
emUSB-C PD
USB-C and Power Delivery

stack for embedded applications

User Guide & Reference Manual

Document: UM11001
Software Version: 1.20.0

Revision: 1
Date: December 22, 2023

A product of SEGGER Microcontroller GmbH

www.segger.com

http://www.segger.com/emUSB-C%20PD.html
https://www.segger.com
https://www.segger.com

2

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 2023-2023 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address

SEGGER Microcontroller GmbH

Ecolab-Allee 5
D-40789 Monheim am Rhein

Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: ticket_emusb@segger.com*

Internet: www.segger.com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

https://www.segger.com

3

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: December 22, 2023

Software Date By Description

1.20.0 2023-12-13 RH Added configuration item DeviceDataRoleDelay.
Add new function USBC_EnableTrimming_STM32Uxx().

1.10.0 2023-11-21 RH Minor corrections.

1.00.0 2023-10-25 RH Initial version.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

4

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:
• The software tools used for building your application (compiler, linker, Integrated Development

Environment).
• The C programming language.
• The target processor.

How to use this manual

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.
Sample Sample code in program examples.
Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other doc-
uments.

Emphasis Very important sections.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

6

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

7

Table of contents

1 Introduction ..9

1.1 What is emUSB-C .. 10
1.2 emUSB-C features ..10
1.3 Basic concepts ...11

2 Running emUSB-C on target hardware ..13

2.1 Integrating emUSB-C ..14
2.2 Take a running project ..14
2.3 Add emUSB-C files ...14
2.4 Configuring debugging output ..14
2.5 Add hardware dependent configuration ... 15
2.6 Prepare and run the application ...15
2.7 Updating emUSB-C ...17

3 Using emUSB-C in an application .. 18

3.1 Basic application structure .. 19
3.2 Configuring properties of the USB port ... 20

3.2.1 General configuration items. ...20
3.2.1.1 CCDebounceTime ... 20
3.2.1.2 UserContext .. 20

3.2.2 Configuration items used in sink role. ..20
3.2.2.1 ProvidedSinkRole ..20
3.2.2.2 SinkPowerOptions and NumSinkPowerOptions 20
3.2.2.3 DeviceDataRoleDelay .. 21

3.2.3 Configuration items used in source role. .. 21
3.2.3.1 ProvidedSourceRole .. 21
3.2.3.2 ProvidedPowerProfiles and NumSourcePowerProfiles21
3.2.3.3 VBUSDischargeDelay .. 21

3.3 Running the application .. 22
3.3.1 Bit USBC_CHANGED_POWER_ROLE ... 22
3.3.2 Bit USBC_CHANGED_USB_COMM .. 22
3.3.3 Bit USBC_CHANGED_POWER .. 22
3.3.4 Bit USBC_CHANGED_CAPABILITIES ... 22

3.4 Example applications .. 23
3.5 API reference of functions for the application ...24

3.5.1 USBC_Init() ..25
3.5.2 USBC_Exit() ... 26
3.5.3 USBC_Process() .. 27
3.5.4 USBC_GetPowerProfiles() ... 28

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

8

3.5.5 USBC_SetOnHardReset() ..29
3.5.6 USBC_POWER_REQUEST .. 30
3.5.7 USBC_POWER_PROFILE ... 31
3.5.8 USBC_ON_HARD_RESET .. 32

4 Configuring emUSB-C .. 33

4.1 Runtime configuration ...34
4.1.1 Driver installation ..34
4.1.2 Configuration functions .. 35
4.1.3 USBC_SetTimeFunc() ...36
4.1.4 USBC_SetReInitFunc() ... 37
4.1.5 USBC_Reg_VBUS_Func() ..38
4.1.6 USBC_Reg_DISCHRG_Func() .. 39
4.1.7 USBC_Reg_IDPIN_Func() ... 40
4.1.8 USBC_GET_VBUS_FUNC ...41
4.1.9 USBC_DISCHARGE_FUNC ... 42
4.1.10 USBC_GET_ID_PIN_FUNC ...43
4.1.11 USBC_TIME_FUNC ... 44
4.1.12 USBC_CALLBACK_FUNC ..45

4.2 Compile-time configuration ..46
4.2.1 Compile-time switches for debugging ...46

4.2.1.1 USBC_DEBUG .. 46
4.2.1.2 USBC_DEBUG_LOG_MODE ...46
4.2.1.3 USBC_LOG_BUFFER_SIZE ... 46

4.2.2 Use of standard C-library functions ... 47
4.3 USBC controller specifics ...48

4.3.1 STM32Uxx driver ...49
4.3.2 STM32Uxx driver specific configuration functions49

4.3.2.1 USBC_Reg_CC_STM32Uxx() .. 50
4.3.2.2 USBC_Reg_CC_SNK_STM32Uxx() ...51
4.3.2.3 USBC_Reg_CC_SRC_STM32Uxx() ... 52
4.3.2.4 USBC_Reg_PD_STM32Uxx() ...53
4.3.2.5 USBC_Reg_PD_SNK_STM32Uxx() ... 54
4.3.2.6 USBC_Reg_PD_SRC_STM32Uxx() ... 55
4.3.2.7 USBC_EnableTrimming_STM32Uxx() ... 56
4.3.2.8 USBC_STM32Uxx_ISR() .. 57
4.3.2.9 USBC_STM32Uxx_CFG_PARAMS ... 58
4.3.2.10 USBC_STM32Uxx_CC_ACTIVATE ...59

4.3.3 STM32Gxx driver .. 60
4.3.4 STM32Gxx driver specific configuration functions60

4.3.4.1 USBC_Reg_CC_STM32Gxx() .. 61
4.3.4.2 USBC_Reg_CC_SNK_STM32Gxx() ...62
4.3.4.3 USBC_Reg_CC_SRC_STM32Gxx() ...63
4.3.4.4 USBC_Reg_PD_STM32Gxx() .. 64
4.3.4.5 USBC_Reg_PD_SNK_STM32Gxx() ...65
4.3.4.6 USBC_Reg_PD_SRC_STM32Gxx() ... 66
4.3.4.7 USBC_STM32Gxx_ISR() .. 67
4.3.4.8 USBC_STM32Gxx_CFG_PARAMS ...68
4.3.4.9 USBC_STM32Gxx_CC_ACTIVATE .. 69

4.3.5 STM32Fxx driver ... 70
4.3.6 STM32Fxx driver specific configuration functions 70

4.3.6.1 USBC_Reg_IDPIN_STM32F7xx() ...71
4.3.6.2 USBC_Reg_VBUS_STM32F7xx() ... 72
4.3.6.3 USBC_Reg_CHRDET_STM32F7xx() ..73

5 Support ..74

5.1 Contacting support ... 75
5.1.1 Where can I find the license number? ..75

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

Chapter 1

Introduction

This chapter provides an introduction to using emUSB-C. It explains the basic concepts
behind emUSB-C.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

10 CHAPTER 1 What is emUSB-C

1.1 What is emUSB-C
USB-C is an industry-standard connector for transmitting both data and power on a single
cable. emUSB-C is a library that enables applications to easily handle a USB Type-C port
on an embedded device. It does not support USB communication but most functionality
added to USB by the USB Type-C connector, like host / device connection detection and
power delivery.

emUSB-C can be used in combination with emUSB-Host and/or emUSB-Device or even
without any USB stack for devices that make use of a USB-C charger as a power source
or to charge a dedicated battery.

1.2 emUSB-C features
Here is a list of emUSB-C features:
• Device connection detection on USB Type-C connectors.
• Power source / sink detection.
• Host / device USB data role detection.
• Dead battery signaling (if supported by hardware).
• Dynamic power supply negotiation up to 20V 3A.
• Use of chargers with variable supply voltage.
• ISO/ANSI C source code.
• Simple configuration.
• Configurable for minimal memory footprint.
• Very easy API.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

11 CHAPTER 1 Basic concepts

1.3 Basic concepts
A USB-C connector has two special pins called CC1 and CC2. Initially these are used to
detect a connection to another device by sensing the CC pins for a specified resistance to
GND or Vcc. The power role of both connected devices are established in that way: One
device becomes the Source (→ power provider) and the other becomes the Sink (→ power
consumer). Power is not applied by the Source to the USB Type-C receptacle until it detects
the presence of an attached device (Sink) port.

A Source may implement higher source current over VBUS than the default 5V 500mA.
It may advertise 1.5A or 3A current (at 5V) via a specified resistance of the CC pins to
Vcc to the Sink.

After (static) sensing of the CC pins and after a connection is established, both devices may
start a power delivery communication by exchanging data packets serially via one of the
CC pins. Using the power delivery protocol power contracts with much higher voltage and
current, up to 20V 5A, may be negotiated between Source and Sink.

Power delivery communication is optional and necessary only, if such extended functionality
are required by a device.

emUSB-C consists of two layers: The device independent emUSB-C protocol stack and a
driver to handle the specific target hardware. Drivers are available for several different
target hardware controllers. Both layers are divided into two functional modules: The “Base”
modules, that provide the API for the application and handle the static sensing of the CC
pins, and the “PD” module, that is responsible for the Power Delivery packet communication.

The base modules can be used separately for applications that do not need the extended
functionality of the power delivery communication.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

12 CHAPTER 1 Basic concepts

The application always uses the same API independent of the selected modules of emUSB-
C and the target driver.

The emUSB-C API can also be used in connection with a legacy OTG driver to implement
OTG functionality on a device without a USB-C connector.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

Chapter 2

Running emUSB-C on target
hardware

This chapter explains how to integrate and run emUSB-C on your target hardware.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

14 CHAPTER 2 Integrating emUSB-C

2.1 Integrating emUSB-C
We assume that you are familiar with the tools you have selected for your project (compiler,
project manager, linker, etc.). You should therefore be able to add files, add directories to
the include search path, and so on. Any IDE or ANSI C toolchain can be used. It is also
possible to use makefiles. In this case, when we say “add to the project”, this translates
into “add to the makefile”.

Procedure to follow

Integration of emUSB-C is a relatively simple process, which consists of the following steps:
• Take a running project for your target hardware.
• Add emUSB-C files to the project.
• Add hardware dependent configuration to the project.
• Prepare and run the application.

2.2 Take a running project
The project to start with should include the setup for basic hardware (e.g. CPU, PLL, DDR
SDRAM) and initialization of the RTOS (if used). If you are using SEGGER’s real-time op-
erating system embOS, simply start with an embOS sample project and include emUSB-
C into this project.

2.3 Add emUSB-C files
Add all necessary source files from the USBC folder to your project. You may simply add all
files and let the linker drop everything not needed for your configuration.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases where
the included files (typically header files, .h) do not reside in the same folder as the C file to
compile, an include path needs to be set. In order to build the project with all added files,
you will need to add the following directories to your include path:
• Config
• Inc
• SEGGER
• USBC

2.4 Configuring debugging output
While developing and testing emUSB-C, we recommend to use the DEBUG configuration of
emUSB-C. This is enabled by setting the preprocessor symbol DEBUG to 1 (or USBC_DEBUG ≥
2), see USBC_Conf.h. The DEBUG configuration contains many additional run-time checks
and generate debug output messages which are very useful to identify problems that may
occur during development. In case of a fatal problem (e.g. an invalid configuration) the
program will end up in the function USBC_Panic() with a appropriate error message that
describes the cause of the problem.

In order to use the debugging output, there must be any method to output messages, for
example to a debug terminal. If you are already using SEGGER’s emUSB-Device in your
project, then set

#define USBC_DEBUG_LOG_MODE 2

in USBC_Conf.h. emUSB-C will then use the logging mechanism from emUSB-Device.

If you are not using emUSB-Device but SEGGER’s emUSB-Host in your project, then set

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

15 CHAPTER 2 Add hardware dependent configuration

#define USBC_DEBUG_LOG_MODE 1

in USBC_Conf.h. emUSB-C will then use the logging mechanism from emUSB-Host.

If you are not using either of these products, then set

#define USBC_DEBUG_LOG_MODE 0

in USBC_Conf.h, add the file USBC_ConfigIO.c found in the folder Config to your project
and configure it to match the message output method used by your debugging tools. If
possible use RTT.

To later compile a release configuration, which has a significant smaller code footprint,
simply set the preprocessor symbol DEBUG (or USBC_DEBUG) to 0.

2.5 Add hardware dependent configuration
To perform target hardware dependent runtime configuration, the emUSB-C stack calls a
function named USBC_X_Config. Typical tasks that may be done inside this function are:
• Select appropriate driver modules for the USB-C controller.
• Configure I/O pins of the MCU for USB.
• Configure PLL and clock divider necessary for USB power delivery operation.
• Configure functions to use operating system services.
• Install an interrupt service routine for USB power delivery and set interrupt priority.

Details can be found in Runtime configuration on page 34.

Sample configurations for popular evaluation boards are supplied with the driver shipment.
They can be found in files called USBC_Config_<TargetName>.c in the folders BSP/<Board-
Name>/Setup. There are also some sample configuration files for emUSB-Device or emUSB-
Host that contain a setup for emUSB-C.

Add the appropriate configuration file to your project. If there is no configuration file for
your target hardware, take a file for a similar hardware and modify it if necessary.

If the file needs modifications, we recommend to copy it into the directory Config for easy
updates to later versions of emUSB-C.

Add BSP file

Some targets require CPU specific functions for initialization, mainly for installing an inter-
rupt service routine. They are contained in the file BSP_USB.c. USB interrupt priority can
also be configured in BSP_USB.c.

Sample BSP_USB.c files for popular evaluation boards are supplied with the driver shipment.
They can be found in the folders BSP/<BoardName>/Setup.

Add the appropriate BSP_USB.c file to your project. If there is no BSP file for your target
hardware, take a file for a similar hardware and modify it if necessary.

If the file needs modifications, we recommend to copy it into the directory Config for easy
updates to later versions of emUSB-C.

Note that a BSP_USB.c file is not always required, because for some target hardware all
runtime configuration is done in USBC_X_Config.

2.6 Prepare and run the application
Choose a sample application from the folder Application and add it to your project. Sample
applications are described in Example applications. Compile and run the application on the
target hardware.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

16 CHAPTER 2 Prepare and run the application

Write your own application

Take one of the sample applications as a starting point to write your own application. Details
can be found in chapter Using emUSB-C in an application.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

17 CHAPTER 2 Updating emUSB-C

2.7 Updating emUSB-C
If an existing project should be updated to a later emUSB-C version, only files have to be
replaced. You should have received the emUSB-C update as a zip file. Unzip this file to the
location of your choice and replace all emUSB-C files in your project with the newer files
from the emUSB-C update shipment.

In general, all files from the following directories have to be updated:
• USBC
• Inc
• SEGGER
• Doc

Some files may contain modification required for project specific customization. These files
should reside in the folder Config and must not be overwritten. This includes:
• USBC_Conf.h
• USBC_ConfigIO.c
• BSP_USB.c
• USBC_Config_<TargetName>.c

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

Chapter 3

Using emUSB-C in an
application

This chapter explains how build up an application with emUSB-C.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

19 CHAPTER 3 Basic application structure

3.1 Basic application structure
For each USB port that should be handled with emUSB-C the application has to provide a
memory structure of type USBC_INSTANCE and call the function USBC_Init() to initialize it.
This structure must remain valid, until the emUSB-C is shut down using USBC_Exit().

During initialization with USBC_Init() the function USBC_X_Config() is called to perform
target and application specific configuration and select the target driver. USBC_X_Config()
must be provided by the application. A detailed description of all tasks that need to be
performed within this function can be found in Configuring emUSB-C.

After calling USBC_Init() the application has to configure the properties of the USB port
by setting public members of the USBC_INSTANCE structure. This has to be done before the
function USBC_Process() is called the first time. USB port properties include:
• Provided source or sink role of the port.
• Provided USB host or device role.
• Power requirements / capabilities.

In order to run the emUSB-C stack, the application has to call the function USBC_Process()
periodically. We suggest to call it approximately every 10 ms, but there is no need for an
exact interval timing. This approach was chosen to allow the use of emUSB-C in systems
without an operating system, for example in a super loop architecture. If the target runs an
operating system, the application may create a task with a loop, that calls USBC_Process()
every 10 ms. Every time USBC_Process() returns, the application must respond to any
state changes of the USB port, for example by starting / stopping the USB stack or switching
VBUS on or off. This is described in Running the application.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

20 CHAPTER 3 Configuring properties of the USB port

3.2 Configuring properties of the USB port
The application should set the public members of the structure USBC_INSTANCE to configure
the behavior of the USB-C port. The items must be set, after calling USBC_Init(), but before
the function USBC_Process() is called the first time. Some of the items can be changed
later during operation. emUSB-C will use reasonable defaults for members that are not set.

3.2.1 General configuration items.

3.2.1.1 CCDebounceTime
Debounce time in milliseconds for the CC lines. The signals on the CC lines must be stable
for at least CCDebounceTime in order to detect a new USB-C connection.

3.2.1.2 UserContext
This member is not touched by the USB-C stack and can be arbitrarily used by the appli-
cation to store context information. Either:
• UserContext.N: A 32 bit number containing a port / address or similar of the device

instance, or
• UserContext.p: A pointer to any context information.

3.2.2 Configuration items used in sink role.
A device is in sink mode, if it consumes power from an attached ’source’ device.

3.2.2.1 ProvidedSinkRole
ProvidedSinkRole is a bit mask containing options applied in sink mode. Multiple options
can be or’ed together into ProvidedSinkRole. If the target can operate in sink mode, then
at least the option USBC_POWER_ROLE_SINK must be set. Optionally USBC_DATA_ROLE_DE-
VICE and/or USBC_DATA_ROLE_HOST can be set, if the target can operate as USB device or
USB host respectively. Please notice, that USB host operation is very unusual in sink mode
and requires a data role swap procedure.

If the target doesn’t support sink mode, ProvidedSinkRole must be 0.

3.2.2.2 SinkPowerOptions and NumSinkPowerOptions
SinkPowerOptions is an array of USBC_POWER_REQUEST structures, each containing a pow-
er requirement profile the sink can work with. NumSinkPowerOptions must be set to the
number of USBC_POWER_REQUEST structures provided in the array. If NumSinkPowerOptions
= 0, then a default of 5V and 500 mA requirement is used. If more than one power require-
ment profiles are provided (NumSinkPowerOptions > 1), then the first one in the tables
that matches any power profile of the source will be selected. If none matches, the default
power supply of the source will be used.

Warning

Never specify any voltage in SinkPowerOptions that is higher than you hardware can
handle! Otherwise the hardware may get damaged by high voltages supplied by a
source.

If the power requirements change during operation, then the application may change
SinkPowerOptions and set RenegotiatePD to 1. This will trigger a new power negotiation
with the source.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

21 CHAPTER 3 Configuring properties of the USB port

Example

A sink device uses SinkPowerOptions = [15V, 2A] while charging it’s battery. After the
battery is full, it may set NumSinkPowerOptions to 0 and RenegotiatePD to 1 to return to
the default power supply.

3.2.2.3 DeviceDataRoleDelay
A delay in milliseconds between the detection of a connected source and the signaling of
the device data role (USBC_DATA_ROLE_DEVICE in ActualRole) to the application.

When a source is connected, it signals via the CC lines that it is a power source and a
USB host. If then later a power delivery communication is established, the source may
indicate via its capabilities that this device is newer a USB host. The USB-C stack will then
reset the bit USBC_DATA_ROLE_DEVICE in ActualRole again. This is a typical behavior of
USB power supplies that are capable of power delivery communication. The result will be
usually, that the application starts the USB device stack at connection time and then stops
the USB stack around 100-200 ms later after the source capabilities have been received
via PD communication.

If DeviceDataRoleDelay is set to a non zero value, then after a new connection of a source
the signaling of USBC_DATA_ROLE_DEVICE to the application is delayed until either the source
capabilities have been received via PD communication or DeviceDataRoleDelay is expired.
This should avoid any useless starting and stopping of the USB device stack.

At time of a new connection it is unknown, if the connected device is capable of power
delivery communication or not. For devices that can’t do power delivery communication,
USB device role is signaled after expiring of DeviceDataRoleDelay, even if the device can’t
do any USB communication, which can’t be distinguished.

If power delivery communication is not configured and therefore not used by the USB-C
stack, DeviceDataRoleDelay should be left zero.

3.2.3 Configuration items used in source role.
A device is in source mode, if it provides power for an attached ’sink’ device.

3.2.3.1 ProvidedSourceRole
ProvidedSourceRole is a bit mask containing options applied in source mode. Multiple op-
tions can be or’ed together into ProvidedSourceRole. If the target can operate in source
mode, then at least the option USBC_POWER_ROLE_SOURCE must be set. Optionally USBC_DA-
TA_ROLE_DEVICE and/or USBC_DATA_ROLE_HOST can be set, if the target can operate as USB
device or USB host respectively. Please notice, that USB device operation is very unusual
in source mode and requires a data role swap procedure.

If the target doesn’t support source mode, ProvidedSourceRole must be 0.

3.2.3.2 ProvidedPowerProfiles and NumSourcePowerProfiles
ProvidedPowerProfiles is an array of USBC_POWER_PROFILE structures, each containing
a power profile the source offers. NumSourcePowerProfiles must be set to the number
of USBC_POWER_PROFILE structures provided in the array. If NumSourcePowerProfiles =
0, then a default of 5V and 500 mA requirement is used. If power profiles are provided
(NumSinkPowerOptions ≠ 0), then the first one must be a 5V profile.

3.2.3.3 VBUSDischargeDelay
Delay time in milliseconds after disconnect of a sink device before a new connection can be
detected. This is the time required for the VBUS voltage to drop below the threshold of 0.8 V.
This field is ignored if a discharge function is registered, see USBC_Reg_DISCHRG_Custom().

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

22 CHAPTER 3 Running the application

3.3 Running the application
The application has to call the function USBC_Process() approximately every 10 ms. This
function returns a bit mask (see USBC_CHANGED_… macros) that reflects changes in the state
of the USB-C port. The application has to respond to any changes as follows:

3.3.1 Bit USBC_CHANGED_POWER_ROLE
The application must inspect the member ActualRole of the USBC instance.

If (ActualRole & USBC_POWER_ROLE_SOURCE) = 0, then the application MUST imme-
diately switch off VBUS supply (if active, source role only). Note that depending on
the configuration, shutting down of a USB host stack may also switch VBUS off, see
USBC_CHANGED_USB_COMM below.

If (ActualRole & USBC_POWER_ROLE_SOURCE) <> 0, then the application SHOULD switch on
VBUS supply (if not already on, source role only). Note that depending on the configuration,
starting up a USB host stack may also switch VBUS on, see USBC_CHANGED_USB_COMM below.

ActualRole shows the current connection state of the USB-C port:
• Bit USBC_POWER_ROLE_SOURCE: Connected to a sink.
• Bit USBC_POWER_ROLE_SINK: Connected to a source.
• None of these bits set: No connection.

3.3.2 Bit USBC_CHANGED_USB_COMM
The application must inspect the member ActualRole of the USBC instance.

If (ActualRole & USBC_DATA_ROLE_HOST) = 0, then the application MUST immediately
shut down a USB host stack, if running.

If (ActualRole & USBC_DATA_ROLE_DEVICE) = 0, then the application MUST immediately
shut down a USB device stack, if running. If a device only supports sink role and USB device
data role, then the USB device stack may be running continuously.

If (ActualRole & USBC_DATA_ROLE_DEVICE) <> 0, then the application SHOULD start the
USB device stack, if not already running.

If (ActualRole & USBC_DATA_ROLE_HOST) <> 0, then the application SHOULD start the
USB host stack, if not already running.

3.3.3 Bit USBC_CHANGED_POWER
The application must inspect the member ActivePowerProfile of the USBC instance, see
USBC_POWER_PROFILE. It shows the current power contract negotiated with the connected
device.

In sink role the device SHOULD adjust it’s power consumption accordingly.

In source role the device MUST configure it’s power supplied to the USB-C port to match this
setting and then set the member PowerSupplyReady to 1 after the power supply is ready.

3.3.4 Bit USBC_CHANGED_CAPABILITIES
Sink role only. The connected source has provided new power capabilities, which may be
inspected using the function USBC_GetPowerProfiles().

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

23 CHAPTER 3 Example applications

3.4 Example applications
The following sample applications are provided with the emUSB-C package:

USBC_OTG_Start.c

This sample demonstrates switching between device and host roles and combines the func-
tionality of the host sample to mount a USB stick and the device sample implementing a
USB mouse.

USBC_Device_BULK.c

Sample application for a USB device vendor class that request higher voltage and current
from the source, e.g. for battery charging.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

24 CHAPTER 3 API reference of functions for the application

3.5 API reference of functions for the application
This section describes the functions that can be used by the target application.

Function Description

API Functions

USBC_Init() Initialize a USBC instance.
USBC_Exit() Shut down a USBC instance.
USBC_Process() The main USBC state machine.

USBC_GetPowerProfiles()
Get a list of all power profiles (Power Data
Objects) sent by the source.

USBC_SetOnHardReset()
Sets a callback function that is called when
a hard reset is sent or received on the CC
lines.

Data structures

USBC_POWER_REQUEST
Power requirements when operating in
sink role.

USBC_POWER_PROFILE A power profile.
Function prototypes

USBC_ON_HARD_RESET
Type of callback set in USBC_SetOn-
HardReset().

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

25 CHAPTER 3 API reference of functions for the application

3.5.1 USBC_Init()

Description

Initialize a USBC instance. Must be called before any other USBC function.

Prototype

void USBC_Init(USBC_INSTANCE * pInst);

Parameters

Parameter Description

pInst

Pointer to a structure where all information of an active
USBC instance is stored and maintained. The structure does
not need to be initialized before this function is called, but
the memory area must be valid as long as the USB-C stack
is running, and may be destroyed only after USBC_Exit()
was called.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

26 CHAPTER 3 API reference of functions for the application

3.5.2 USBC_Exit()

Description

Shut down a USBC instance. The USBC_INSTANCE structure may be destroyed after return
of this function.

Prototype

void USBC_Exit(USBC_INSTANCE * pInst);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

27 CHAPTER 3 API reference of functions for the application

3.5.3 USBC_Process()

Description

The main USBC state machine. This function must be called on at regular intervals to handle
all USBC events. An interval of 10 ms is recommended.

Prototype

unsigned USBC_Process(USBC_INSTANCE * pInst);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

Return value

Bit mask with a combination of USBC_CHANGED_… bits or 0 if port status has not changed.
• USBC_CHANGED_USB_COMM - USB data role of the port has changed.
• USBC_CHANGED_POWER_ROLE - Power role has changed, also connect or disconnect

detected.
• USBC_CHANGED_POWER - Power characteristics have changed.
• USBC_CHANGED_CAPABILITIES - New power capabilities provided by the source.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

28 CHAPTER 3 API reference of functions for the application

3.5.4 USBC_GetPowerProfiles()

Description

Get a list of all power profiles (Power Data Objects) sent by the source. Only available when
in sink mode and after successful PD communication.

Prototype

unsigned USBC_GetPowerProfiles(const USBC_INSTANCE * pInst,
 USBC_POWER_PROFILE * pPowerProfiles);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPowerProfiles
Must point to an array of USBC_POWER_PROFILE structures
with USBC_MAX_POWER_DATA_OBJECTS elements where this
function fills in the information.

Return value

Number of elements stored into pPowerProfiles. May be 0 if no information is available.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

29 CHAPTER 3 API reference of functions for the application

3.5.5 USBC_SetOnHardReset()

Description

Sets a callback function that is called when a hard reset is sent or received on the CC lines.

Prototype

void USBC_SetOnHardReset(const USBC_INSTANCE * pInst,
 USBC_ON_HARD_RESET * pfOnHardReset);

Parameters

Parameter Description

pInst Pointer to the USBC instance.
pfOnHardReset Pointer to the callback function.

Additional information

Note that the callback will be called within an ISR, therefore it should never block.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

30 CHAPTER 3 API reference of functions for the application

3.5.6 USBC_POWER_REQUEST

Description

Power requirements when operating in sink role.

The following must always apply: MaxVoltage ≥ 5000, MinVoltage ≥ 3300, MaxVoltage ≥
MinVoltage and MaxCurrent ≥ MinCurrent. If a sink is self powered and doesn’t consume
any power then MaxVoltage and MinVoltage should be set to 5000 and MaxCurrent and
MinCurrent should be set to 0.

Type definition

typedef struct {
 U16 MaxVoltage;
 U16 MinVoltage;
 U16 MaxCurrent;
 U16 MinCurrent;
} USBC_POWER_REQUEST;

Structure members

Member Description

MaxVoltage Maximum voltage in mV the device can operate with.
MinVoltage Minimum voltage in mV the device requires to operate.

MaxCurrent
Maximum current in mA the device can use in the specified
voltage range.

MinCurrent Minimum current in mA the device needs to operate.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

31 CHAPTER 3 API reference of functions for the application

3.5.7 USBC_POWER_PROFILE

Description

A power profile. Used to describe a power capability of a source or a negotiated power
contract.

Type definition

typedef struct {
 U16 MaxVoltage;
 U16 MinVoltage;
 U16 MaxCurrent;
 U16 Flags;
} USBC_POWER_PROFILE;

Structure members

Member Description

MaxVoltage Maximum voltage in mV
MinVoltage Minimum voltage in mV
MaxCurrent Maximum current in mA

Flags

Bit mask of USBC_PDO_FLG_… flags.
• USBC_PDO_FLG_EXPLICIT - This can only be set in

USBC_INSTANCE.ActivePowerProfile
and indicates an explicit power contract negotiated via USB
power delivery.
• USBC_PDO_FLG_PROGRAMMABLE - This flag indicates a pro-

grammable power supply
of the source, where the sink can choose a specific voltage
between MinVoltage and MinVoltage. If this flag is not set
and MinVoltage ≠ MaxVoltage, then the source provides an
unregulated supply in that voltage range.
• USBC_PDO_FLG_INVALID - Internal use only.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

32 CHAPTER 3 API reference of functions for the application

3.5.8 USBC_ON_HARD_RESET

Description

Type of callback set in USBC_SetOnHardReset(). This function is called when a hard reset
is sent or received on the CC lines. It must not block or call any other USBC functions,
because it is called in an interrupt context.

Type definition

typedef void USBC_ON_HARD_RESET(USBC_INSTANCE * pInst,
 int Origin);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

Origin
• 0 - Hard reset was received from the remote side.
• 1 - Hard reset was issued by the USBC stack.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

Chapter 4

Configuring emUSB-C

This chapter explains how to configure emUSB-C.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

34 CHAPTER 4 Runtime configuration

4.1 Runtime configuration
The configuration of emUSB-C for a target hardware is done at runtime: The emUSB-C
stack calls a function named USBC_X_Config(), that must be provided by the application.
This function has to perform the following tasks:

Board specific hardware initialization

This includes configuring I/O pins of the MCU, setting up PLL and clock divider necessary
for USB-C and installing the interrupt service routine for USB-C.

OS service registration

A function that returns the current systems time in milliseconds must be registered with
USBC_SetTimeFunc(). If emUSB-Device or emUSB-Host is used in the project, then one of
the functions USB_OS_GetTickCnt() or USBH_OS_GetTime32() can be used.

Optional re-initialization function

In some configurations the USB hardware need to be re-initialized after each disconnect,
because a USB host or device stack may leave the USB hardware in an inappropriate state
after shut down. A function that performs a re-initialization of the USB hardware can be
registered using USBC_SetReInitFunc().

Driver installation:

See next section.

4.1.1 Driver installation
USB-C drivers consist of modules that can be registered separately at the USB-C stack. This
modular approach was chosen to allow including only code that is required for a particular
application, avoiding to include unused code and achieving a small footprint.

For example: If a device only works in sink role, then all code for handling the source role can
be excluded from the project. Another device may not need power delivery communication,
but just handle the static state of the CC lines, then the power delivery communication
stack is not required in the project.

For this reason there are different functions to register driver modules in each driver packet,
see USB-C controller specifics. Only those should be selected that are required for the
actual application.

Additionally some functions are always board specific and must be provided by the user.
This includes:

VBUS detection

There is no general way to detect a valid VBUS voltage. On some boards there is a GPIO
for that purpose. Other boards uses an ADC of the microcontroller to measure the VBUS
voltage. It’s also possible to have a separate chip on the board that is connected via I2C.

Therefore the application must implement a function USBC_X_GetVBUS() that checks for a
valid VBUS voltage and register it during configuration using USBC_Reg_VBUS_Func().

VBUS discharging

Some operations require VBUS to be discharged below 0.8V. The application may optionally
implement a function USBC_X_Discharge() that controls discharging of VBUS and register
it during configuration using USBC_Reg_DISCHRG_Func().

All driver modules need some memory to store their internal states and data. This mem-
ory must be provided by the application. A pointer to a driver module individual private
data structure (USBC_PRV_… type) must be passed to the registration function of a driver
module. This structure may be implemented as a static variable or may be allocated by
the application.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

35 CHAPTER 4 Runtime configuration

4.1.2 Configuration functions
Functions that may or must be used in USBC_X_Config are listed in the following table.
Additional driver dependent functions exist for every USB-C controller driver, see USB-C
controller specifics.

Function Description

USBC_SetTimeFunc()
Sets a function that returns the current sys-
tems time in ms.

USBC_SetReInitFunc()
Sets a function that re-initializes the USB hard-
ware after each disconnect.

USBC_Reg_VBUS_Func()
Register a custom driver function to determine
the state of VBUS voltage.

USBC_Reg_DISCHRG_Func()
Register a custom driver function for VBUS dis-
charging.

USBC_Reg_IDPIN_Func()
Register a custom driver function to determine
the state of the ID pin.

User provided driver functions

USBC_TIME_FUNC
Returns the current system time in millisec-
onds.

USBC_CALLBACK_FUNC
Callback user function, that may be called from
the USB-C stack.

USBC_GET_VBUS_FUNC VBUS detection.
USBC_DISCHARGE_FUNC VBUS discharging.
USBC_GET_ID_PIN_FUNC Determine state of ID pin.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

36 CHAPTER 4 Runtime configuration

4.1.3 USBC_SetTimeFunc()

Description

Sets a function that returns the current systems time in ms.

Prototype

void USBC_SetTimeFunc(USBC_INSTANCE * pInst,
 USBC_TIME_FUNC * pfGetTime);

Parameters

Parameter Description

pInst Pointer to the USBC instance.
pfGetTime Pointer to the function.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

37 CHAPTER 4 Runtime configuration

4.1.4 USBC_SetReInitFunc()

Description

Sets a function that re-initializes the USB hardware after each disconnect.

Prototype

void USBC_SetReInitFunc(USBC_INSTANCE * pInst,
 USBC_CALLBACK_FUNC * pfReInit);

Parameters

Parameter Description

pInst Pointer to the USBC instance.
pfReInit Pointer to the function.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

38 CHAPTER 4 Runtime configuration

4.1.5 USBC_Reg_VBUS_Func()

Description

Register a custom driver function to determine the state of VBUS voltage.

Prototype

void USBC_Reg_VBUS_Func(USBC_INSTANCE * pInst,
 USBC_GET_VBUS_FUNC * pf);

Parameters

Parameter Description

pInst Pointer to the USBC instance.
pf Custom function.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

39 CHAPTER 4 Runtime configuration

4.1.6 USBC_Reg_DISCHRG_Func()

Description

Register a custom driver function for VBUS discharging. The callback function USBC_X_Dis-
chargeVBUS() will be called to actually perform discharging,

Prototype

void USBC_Reg_DISCHRG_Func(USBC_INSTANCE * pInst,
 USBC_DISCHARGE_FUNC * pf);

Parameters

Parameter Description

pInst Pointer to the USBC instance.
pf Custom function.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

40 CHAPTER 4 Runtime configuration

4.1.7 USBC_Reg_IDPIN_Func()

Description

Register a custom driver function to determine the state of the ID pin.

Prototype

void USBC_Reg_IDPIN_Func(USBC_INSTANCE * pInst,
 USBC_GET_ID_PIN_FUNC * pf);

Parameters

Parameter Description

pInst Pointer to the USBC instance.
pf Custom function.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

41 CHAPTER 4 Runtime configuration

4.1.8 USBC_GET_VBUS_FUNC

Description

VBUS detection. This function is called by the USB-C stack to check for a valid voltage on
the VBUS pin.

Type definition

typedef int USBC_GET_VBUS_FUNC(const USBC_INSTANCE * pInst);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

Return value
• 1 - if there is a valid voltage on the VBUS pin (≥ 4.75 V).
• 0 - otherwise.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

42 CHAPTER 4 Runtime configuration

4.1.9 USBC_DISCHARGE_FUNC

Description

VBUS discharging. This function is called by the USB-C stack to perform discharging of
VBUS. This function will be called repeatedly until it returns 0.

Type definition

typedef int USBC_DISCHARGE_FUNC(const USBC_INSTANCE * pInst,
 int Operation);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

Operation
• 0 - Start discharging of VBUS.
• 1 - Continue discharging of VBUS.
• -1 - Stop discharging / disable discharger unit.

Return value
• 1 - Discharging still in progress. VBUS not below 0.8V.
• 0 - Discharging completed.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

43 CHAPTER 4 Runtime configuration

4.1.10 USBC_GET_ID_PIN_FUNC

Description

Determine state of ID pin. This function is called by the USB-C stack to sense the ID pin
of a USB connector. For legacy OTG only.

Type definition

typedef int USBC_GET_ID_PIN_FUNC(const USBC_INSTANCE * pInst);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

Return value
• 0 - ID pin pulled to ground: Host mode.
• 1 - ID pin high or open.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

44 CHAPTER 4 Runtime configuration

4.1.11 USBC_TIME_FUNC

Description

Returns the current system time in milliseconds.

Type definition

typedef USBC_TIME USBC_TIME_FUNC(void);

Return value

Current system time.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

45 CHAPTER 4 Runtime configuration

4.1.12 USBC_CALLBACK_FUNC

Description

Callback user function, that may be called from the USB-C stack.

Type definition

typedef void USBC_CALLBACK_FUNC(USBC_INSTANCE * pInst);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

46 CHAPTER 4 Compile-time configuration

4.2 Compile-time configuration
emUSB-C can be used without changing any of the compile-time switches. All compile-time
configuration switches are preconfigured with valid values which match the requirements
of most applications. All compile-time switches and their default values can be found in the
file USBC_ConfDefaults.h.

To change the default configuration of emUSB-C compile-time switches can be added to
USBC_Conf.h. Don’t change the USBC_ConfDefaults.h file for easy updates of emUSB-C
PD.

4.2.1 Compile-time switches for debugging

4.2.1.1 USBC_DEBUG

Description

emUSB-C can be configured to display debug messages and warnings to locate an error or
potential problems. This can be useful for debugging. In a release (production) build of a
target system, they are typically not required and should be switched off.

To output the messages, emUSB-C uses the logging routines contained in USBC_ConfigIO.c
which can be customized.

USBC_DEBUG can be set to the following values:
• 0 - Used for release builds. Includes no debug options.
• 1 - Used in debug builds to include support for “panic” checks.
• 2 - Used in debug builds to include warning messages and “panic” checks.
• 3 - Used in debug builds to include warning, log messages and “panic” checks.

Definition

#define USBC_DEBUG 0

4.2.1.2 USBC_DEBUG_LOG_MODE

Description

Configure how debug messages are output:
• = 0: Implement own functions in USBC_ConfigIO.c
• = 1: Use emUSB-Host functions
• = 2: Use emUSB-Device functions

Definition

#define USBC_DEBUG_LOG_MODE 1

4.2.1.3 USBC_LOG_BUFFER_SIZE

Description

Maximum size of a debug / warning message (in characters) that can be output. A buffer
of this size is created on the stack when a message is output.

Definition

#define USBC_LOG_BUFFER_SIZE 200

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

47 CHAPTER 4 Compile-time configuration

4.2.2 Use of standard C-library functions
emUSB-C PD calls some functions from the standard C-library. If the standard C-library
should not be used, the following macros can be changed to call user defined functions
instead:

#define USBC_MEMCPY memcpy
#define USBC_MEMSET memset

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

48 CHAPTER 4 USBC controller specifics

4.3 USBC controller specifics
For emUSB-C different drivers are provided, each containing multiple driver modules. This
section explains driver specific configuration functions and options.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

49 CHAPTER 4 USBC controller specifics

4.3.1 STM32Uxx driver
This driver is used for the UCPD controller of the MCUs:
• STM32U5xx
• STM32H56x
• STM32H57x

The driver consists of separate modules for sink / source functionality and for static CC line
handling and power delivery communication. By calling the appropriate registration func-
tions USBC_Reg_…() it can be configured to include only the functionality actually needed
for the target application, avoiding unused code and achieving minimal footprint. If any
USBC_Reg_PD_…() function is called to enable power delivery communication, then the cor-
responding USBC_Reg_CC_…() must also be called.

The static CC line handling (“base” module) does not use any interrupt or DMA.

Power delivery communication requires an interrupt handler of the UCPD controller to be
installed. Optional DMA can be used for packet transfers: This requires two channels of the
GPDMA controller to be allocated to the USBC driver. If DMA is not used, then the interrupt
must be serviced at least every 30µs while power delivery packet transfers are in progress.

4.3.2 STM32Uxx driver specific configuration functions

Function Description

USBC_Reg_CC_STM32Uxx()
Register a driver function to check for stat-
ic CC lines states and detect cable connec-
tions.

USBC_Reg_CC_SNK_STM32Uxx()
Register a driver function to check for stat-
ic CC lines states and detect cable connec-
tions.

USBC_Reg_CC_SRC_STM32Uxx()
Register a driver function to check for stat-
ic CC lines states and detect cable connec-
tions.

USBC_Reg_PD_STM32Uxx()
Register a driver function to perform PD
message communication.

USBC_Reg_PD_SNK_STM32Uxx()
Register a driver function to perform PD
message communication.

USBC_Reg_PD_SRC_STM32Uxx()
Register a driver function to perform PD
message communication.

USBC_EnableTrimming_STM32Uxx()
Enable trimming of the CC pull-up and
pull-down resistors.

USBC_STM32Uxx_ISR()
Interrupt service routine for the STM32Uxx
UCPD controller.

USBC_STM32Uxx_CFG_PARAMS
Configuration parameter for the STM32Uxx
PD driver.

USBC_STM32Uxx_CC_ACTIVATE
Callback function, that is called after con-
figuring the CC lines.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

50 CHAPTER 4 USBC controller specifics

4.3.2.1 USBC_Reg_CC_STM32Uxx()

Description

Register a driver function to check for static CC lines states and detect cable connections.

Prototype

void USBC_Reg_CC_STM32Uxx(USBC_INSTANCE * pInst,
 USBC_PRV_CC_STM32Uxx * pPrv,
 const USBC_STM32Uxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private data.
The structure does not need to be initialized before this func-
tion is called, but the memory area must be valid as long as
the USB-C stack is running.

pCfg
Pointer to a structure containing configuration parameters
for the driver. The DMA specific members of pCfg are not
used (ignored).

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

51 CHAPTER 4 USBC controller specifics

4.3.2.2 USBC_Reg_CC_SNK_STM32Uxx()

Description

Register a driver function to check for static CC lines states and detect cable connections.
For SINK only use.

Prototype

void USBC_Reg_CC_SNK_STM32Uxx(USBC_INSTANCE * pInst,
 USBC_PRV_CC_STM32Uxx * pPrv,
 const USBC_STM32Uxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private data.
The structure does not need to be initialized before this func-
tion is called, but the memory area must be valid as long as
the USB-C stack is running.

pCfg
Pointer to a structure containing configuration parameters
for the driver. The DMA specific members of pCfg are not
used (ignored).

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

52 CHAPTER 4 USBC controller specifics

4.3.2.3 USBC_Reg_CC_SRC_STM32Uxx()

Description

Register a driver function to check for static CC lines states and detect cable connections.
For SOURCE only use.

Prototype

void USBC_Reg_CC_SRC_STM32Uxx(USBC_INSTANCE * pInst,
 USBC_PRV_CC_STM32Uxx * pPrv,
 const USBC_STM32Uxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private data.
The structure does not need to be initialized before this func-
tion is called, but the memory area must be valid as long as
the USB-C stack is running.

pCfg
Pointer to a structure containing configuration parameters
for the driver. The DMA specific members of pCfg are not
used (ignored).

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

53 CHAPTER 4 USBC controller specifics

4.3.2.4 USBC_Reg_PD_STM32Uxx()

Description

Register a driver function to perform PD message communication.

Prototype

void USBC_Reg_PD_STM32Uxx(USBC_INSTANCE * pInst,
 USBC_PRV_PD_STM32Uxx * pPrv,
 const USBC_STM32Uxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private da-
ta. The structure does not need to be initialized before this
function is called, but the memory area must be valid as
long as the USB-C stack is running. If DMA is used (pCfg-
>GPDMA_RX/TX_BaseAddress ≠ NULL) then this memory area
must be accessible by DMA.

pCfg
Pointer to a structure containing configuration parameters
for the driver.

Additional information

If DMA is not used, then the interrupt must be serviced at least every 30us for PD packet
transfers.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

54 CHAPTER 4 USBC controller specifics

4.3.2.5 USBC_Reg_PD_SNK_STM32Uxx()

Description

Register a driver function to perform PD message communication. For SINK only use.

Prototype

void USBC_Reg_PD_SNK_STM32Uxx(USBC_INSTANCE * pInst,
 USBC_PRV_PD_STM32Uxx * pPrv,
 const USBC_STM32Uxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private da-
ta. The structure does not need to be initialized before this
function is called, but the memory area must be valid as
long as the USB-C stack is running. If DMA is used (pCfg-
>GPDMA_RX/TX_BaseAddress ≠ NULL) then this memory area
must be accessible by DMA.

pCfg
Pointer to a structure containing configuration parameters
for the driver.

Additional information

If DMA is not used, then the interrupt must be serviced at least every 30us for PD packet
transfers.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

55 CHAPTER 4 USBC controller specifics

4.3.2.6 USBC_Reg_PD_SRC_STM32Uxx()

Description

Register a driver function to perform PD message communication. For SOURCE only use.

Prototype

void USBC_Reg_PD_SRC_STM32Uxx(USBC_INSTANCE * pInst,
 USBC_PRV_PD_STM32Uxx * pPrv,
 const USBC_STM32Uxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private da-
ta. The structure does not need to be initialized before this
function is called, but the memory area must be valid as
long as the USB-C stack is running. If DMA is used (pCfg-
>GPDMA_RX/TX_BaseAddress ≠ NULL) then this memory area
must be accessible by DMA.

pCfg
Pointer to a structure containing configuration parameters
for the driver.

Additional information

If DMA is not used, then the interrupt must be serviced at least every 30us for PD packet
transfers.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

56 CHAPTER 4 USBC controller specifics

4.3.2.7 USBC_EnableTrimming_STM32Uxx()

Description

Enable trimming of the CC pull-up and pull-down resistors. This function must only be used
for devices that don’t support fully automatic trimming. Don’t use for devices other than
STM32Uxx.

Prototype

void USBC_EnableTrimming_STM32Uxx(USBC_PRV_CC_STM32Uxx * pPrv);

Parameters

Parameter Description

pPrv
Pointer to a structure containing the drivers private data,
that was initialized by a call to any of the USBC_Reg_CC…()
functions before.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

57 CHAPTER 4 USBC controller specifics

4.3.2.8 USBC_STM32Uxx_ISR()

Description

Interrupt service routine for the STM32Uxx UCPD controller.

Prototype

void USBC_STM32Uxx_ISR(USBC_PRV_PD_STM32Uxx * pPrv);

Parameters

Parameter Description

pPrv Pointer to the private data structure of the driver.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

58 CHAPTER 4 USBC controller specifics

4.3.2.9 USBC_STM32Uxx_CFG_PARAMS

Description

Configuration parameter for the STM32Uxx PD driver.

Type definition

typedef struct {
 PTR_ADDR BaseAddress;
 PTR_ADDR GPDMA_RX_BaseAddress;
 PTR_ADDR GPDMA_TX_BaseAddress;
 USBC_STM32Uxx_CC_ACTIVATE * pfActivateCC;
} USBC_STM32Uxx_CFG_PARAMS;

Structure members

Member Description

BaseAddress Base address of the UCPD controller.

GPDMA_RX_BaseAddress
Base address of the GPDMA channel used for RX or NULL, if
DMA should not be used.

GPDMA_TX_BaseAddress
Base address of the GPDMA channel used for TX or NULL, if
DMA should not be used.

pfActivateCC
(Optional) Use for configuration action after enable of the PD
controller.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

59 CHAPTER 4 USBC controller specifics

4.3.2.10 USBC_STM32Uxx_CC_ACTIVATE

Description

Callback function, that is called after configuring the CC lines. Can be used for device
dependent configuration.

Type definition

typedef int USBC_STM32Uxx_CC_ACTIVATE(USBC_INSTANCE * pInst);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

Return value
• 0 - Configuration done. This function is not called again any more.
• 1 - Action must be executed before every CC sensing. This function will be called again.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

60 CHAPTER 4 USBC controller specifics

4.3.3 STM32Gxx driver
This driver is used for the UCPD controller of the MCUs:
• STM32G0x1
• STM32G4xx

The driver consists of separate modules for sink / source functionality and for static CC line
handling and power delivery communication. By calling the appropriate registration func-
tions USBC_Reg_…() it can be configured to include only the functionality actually needed
for the target application, avoiding unused code and achieving minimal footprint. If any
USBC_Reg_PD_…() function is called to enable power delivery communication, then the cor-
responding USBC_Reg_CC_…() must also be called.

The static CC line handling (“base” module) does not use any interrupt or DMA.

Power delivery communication requires an interrupt handler of the UCPD controller to be
installed. Optional DMA can be used for packet transfers: This required two channels of the
DMA controller to be allocated to the USBC driver. If DMA is not used, then the interrupt
must be serviced at least every 30µs while power delivery packet transfers are in progress.

4.3.4 STM32Gxx driver specific configuration functions

Function Description

USBC_Reg_CC_STM32Gxx()
Register a driver function to check for stat-
ic CC lines states and detect cable connec-
tions.

USBC_Reg_CC_SNK_STM32Gxx()
Register a driver function to check for stat-
ic CC lines states and detect cable connec-
tions.

USBC_Reg_CC_SRC_STM32Gxx()
Register a driver function to check for stat-
ic CC lines states and detect cable connec-
tions.

USBC_Reg_PD_STM32Gxx()
Register a driver function to perform PD
message communication.

USBC_Reg_PD_SNK_STM32Gxx()
Register a driver function to perform PD
message communication.

USBC_Reg_PD_SRC_STM32Gxx()
Register a driver function to perform PD
message communication.

USBC_STM32Gxx_ISR()
Interrupt service routine for the STM32Gxx
UCPD controller.

USBC_STM32Gxx_CFG_PARAMS
Configuration parameter for the STM32Gxx
PD driver.

USBC_STM32Gxx_CC_ACTIVATE
Callback function, that is called after con-
figuring the CC lines.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

61 CHAPTER 4 USBC controller specifics

4.3.4.1 USBC_Reg_CC_STM32Gxx()

Description

Register a driver function to check for static CC lines states and detect cable connections.

Prototype

void USBC_Reg_CC_STM32Gxx(USBC_INSTANCE * pInst,
 USBC_PRV_CC_STM32Gxx * pPrv,
 const USBC_STM32Gxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private data.
The structure does not need to be initialized before this func-
tion is called, but the memory area must be valid as long as
the USB-C stack is running.

pCfg
Pointer to a structure containing configuration parameters
for the driver. The DMA specific members of pCfg are not
used (ignored).

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

62 CHAPTER 4 USBC controller specifics

4.3.4.2 USBC_Reg_CC_SNK_STM32Gxx()

Description

Register a driver function to check for static CC lines states and detect cable connections.
For SINK only use.

Prototype

void USBC_Reg_CC_SNK_STM32Gxx(USBC_INSTANCE * pInst,
 USBC_PRV_CC_STM32Gxx * pPrv,
 const USBC_STM32Gxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private data.
The structure does not need to be initialized before this func-
tion is called, but the memory area must be valid as long as
the USB-C stack is running.

pCfg
Pointer to a structure containing configuration parameters
for the driver. The DMA specific members of pCfg are not
used (ignored).

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

63 CHAPTER 4 USBC controller specifics

4.3.4.3 USBC_Reg_CC_SRC_STM32Gxx()

Description

Register a driver function to check for static CC lines states and detect cable connections.
For SOURCE only use.

Prototype

void USBC_Reg_CC_SRC_STM32Gxx(USBC_INSTANCE * pInst,
 USBC_PRV_CC_STM32Gxx * pPrv,
 const USBC_STM32Gxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private data.
The structure does not need to be initialized before this func-
tion is called, but the memory area must be valid as long as
the USB-C stack is running.

pCfg
Pointer to a structure containing configuration parameters
for the driver. The DMA specific members of pCfg are not
used (ignored).

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

64 CHAPTER 4 USBC controller specifics

4.3.4.4 USBC_Reg_PD_STM32Gxx()

Description

Register a driver function to perform PD message communication.

Prototype

void USBC_Reg_PD_STM32Gxx(USBC_INSTANCE * pInst,
 USBC_PRV_PD_STM32Gxx * pPrv,
 const USBC_STM32Gxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private da-
ta. The structure does not need to be initialized before this
function is called, but the memory area must be valid as
long as the USB-C stack is running. If DMA is used (pCfg-
>DMA_RX/TX_Channel ≠ 0) then this memory area must be
accessible by DMA.

pCfg
Pointer to a structure containing configuration parameters
for the driver.

Additional information

If DMA is not used, then the interrupt must be serviced at least every 30us for PD packet
transfers.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

65 CHAPTER 4 USBC controller specifics

4.3.4.5 USBC_Reg_PD_SNK_STM32Gxx()

Description

Register a driver function to perform PD message communication. For SINK only use.

Prototype

void USBC_Reg_PD_SNK_STM32Gxx(USBC_INSTANCE * pInst,
 USBC_PRV_PD_STM32Gxx * pPrv,
 const USBC_STM32Gxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private da-
ta. The structure does not need to be initialized before this
function is called, but the memory area must be valid as
long as the USB-C stack is running. If DMA is used (pCfg-
>DMA_RX/TX_Channel ≠ 0) then this memory area must be
accessible by DMA.

pCfg
Pointer to a structure containing configuration parameters
for the driver.

Additional information

If DMA is not used, then the interrupt must be serviced at least every 30us for PD packet
transfers.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

66 CHAPTER 4 USBC controller specifics

4.3.4.6 USBC_Reg_PD_SRC_STM32Gxx()

Description

Register a driver function to perform PD message communication. For SOURCE only use.

Prototype

void USBC_Reg_PD_SRC_STM32Gxx(USBC_INSTANCE * pInst,
 USBC_PRV_PD_STM32Gxx * pPrv,
 const USBC_STM32Gxx_CFG_PARAMS * pCfg);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private da-
ta. The structure does not need to be initialized before this
function is called, but the memory area must be valid as
long as the USB-C stack is running. If DMA is used (pCfg-
>DMA_RX/TX_Channel ≠ 0) then this memory area must be
accessible by DMA.

pCfg
Pointer to a structure containing configuration parameters
for the driver.

Additional information

If DMA is not used, then the interrupt must be serviced at least every 30us for PD packet
transfers.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

67 CHAPTER 4 USBC controller specifics

4.3.4.7 USBC_STM32Gxx_ISR()

Description

Interrupt service routine for the STM32Gxx UCPD controller.

Prototype

void USBC_STM32Gxx_ISR(USBC_PRV_PD_STM32Gxx * pPrv);

Parameters

Parameter Description

pPrv Pointer to the private data structure of the driver.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

68 CHAPTER 4 USBC controller specifics

4.3.4.8 USBC_STM32Gxx_CFG_PARAMS

Description

Configuration parameter for the STM32Gxx PD driver.

Type definition

typedef struct {
 PTR_ADDR BaseAddress;
 PTR_ADDR DMABaseAddress;
 U8 DMA_RX_Channel;
 U8 DMA_TX_Channel;
 USBC_STM32Gxx_CC_ACTIVATE * pfActivateCC;
} USBC_STM32Gxx_CFG_PARAMS;

Structure members

Member Description

BaseAddress Base address of the UCPD controller.

DMABaseAddress
Base address of the DMA controller. Ignored if DMA_RX_Chan-
nel and DMA_TX_Channel are both 0.

DMA_RX_Channel DMA channel for RX (1-8), 0 means no DMA use.
DMA_TX_Channel DMA channel for TX (1-8), 0 means no DMA use.

pfActivateCC
(Optional) Use for configuration action after enable of the PD
controller.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

69 CHAPTER 4 USBC controller specifics

4.3.4.9 USBC_STM32Gxx_CC_ACTIVATE

Description

Callback function, that is called after configuring the CC lines. Can be used for device
dependent configuration.

Type definition

typedef int USBC_STM32Gxx_CC_ACTIVATE(USBC_INSTANCE * pInst);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

Return value
• 0 - Configuration done. This function is not called again any more.
• 1 - Action must be executed before every CC sensing. This function will be called again.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

70 CHAPTER 4 USBC controller specifics

4.3.5 STM32Fxx driver
This driver is used for legacy OTG operation (no USB type-C connector, no power delivery
communication).

4.3.6 STM32Fxx driver specific configuration functions

Function Description

USBC_Reg_IDPIN_STM32F7xx()
Register a driver function to determine the
state of the ID pin.

USBC_Reg_VBUS_STM32F7xx()
Register a driver function to determine if
VBUS is present.

USBC_Reg_CHRDET_STM32F7xx()
Register a driver function to perform
charger detection.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

71 CHAPTER 4 USBC controller specifics

4.3.6.1 USBC_Reg_IDPIN_STM32F7xx()

Description

Register a driver function to determine the state of the ID pin.

Prototype

void USBC_Reg_IDPIN_STM32F7xx(USBC_INSTANCE * pInst,
 USBC_PRV_IDPIN_STM32F7xx * pPrv,
 PTR_ADDR BaseAddress);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private data.
The structure does not need to be initialized before this func-
tion is called, but the memory area must be valid as long as
the USB-C stack is running.

BaseAddress BaseAdress of the USB controller.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

72 CHAPTER 4 USBC controller specifics

4.3.6.2 USBC_Reg_VBUS_STM32F7xx()

Description

Register a driver function to determine if VBUS is present.

Prototype

void USBC_Reg_VBUS_STM32F7xx(USBC_INSTANCE * pInst,
 USBC_PRV_VBUS_STM32F7xx * pPrv,
 PTR_ADDR BaseAddress);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private data.
The structure does not need to be initialized before this func-
tion is called, but the memory area must be valid as long as
the USB-C stack is running, and may be destroyed only after
USBC_Exit() was called.

BaseAddress BaseAdress of the USB controller.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

73 CHAPTER 4 USBC controller specifics

4.3.6.3 USBC_Reg_CHRDET_STM32F7xx()

Description

Register a driver function to perform charger detection.

Prototype

void USBC_Reg_CHRDET_STM32F7xx(USBC_INSTANCE * pInst,
 USBC_PRV_CHRDET_STM32F7xx * pPrv,
 PTR_ADDR BaseAddress);

Parameters

Parameter Description

pInst Pointer to the USBC instance.

pPrv

Pointer to a structure where driver will store its private data.
The structure does not need to be initialized before this func-
tion is called, but the memory area must be valid as long as
the USB-C stack is running.

BaseAddress BaseAdress of the USB controller.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

Chapter 5

Support

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

75 CHAPTER 5 Contacting support

5.1 Contacting support
Before contacting support please make sure that you are using the latest version of the
emUSB-C package. Also please check the chapter Configuring debugging output on page 14
and run your application with enabled debug support.

If you are a registered emUSB-C user there are different ways to contact the emUSB-C
support:
1. You can create a support ticket via email to ticket_emusb@segger.com*

2. You can create a support ticket at {segger.com/ticket}.

Please include the following information in the email or ticket:
• The emUSB-C version.
• Your emUSB-C license number.
• If you are unsure about the above information you can also use the name of the emUSB-

C zip file (which contains the above information).
• A detailed description of the problem
• The configuration files USBC_Config*.*
• Any error or debug messages messages.

5.1.1 Where can I find the license number?
The license number is part of the shipped zip file name.
For example emUSBC_BASE_STM32Gxx_V1.00.0_USBC-01234_95C24726_230614.zip where
USBC-01234 is the license number. The license number is also part of every *.c- and *.h-
file header. For example, if you open USBC.h you should find the license number as with
the example below:

**
* *
* emUSB-C version: V1.00.0 *
* *
**
--
Licensing information
Licensor: SEGGER Microcontroller GmbH
Licensed to: Customer name
Licensed SEGGER software: emUSB-C
License number: USBC-01234
License model: SSL
Licensed product: -
Licensed platform: Cortex-M, GCC
Licensed number of seats: 1
--
Support and Update Agreement (SUA)
SUA period: 2023-05-30 - 2023-11-30
Contact to extend SUA: sales@segger.com
--

*By sending us an email your (personal) data will automatically be processed. For further information
please refer to our privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

emUSB-C PD User Guide & Reference Manual © 2023-2023 SEGGER Microcontroller GmbH

mailto:ticket_emusb@segger.com
https://segger.com/ticket

	About this document
	Table of contents
	Introduction
	What is emUSB-C
	emUSB-C features
	Basic concepts

	Running emUSB-C on target hardware
	Integrating emUSB-C
	Take a running project
	Add emUSB-C files
	Configuring debugging output
	Add hardware dependent configuration
	Prepare and run the application
	Updating emUSB-C

	Using emUSB-C in an application
	Basic application structure
	Configuring properties of the USB port
	General configuration items.
	CCDebounceTime
	UserContext

	Configuration items used in sink role.
	ProvidedSinkRole
	SinkPowerOptions and NumSinkPowerOptions
	DeviceDataRoleDelay

	Configuration items used in source role.
	ProvidedSourceRole
	ProvidedPowerProfiles and NumSourcePowerProfiles
	VBUSDischargeDelay

	Running the application
	Bit USBC_CHANGED_POWER_ROLE
	Bit USBC_CHANGED_USB_COMM
	Bit USBC_CHANGED_POWER
	Bit USBC_CHANGED_CAPABILITIES

	Example applications
	API reference of functions for the application
	USBC_Init()
	USBC_Exit()
	USBC_Process()
	USBC_GetPowerProfiles()
	USBC_SetOnHardReset()
	USBC_POWER_REQUEST
	USBC_POWER_PROFILE
	USBC_ON_HARD_RESET

	Configuring emUSB-C
	Runtime configuration
	Driver installation
	Configuration functions
	USBC_SetTimeFunc()
	USBC_SetReInitFunc()
	USBC_Reg_VBUS_Func()
	USBC_Reg_DISCHRG_Func()
	USBC_Reg_IDPIN_Func()
	USBC_GET_VBUS_FUNC
	USBC_DISCHARGE_FUNC
	USBC_GET_ID_PIN_FUNC
	USBC_TIME_FUNC
	USBC_CALLBACK_FUNC

	Compile-time configuration
	Compile-time switches for debugging
	USBC_DEBUG
	USBC_DEBUG_LOG_MODE
	USBC_LOG_BUFFER_SIZE

	Use of standard C-library functions

	USBC controller specifics
	STM32Uxx driver
	STM32Uxx driver specific configuration functions
	USBC_Reg_CC_STM32Uxx()
	USBC_Reg_CC_SNK_STM32Uxx()
	USBC_Reg_CC_SRC_STM32Uxx()
	USBC_Reg_PD_STM32Uxx()
	USBC_Reg_PD_SNK_STM32Uxx()
	USBC_Reg_PD_SRC_STM32Uxx()
	USBC_EnableTrimming_STM32Uxx()
	USBC_STM32Uxx_ISR()
	USBC_STM32Uxx_CFG_PARAMS
	USBC_STM32Uxx_CC_ACTIVATE

	STM32Gxx driver
	STM32Gxx driver specific configuration functions
	USBC_Reg_CC_STM32Gxx()
	USBC_Reg_CC_SNK_STM32Gxx()
	USBC_Reg_CC_SRC_STM32Gxx()
	USBC_Reg_PD_STM32Gxx()
	USBC_Reg_PD_SNK_STM32Gxx()
	USBC_Reg_PD_SRC_STM32Gxx()
	USBC_STM32Gxx_ISR()
	USBC_STM32Gxx_CFG_PARAMS
	USBC_STM32Gxx_CC_ACTIVATE

	STM32Fxx driver
	STM32Fxx driver specific configuration functions
	USBC_Reg_IDPIN_STM32F7xx()
	USBC_Reg_VBUS_STM32F7xx()
	USBC_Reg_CHRDET_STM32F7xx()

	Support
	Contacting support
	Where can I find the license number?

