector table base register inside the NVIC controller has to be
initialized to point to the vector table base address in RAM.

6.3.1 Required embOS system interrupt handler

embQOS for Cortex-M core needs two exception handlers which belong to the system itself,
PendSV_Handl er () and SysTi ck_Handl er () . Both are delivered with embOS. When using
your own interrupt vector table, ensure that they are referenced in the vector table.

Note

Some older BSPs used to name the PendSV ISR OS Exception() and thus need to
rename it to PendSV_Handl er () .

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

38 CHAPTER 6 Interrupt-stack switching

6.4 Interrupt-stack switching

Since Cortex-M core based controllers have two separate stack pointers and embOS utilizes
the process stack pointer to execute tasks, there is no need to explicitly switch stacks inside
interrupt routines, which utilize the main stack pointer. The routines OS_I NT_Enter I nt S-
tack() and OS_| NT_Leavel nt St ack() are supplied for source code compatibility to other
processors only and have no functionality.

6.5 Zero latency interrupts

ARM Cortex-M3, M4, M7 and M33 processors provide a mechanism to raise the interrupt
priority level of the CPU in order to disable interrupts with a higher interrupt priority level
(please note that lower priority numbers define a higher priority). When embOS needs to
perform atomic operations, embos raises the interrupt priority level of the CPU to 128.
All interrupt priorities from 0 to 127 are never disabled by embOS and thus named zero
latency interrupts. To ensure that the operations are still atomic, embQOS functions must
not be called from within zero latency interrupts.

It is not possible to raise the interrupt priority level of the CPU for Cortex-M0, M0+, M1 and
M23 processors. Thus, zero latency interrupts are not available on those processors.

Note

Please be aware with ARM Erratum 837070, embOS sets PRIMASK before writing to
BASEPRI and unconditionally clears it afterwards. Therefore, zero latency interrupts
are disabled for a few cycles when embQOS dis- or enables embOS interrupts. Please
refer to chapter ARM erratum 837070 for more details.

6.6 Interrupt priorities

The interrupt priority is any number between 0 and 255 as seen by the CPU core. With
embOS and its own setup functions for the interrupt controller and priorities, there is no
difference in the priority values regardless of the different preemption level of specific
devices. Using the CMSIS functions to set up interrupt priorities requires different values
for the priorities. These values depend on the number of preemption levels of the specific
chip. A description is found in the chapter CMSIS.

6.6.1 Interrupt priorities with Cortex-M3, M4, M7 and M33
cores

Cortex-M3, M4, M7 and M23 supports up to 256 levels of programmable priority with a
maximum of 128 levels of preemption. Most Cortex-M chips have fewer supported levels,
for example 8, 16, 32, and so on. The chip designer can customize the chip to obtain the
levels required. There is a minimum of 8 preemption levels. Every interrupt with a higher
preemption level may preempt any other interrupt handler running on a lower preemption
level. Interrupts with equal preemption level may not preempt each other. The interrupt
priority is split into group priority and subpriority. The group priority determines the pre-
emption level.

With introduction of zero latency interrupts, interrupt priorities usable for interrupts using
embQOS API functions are limited.

e Any interrupt handler using embOS API functions has to run with interrupt
priorities from 128 to 255. These embOS interrupt handlers have to start with
OS_INT_Enter () or OS_I NT_Ent er Nest abl e() and have to end with OS_I NT_Leave()
or OS_| NT_LeaveNest abl e() .

e Any zero latency interrupt (running at priorities from 0 to 127) must not call any embQOS
API function. Even GS_I NT_Enter () and OS_I NT_Leave() must not be called.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

39

CHAPTER 6 Interrupt priorities

e Interrupt handlers running at low priorities (from 128 to 255) not calling any embQOS
API function are allowed, but must not re-enable interrupts! The priority limit between
embOS interrupts and zero latency interrupts is fixed to 128 and can only be
changed by defining OS_| PL_THRESHCOLD and recompiling the embOS libraries (or using
embOS sources in your project)! This is done for efficiency reasons. The macro
OS_| PL_THRESHOLD can be defined in OS_Confi g. h or by project specific preprocessor
settings. In case of doubt, please contact the embOS support.

Note

If you do not set an interrupt priority with NVI C SetPriority() or OS_ARM | SRSet -
Pri o() the priority after reset is 0x00 which is not a valid embOS interrupt priority
but a zero latency interrupt.

6.6.2 Interrupt priorities with Cortex-M0, MO+, M1 and M23
cores

All Cortex-M0, M0+, M1 and M23 support 4 levels of programmable priority. Priority group-
ing is not available. Thus, the interrupt priority equals the preemption level. Every interrupt
with a higher interrupt priority may preempt any other interrupt handler running with a
lower interrupt priority. Interrupts with equal priority may not preempt each other.

All interrupt handlers may call embOS API irrespective of their priority. Any interrupt handler
using embOS API functions has to start with OS_|I NT_Ent er () or OS_| NT_Ent er Nest abl e()
and has to end with OS | NT _Leave() or OS_|I NT_LeaveNest abl e() .

6.6.3 Priority of the embOS scheduler

The embOS scheduler runs in the PendSV handler and on the lowest interrupt priority.
The scheduler may be preempted by any other interrupt with higher preemption level. The
application interrupts shall run on higher preemption levels to ensure short reaction time.

During initialization, the priority of the embOS scheduler is set to 0x03 for ARMv6-M and
ARMv8-M Baseline and to OxFF for ARMv7-M and ARMv8-M Mainline, which is the lowest
preemption level regardless of the number of preemption levels.

6.6.4 Priority of the embOS system timer

The embOS system timer runs on the second lowest preemption level. Thus, the embOS
timer may preempt the scheduler. Application interrupts which require fast reaction should
run on a higher preemption level.

6.6.5 Priority of embOS software timers

The embOS software timer callback functions are called from the scheduler and run on the
schedulers preemption level which is the lowest interrupt priority level. To ensure short
reaction time of other interrupts, other interrupts should run on a higher preemption level
and the software timer callback functions should be as short as possible.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

40 CHAPTER 6 Interrupt priorities

6.6.6 Priority of application interrupts for Cortex-M0, MO+, M1
and M23 cores

Application interrupts using embOQOS functions may run on any priority. We recommend that
application interrupts should run on a higher preemption level than the embQOS scheduler,
at least at the second lowest preemption level.

6.6.7 Priority of application interrupts for Cortex-M3, M4, M7
and M33 cores

Application interrupts using embOS functions may run on any priority level between 255
to 128. Interrupt handlers which require fast reaction may run on higher priorities than
128, but must not call any embOS function (zero latency interrupts). We recommend that
application interrupts should run on a higher preemption level than the embQOS scheduler,
at least at the second lowest preemption level.

As the number of priority levels is chip specific, the second lowest preemption level varies
depending on the chip. If the nhumber of preemption levels is hot documented, the second
lowest preemption level can be set as follows, using embOS functions:

unsi gned char Priority;
OS_ARM | SRSet Pri o(CS_I SR I D Tl CK, OxFF);

// Set to |lowest |evel, ALL BITS set
Priority = OS_ARM I SRSetPrio(OS_ISR ID TICK, OxFF); // Read priority back
Priority -= 1; /1l Lower preenption |evel
OS_ARM | SRSet Pri o(CS_ ISR ID TICK, Priority);

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

41

6.7

6.7.

6.7.

CHAPTER 6 Interrupt nesting

Interrupt nesting

The Cortex-M CPU uses a priority controlled interrupt scheduling which allows nesting of
interrupts per default. Any interrupt or exception with a higher preemption level may inter-
rupt an interrupt handler running on a lower preemption level. An interrupt handler calling
embQOS functions has to start with an embOS prologue function; it informs embOS that an
interrupt handler is running. For any interrupt handler, the user may decide individually
whether this interrupt handler may be preempted or not by choosing the prologue function.

1 OS_INT Enter()

Description

Disables nesting.

Prototype

void OS_INT_Enter (void);

Additional information

OS_INT_Enter () has to be used as prologue function, when the interrupt handler should
not be preempted by any other interrupt handler that runs on a priority below the zero
latency interrupt priority. An interrupt handler that starts with OS_| NT_Ent er () has to end
with the epilogue function OS | NT_Leave().

Example

Interrupt-routine that can not be preempted by other interrupts.

static void _Systick(void) {
OS_INT_Enter(); /'l InformenbOS that interrupt code is running
OS_Handl eTick(); // Can not be interrupted by higher priority interrupts
OS_I NT_Leave(); /'l InformenbOS that interrupt handler is |eft

}

2 OS_INT_EnterNestable()

Description

Enables nesting.

Prototype

void OS I NT_EnterNestable (void);

Additional information

OS_|I NT_Ent er Nest abl e(), allow nesting. GS_| NT_Ent er Nest abl e() may be used as pro-
logue function, when the interrupt handler may be preempted by any other interrupt han-
dler that runs on a higher interrupt priority. An interrupt handler that starts with GS_I N-
T_Ent er Nest abl e() has to end with the epilogue function GS | NT_LeaveNest abl e() .

Example

Interrupt routine that can be preempted by higher priority interrupts.

static void _Systick(void) {
OS_INT_EnterNestable(); // InformenbGCS that interrupt code is running
OS_Handl eTi ck(); /] Can be interrupted by higher priority interrupts
OS_INT_LeaveNestable(); // InformenbOS that interrupt handler is left

}

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

42 CHAPTER 6 Interrupt handling API

6.8 Interrupt handling API

For the Cortex-M core, which has a built-in vectored interrupt controller, embOS delivers
additional functions to install and setup interrupt handler functions.

This API is not available in embOS library mode OS_L| BMODE_SAFE.
To handle interrupts with the vectored interrupt controller, embOS offers the following

functions:
c
T S 0
312312
Routine Description o 54(< |2 |-
S e = |?P|3
28 |a
~
0S_ARM I SRI ni t () glsed to initialize the interrupt han- ol e
ing.
OS_ARM I nstal | | SRHandl er () |Installs an interrupt handler. oo
OS_ARM Enabl el SR() Enables a specific interrupt source. | e | e oo
OS_ARM Di sabl el SR() Disables a specific interrupt source. | o | oo
0S_ARM | SRSet Pri o() S_e_t or modify the priority of a spe- ol e
cific interrupt source.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

43 CHAPTER 6 Interrupt handling API

6.8.1 OS_ARM_ISRInit()

Description

Used to initialize the interrupt handling.

Prototype
void OS_ARM | SRI nit (0OS_U32 | sVect or Tabl el nRAM
OS_U32 Num nt errupts,
OS_I SR_HANDLER* Vect or Tabl eBaseAddr[],
OS_| SR_HANDLER* RAMVect or Tabl eBaseAddr[]);
Parameters
Parameter Description
Defines whether a RAM vector table is used.
| sVect or Tabl el nRAM 0: Vector table in Flash.
1: Vector table in RAM.
Numl nt errupts Number of implemented interrupts.
Vect or Tabl eBaseAddr Flash vector table address.
RAMVect or Tabl eBaseAddr RAM vector table address.

Additional information

This function must be called before OS_ARM | nst al | | SRHandl er (), OS_ARM Enabl el SR(),
OS_ARM Di sabl el SR() and OS_ARM | SRSet Pri o() can be called.

Note

Please note a RAM vector table can be used only if the device has a configurable VTOR
implemented.

Example

void OS InitHWvoid) {
OS ARM I SRInit(1u, 82, (OS_ISR HANDLER**) Vectors, (OS_ISR HANDLER**)pRAM/ect Tabl e);
OS_ARM I nstal | I SRHandl er (OS_I SR I D Tl CK, OS_Systick);
OS_ARM | SRSet Pri o(OS_I SR_I D _TI CK, OxEOu);
OS_ARM Enabl el SR(OS_I SR I D TI CK);
}

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

44 CHAPTER 6 Interrupt handling API

6.8.2 OS_ARM_InstalllISRHandler()

Description

Installs an interrupt handler.

Prototype
OS_I SR HANDLER* OS_ARM | nstal | | SRHandl er (i nt I SRI ndex,
0OS_| SR_HANDLER* pl SRHandl er) ;
Parameters
Parameter Description

Index of the interrupt source which should be installed.

| SRI ndex Note that the index counts from O for the first entry in
the vector table.

pl SRHandl er Address of the interrupt handler.

Return value

The previous interrupt handler.

Additional information

Sets an interrupt handler in the RAM vector table. Does nothing when the vector table is
in Flash. OS_ARM I nst al | | SRHandl er () copies the vector table from Flash to RAM when it
is called for the first time and RAM vector table is enabled.

Note

Please note a RAM vector table can be used only if the device has a configurable VTOR
implemented.

Example

void OS InitHWvoid) {
CS_ ARM ISRInit(1lu, 82, (OS_|SR HANDLER**)__Vectors, (0OS_|SR HANDLER**)pRAM/ect Tabl e);
OS_ARM I nstal |l SRHandl er (OS_I SR ID Tl CK, OS_Systick);
CS_ARM | SRSet Pri o(0S_I SR I D Tl CK, OxEOu);
CS_ARM Enabl el SR(CS_| SR | D Tl CK) ;

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

45

CHAPTER 6 Interrupt handling API

6.8.3 OS_ARM_EnablelSR()

Description

Used to enable interrupt acceptance of a specific interrupt source in a vectored interrupt
controller.

Prototype
voi d OS_ARM Enabl el SR (i nt | SRI ndex);
Parameters
Parameter Description
| SRI ndex Index of the interrupt source which should be enabled. Note that the
index counts from O for the first entry in the vector table.

Additional information

This function just enables the interrupt inside the interrupt controller. It does not enable
the interrupt of any peripherals. This has to be done elsewhere. Note that the ISRIndex
counts from 0 for the first entry in the vector table. The first peripheral index therefore
has the ISRIndex 16, because the first peripheral interrupt vector is located after the 16
generic vectors in the vector table. This differs from index values used with CMSIS.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

46

CHAPTER 6 Interrupt handling API

6.8.4 OS_ARM_ DisablelSR()

Description

Used to disable interrupt acceptance of a specific interrupt source in a vectored interrupt
controller which is not of the VIC type.

Prototype
void OS_ARM Di sabl el SR (int |SRI ndex);
Parameters
Parameter Description
| SRI ndex Index of the interrupt source which should be disabled. Note that the
index counts from O for the first entry in the vector table.

Additional information

This function just disables the interrupt in the interrupt controller. It does not disable the
interrupt of any peripherals. This has to be done elsewhere. Note that the ISRIndex counts
from O for the first entry in the vector table. The first peripheral index therefore has the
ISRIndex 16, because the first peripheral interrupt vector is located after the 16 generic
vectors in the vector table. This differs from index values used with CMSIS.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

47

CHAPTER 6 Interrupt handling API

6.8.5 OS ARM_ISRSetPrio()

Description

Used to set or modify the priority of a specific interrupt source by programming the interrupt
controller.

Prototype
int OS_ARM I SRSetPrio (int ISRl ndex,
int Prio);
Parameters
Parameter Description

| SRI ndex Index of the interrupt source which should be modified. Note that the
index counts from O for the first entry in the vector table.

Prio The priority which should be set for the specific interrupt. Prio ranges
from 0 (highest priority) to 255 (lowest priority).

Additional information

This function sets the priority of an interrupt channel by programming the interrupt con-
troller. Please refer to CPU-specific manuals about allowed priority levels. Note that the
ISRIndex counts from 0O for the first entry in the vector table. The first peripheral index
therefore has the ISRIndex 16, because the first peripheral interrupt vector is located after
the 16 generic vectors in the vector table. This differs from index values used with CMSIS.
The priority value is independent of the chip-specific preemption levels. Any value between
0 and 255 can be used, were 255 always is the lowest priority and 0 is the highest priority.
The function can be called to set the priority for all interrupt sources, regardless of whether
embOS is used or not in the specified interrupt handler. Note that interrupt handlers run-
ning on priorities from 127 or higher must not call any embQOS function.

Note

Please note there are Arm core specific restrictions when you must not change the
exception priority. For example, you must not change the priority of an active excep-
tion. For more information, please have a look in the according Arm Architecture Ref-
erence Manual.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 7
CMSIS

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

49 CHAPTER 7 Introduction

7.1 Introduction

ARM introduced the Cortex Microcontroller Software Interface Standard (CMSIS) as a ven-
dor independent hardware abstraction layer for simplifying software re-use. The standard
enables consistent and simple software interfaces to the processor, for peripherals, for real
time operating systems as embQOS and other middleware. As SEGGER is one of the CMSIS
partners, embOS for Cortex-M is fully CMSIS compliant. embOS comes with a generic CMSIS
start project which should run on any Cortex-M3 CPU. All other start projects, even those
not based on CMSIS, are also fully CMSIS compliant and can be used as starting points
for CPU specific CMSIS projects. How to use the generic project and adding vendor specific
files to this or other projects is explained in the following chapters.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

50 CHAPTER 7 The generic CMSIS start project

7.2 The generic CMSIS start project

The folder St ar t\ Boar dSuppor t\ CVMSI S contains a generic CMSIS start project that should
run on any ARMv7-M core. The subfolder Devi ceSupport\ contains the device specific
source and header files which have to be replaced by the device specific files of the vendor
to make the CMSIS sample start project device specific.

7.3 Device specific files needed for embOS with
CMSIS

e Device.h: Contains the device specific exception and interrupt numbers and
names. embOS needs the Cortex-M generic exception numbers PendSV_| Rgn and
SysTi ck_| RQn, as well as the exception hames PendSV_Handl er and SysTi ck_Handl er,
which are vendor independent and common for all devices. The sample file delivered
with embOS does not contain any peripheral interrupt vector numbers and names as
those are not needed by emb0OS. To make the embOS CMSIS sample device specific
and allow usage of peripheral interrupts, this file has to be replaced by the one which
is delivered from the CPU vendor.

e System Devi ce. h: Declares at least the two required system timer functions which are
used to initialize the CPU clock system and one variable which allows the application
software to retrieve information about the current CPU clock speed. The names of the
clock controlling functions and variables are defined by the CMSIS standard and are
therefore identical in all vendor specific implementations.

e System Devi ce. c: Implements the core specific functions to initialize the CPU, at least
to initialize the core clock. The sample file delivered with embOS contains empty
dummy functions and has to be replaced by the vendor specific file which contains the
initialization functions for the core.

e Startup_Device.s: The startup file which contains the initial reset sequence and
contains exception handler and peripheral interrupt handler for all interrupts. The
handler functions are declared weak, so they can be overwritten by the application which
implements the application specific handler functionality. The sample which comes with
embOS only contains the generic exception vectors and handler and has to be replaced
by the vendor specific startup file.

Startup code requirements:

The reset handler must call the System nit () function which is delivered with the core
specific system functions. When using an ARMv7 CPU which may have a VFP floating point
unit equipped, please ensure that the reset handler activates the VFP and VFP support
is selected in the project options. When VFP support is not selected, the VFP should not
be switched on. Otherwise, the System nit () function delivered from the device vendor
should also honor the project settings and enable the VFP or keep it disabled according the
project settings. Using CMSIS compliant startup code from the chip vendors may require
modification if it enables the VFP unconditionally.

7.4 Device specific functions/variables needed for
embOS with CMSIS

The embOS system timer is triggered by the Cortex-M generic system timer. The correct
core clock and pll system is device specific and has to be initialized by a low level init function
called from the startup code. embOS calls the CMSIS function SysTi ck_Confi g() to set up
the system timer. The function relies on the correct core clock initialization performed by
the low level initialization function Syst em ni t () and the value of the core clock frequency
which has to be written into the Syst entCor eCl ock variable during initialization or after
calling Syst enCor ed ockUpdat e() .

e System nit(): The system init function is delivered by the vendor specific CMSIS library
and is normally called from the reset handler in the startup code. The system init

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

51

7.5

CHAPTER 7 CMSIS generic functions needed for embOS with
CMSIS

function has to initialize the core clock and has to write the CPU frequency into the
global variable SystemCoreClock.

e SystenCoreC ock: Contains the current system core clock frequency and is initialized
by the low level initialization function System nit () during startup. embOS for CMSIS
relies on the value in this variable to adjust its own timer and all time related functions.
Any other files or functions delivered with the vendor specific CMSIS library may be
used by the application, but are not required for embOS.

CMSIS generic functions needed for embOS with

CMSIS

7.6

The embOS system timer is triggered by the Cortex-M generic system timer which has
to be initialized to generate periodic interrupts in a specified interval. The configuration
function SysTi ck_Confi g() for the system timer relies on correct initialization of the core
clock system which is performed during startup.

e SystenCoreC ockUpdat e() : This CMSIS function has to update the Syst enCor eC ock
variable according the current system timer initialization. The function is device specific
and may be called before the SystemCoreClock variable is accessed or any function
which relies on the correct setting of the system core clock variable is called. embQOS
calls this function during the hardware initialization function OS_| nit HN() before the
system timer is initialized.

e SysTick Config(): This CMSIS generic function is declared an implemented in the
core_cnr. h file. It initializes and starts the SysTick counter and enables the SysTick
interrupt. For embOS it is recommended to run the SysTick interrupt at the second
lowest preemption priority. Therefore, after calling the SysTi ck_Confi g() function
from OS | nit HW), the priority is set to the second lowest preemption priority ba a
call of N\VI C SetPriority(). The embOS function GS_| ni t HN) has to be called after
initialization of embOS during main and is implemented in the RTCSI ni t *. c file.

e SysTick Handl er(): The embOS timer interrupt handler, called periodically by the
interrupt generated from the SysTick timer. The SysTi ck_Handl er is declared weak
in the CMSIS startup code and is replaced by the embOS Systi ck_Handl er function
implemented in RTCSI ni t *. ¢ which comes with the embOS start project.

e PendSV_Handl er () : The embOS scheduler entry function. It is declared weak in the
CMSIS startup code and is replaced by the embOS internal function contained in
the embOS library. The embOS initialization code enables the PendSV exception and
initializes the priority. The application MUST NOT change the PendSV priority.

Customizing the embOS CMSIS generic start

project

7.7

The embOS CMSIS generic start project should run on every ARMv7-M CPU. As the generic
device specific functions delivered with embOS do not initialize the core clock system and
the PLL, the timing is not correct, a real CPU will run very slow. To run the sample project
on a specific CPU, replace all files in the Devi ceSupport\ folder by the versions delivered
by the CPU vendor. The vendor and CPU specific files should be found in the CMSIS release
package, or are available from the core vendor. No other changes are necessary on the
start project or any other files.

To run the generic CMSIS start project on an ARMv6-M, you have to replace the embOS
libraries with libraries for ARMv6-M and have to add the specific vendor files.

Adding CMSIS to other embQOS start projects

All CPU specific start projects are fully CMSIS compatible. If required or wanted in the
application, the CMSIS files for the specific CPU may be added to the project without any
modification on existing files. Note that the GS I ni t H\() function in the RTOSInit file ini-

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

52

CHAPTER 7 Adding CMSIS to other embOS start projects

tialize the core clock system and pll of the specific CPU. The system clock frequency and
core clock frequency are defined in the RTOSInit file. If the application needs access to
the Syst entCor ed ock, the core specific CMSIS startup code and core specific initialization
function System ni t has to be included in the project. In this case, OS_I ni t H() function
in RTOSInit may be replaced, or the CMSIS generic RTOSI ni t _CMSI S. ¢ file may be used
in the project.

7.7.1 Differences between embOS projects and CMSIS

Several embOS start projects are not based on CMSIS but are fully CMSIS compliant and can
be mixed with CMSIS libraries from the device vendors. Switching from embOS to CMSIS,
or mixing embOS with CMSIS functions is possible without problems, but may require some
modification when the interrupt controller setup functions from CMSIS shall be used instead
of the embOS functions.

7.7.1.1 Different peripheral ID numbers

Using CMSIS, the peripheral IDs to setup the interrupt controller start from 0 for the first
peripheral interrupt. With embQS, the first peripheral is addressed with ID number 16.
embOS counts the first entry in the interrupt vector table from 0, so, the first peripheral
interrupt following the 16 Cortex system interrupt entries, is 16. When the embOS functions
should be replaced by the CMSIS functions, this correction has to be taken into account, or
if available, the symbolic peripheral id numbers from the CPU specific CMSIS device header
file may be used with CMSIS. Note that using these IDs with the embOS functions will work
only, when 16 is added to the IDs from the CMSIS device header files.

7.7.1.2 Different interrupt priority values

Using embOS functions, the interrupt priority value ranges from 0 to 255 and is written
into the NVIC control registers as is, regardless of the number of implemented priority bits.
255 is the lowest priority, 0 is the highest priority. Using CMSIS, the range of interrupt
priority levels used to setup the interrupt controller depends on the number of priority bits
implemented in the specific CPU. The number of priority bits for the specific device shall be
defined in the device specific CMSIS header file as __ NVI C_PRI O BI TS. If it is not defined
in the device specific header files, a default of 4 is set in the generic CMSIS core header
file. A CPU with 4 priority bits supports up to 16 preemption levels. With CMSIS, the range
of interrupt priorities for this CPU would be 0 to 15, where 0 is the highest priority and
15 is the lowest. To convert an embOS priority value into a value for the CMSIS functions,
the value has to be shifted to the right by (8 - __NVIC PRI O BI TS). To convert an CMSIS
value for the interrupt priority into the value used with the embOS functions, the value has
to be shifted to the left by (8 - _ NVIC PRI O BITS). In any case, half of the priorities
with lower values (from zero) are high priorities which must not be used with any interrupt
handler using embOS functions.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

53 CHAPTER 7 Interrupt and exception handling with CMSIS

7.8 Interrupt and exception handling with CMSIS

The embOS CPU specific projects come with CPU specific vector tables and empty exception
and interrupt handlers for the specific CPU. All handlers are named according the names
of the CMSIS device specific handlers and are declared weak and can be replaced by an
implementation in the application source files. The CPU specific vector table and interrupt
handler functions in the embQOS start projects can be replaced by the CPU specific CMSIS
startup file of the CPU vendor without any modification on other files in the project. embOS
uses the two Cortex-M generic exceptions PendSV and SysTick and delivers its own handler
functions to handle these exceptions. All peripheral interrupts are device specific and are
not used with embOS except for profiling support and system analysis with embOSView
using a UART.

7.8.1 Enable and disable interrupts

The generic CMSIS functions NVI C_Enabl el RQ() and NVI C_Di sabl el RQ() can be used in-
stead of the embOS functions OS_ARM Enabl el SR() and OS_ARM Di sabl el SR() functions.
Note that the CMSIS functions use different peripheral ID indices to address the specific
interrupt number. embOS counts from 0 for the first entry in the interrupt vector table,
CMSIS counts from 0 for the first peripheral interrupt vector, which is ID number 16 for
the embOS functions. About these differences, please refer to Different peripheral ID num-
bers on page 52. To enable and disable interrupts in general, the embOS functions CS_| N
T IncDl () and OS_I NT_DecRI () or other embOS functions described in the generic embOS
manual should be used instead of the intrinsic functions from the CMSIS library.

7.8.2 Setting the Interrupt priority

With CMSIS, the CMSIS generic function NVI C Set Priority() can be used instead of the
OS_ARM | SRSet Pri o() function. Note that with the CMSIS function, the range of valid in-
terrupt priority values depends on the number of priority bits defined and implemented
for the specific device. The number of priority bits for the specific device shall be defined
in the device specific CMSIS header file as __ NvVI C PRI O BI TS. If it is not defined in the
device specific header files, a default of 4 is set in the generic CMSIS core header file. A
CPU with 4 priority bits supports up to 16 preemption levels. With CMSIS, the range of
interrupt priorities for this CPU would be 0 to 15, where 0 is the highest priority and 15 is
the lowest. About interrupt priorities in an embOS project, please refer to Interrupt priori-
ties on page 38 and Interrupt nesting on page 41, about the differences between interrupt
priority and ID values used to setup the NVIC controller, please refer to Different interrupt
priority values on page 52.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 8
Floating Point (FP) support

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

55 CHAPTER 8 ARM Floating-point Extension

8.1 ARM Floating-point Extension

Some Cortex-M4, Cortex-M7 and Cortex-M33 processors implement the ARM/7- M ARM/8- M
Fl oati ng- poi nt Ext ensi on, providing a Floating Point Unit (FPU).

When selecting such CPU and activating floating-point support in the IDE’s project options,
the compiler and linker will generate efficient code that uses the FPU when floating-point
calculations are performed in the application. With embOS, the FPU registers are automat-
ically saved and restored during preemptive and cooperative task switches. For efficiency
reasons, embOS does not save and restore the FPU registers for tasks that did not use
the FPU.

8.2 Using embQOS libraries with floating-point support

When floating-point support is selected as project option, an embOS library with float-
ing-point support must be used in the project. embOS libraries with floating-point support
require that the FPU is switched on during startup and remains switched on during program
execution. When using a customized startup code, ensure that the FPU is switched on dur-
ing startup and that the ASPEN and LSPEN bits of the Fl oati ng- poi nt Context Control
Regi ster (FPCCR) are not cleared (their reset value is 1 and embQOS expects them to
remain set).

In GS_Init(), a debug build of embOS checks whether the FPU was switched on and the
FPCCR. ASPEN and FPCCR. LSPEN bits are set: If any of these conditions is not met, embQOS
calls Gs_Error () with error code OCS_ERR_FPU_NOT_ENABLED.

8.3 Using the FPU in interrupt service routines

Using the FPU in interrupt service routines does not require any additional functions in order
to save and restore the FPU registers, since these are automatically saved and restored
by hardware.

8.4 FPU default behavior

The behavior of the ARM FPU is controlled by different flags in the Fl oat i ng- poi nt St at us
and Control Register (FPSCR). Each time a new floating-point context is generated,
the FPSCR is loaded with default values stored in the Fl oati ng- poi nt Default Status
and Control Register (FPDSCR). The FPDSCR is initialized in OS_I ni t () using the value
0x02000000, thereby setting the Def aul t NaN npde control bit to 1. If a different default
FPU behavior is desired, FPDSCR may be modified after OS_I ni t () was executed.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

Chapter 9
RTT and SystemView

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

57 CHAPTER 9 SEGGER Real Time Transfer

9.1 SEGGER Real Time Transfer

With SEGGER'’s Real Time Transfer (RTT) it is possible to output information from the target
microcontroller as well as sending input to the application at a very high speed without
affecting the target’s real time behavior. SEGGER RTT can be used with any J-Link model
and any supported target processor which allows background memory access.

RTT is included with many embOS start projects. These projects are by default configured
to use RTT for debug output. Some IDEs, such as SEGGER Embedded Studio, support RTT
and display RTT output directly within the IDE. In case the used IDE does not support RTT,
SEGGER’s J-Link RTT Viewer, J-Link RTT Client, and J-Link RTT Logger may be used instead
to visualize your application’s debug output.

For more information on SEGGER Real Time Transfer, refer to segger.com/jlink-rtt.

9.2 SEGGER SystemView

SEGGER SystemView is a real-time recording and visualization tool to gain a deep under-
standing of the runtime behavior of an application, going far beyond what debuggers are
offering. The SystemView module collects and formats the monitor data and passes it to
RTT.

SystemView is included with many embOS start projects. These projects are by default
configured to use SystemView in debug builds. The associated PC visualization application,
SystemView, is not shipped with embOS. Instead, the most recent version of that applica-
tion is available for download from our website.

SystemView is initialized by calling SEGGER_SYSVI EW Conf () on the target microcontroller.
This call is performed within OS_| ni t H\{) of the respective RTCSI nit *. ¢ file. As soon as
this function was called, the connection of the SystemView desktop application to the target
can be started. In order to remove SystemView from the target application, remove the
SEGCGER_SYSVI EW Conf () call, the SEGGER_SYSVI EW h include directive as well as any other
reference to SEGGER_SYSVI EW * like SEGGER_SYSVI EW Ti ckCnt .

For more information on SEGGER SystemView and the download of the SystemView desktop
application, refer to segger.com/systemview.

Note

SystemView uses embOS timing API to get at start the current system time. This re-
quires that GS_TI ME_Confi gSysTi mer () was called before SEGGER SYSVI EW St art ()
is called or the SystemView PC application is started.

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

https://www.segger.com/jlink-rtt
https://www.segger.com/systemview

Chapter 10

Technical data

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

59 CHAPTER 10 Resource Usage

10.1 Resource Usage

The memory requirements of embOS (RAM and ROM) differs depending on the used fea-
tures, CPU, compiler, and library model. The following values are measured using embOS
library mode OS_LI BMODE_XR.

Module Memory type Memory requirements
embOS kernel ROM ~1700 bytes
embOS kernel RAM ~136 bytes
Task control block RAM 36 bytes
Software timer RAM 20 bytes
Task event RAM 0 bytes
Event object RAM 12 bytes
Mutex RAM 16 bytes
Semaphore RAM 8 bytes
RWLock RAM 28 bytes
Mailbox RAM 24 bytes
Queue RAM 32 bytes
Watchdog RAM 12 bytes
Fixed Block Size Memory Pool RAM 32 bytes

embOS for Cortex-M and IAR © 2010-2022 SEGGER Microcontroller GmbH

	About this document
	Table of contents
	Using embOS
	Installation
	First Steps
	The example application OS_StartLEDBlink.c
	Stepping through the sample application

	Build your own application
	Introduction
	Required files for an embOS
	Change library mode
	Select another CPU

	Libraries
	Naming conventions for prebuilt libraries

	CPU and compiler specifics
	IAR C-Spy stack check warning
	Standard system libraries
	Interrupt and thread safety
	IAR compiler V6.10 to V7.80
	IAR compiler V8.10 and newer

	Thread-Local Storage TLS
	OS_TLS_Set()
	OS_TLS_SetTaskContextExtension()

	ARM erratum 837070
	ARMv8-M Stack limit register PSPLIM
	OS_PSPLIM_Set()
	OS_PSPLIM_SetTaskContextExtension()

	ARM TrustZone support
	OS_ARM_TZ_SetSecureStatePSP()
	OS_ARM_TZ_SetTaskContextExtension()

	Stacks
	Task stack for Cortex-M
	System stack for Cortex-M
	Interrupt stack for Cortex-M

	Interrupts
	What happens when an interrupt occurs?
	Defining interrupt handlers in C
	Interrupt vector table
	Required embOS system interrupt handler

	Interrupt-stack switching
	Zero latency interrupts
	Interrupt priorities
	Interrupt priorities with Cortex-M3, M4, M7 and M33 cores
	Interrupt priorities with Cortex-M0, M0+, M1 and M23 cores
	Priority of the embOS scheduler
	Priority of the embOS system timer
	Priority of embOS software timers
	Priority of application interrupts for Cortex-M0, M0+, M1 and M23 cores
	Priority of application interrupts for Cortex-M3, M4, M7 and M33 cores

	Interrupt nesting
	OS_INT_Enter()
	OS_INT_EnterNestable()

	Interrupt handling API
	OS_ARM_ISRInit()
	OS_ARM_InstallISRHandler()
	OS_ARM_EnableISR()
	OS_ARM_DisableISR()
	OS_ARM_ISRSetPrio()

	CMSIS
	Introduction
	The generic CMSIS start project
	Device specific files needed for embOS with CMSIS
	Device specific functions/variables needed for embOS with CMSIS
	CMSIS generic functions needed for embOS with CMSIS
	Customizing the embOS CMSIS generic start project
	Adding CMSIS to other embOS start projects
	Differences between embOS projects and CMSIS
	Different peripheral ID numbers
	Different interrupt priority values

	Interrupt and exception handling with CMSIS
	Enable and disable interrupts
	Setting the Interrupt priority

	Floating Point (FP) support
	ARM Floating-point Extension
	Using embOS libraries with floating-point support
	Using the FPU in interrupt service routines
	FPU default behavior

	RTT and SystemView
	SEGGER Real Time Transfer
	SEGGER SystemView

	Technical data
	Resource Usage

