embOS-Classic

Real-Time Operating System User
Guide & Reference Manual for embOS-
Classic and embOS-Classic-MPU

Document: UM01001
Software Version: 5.22.0
Revision: 0
Date: July 17, 2025

Vi
SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

https://segger.com/embOS
https://www.segger.com
https://www.segger.com

Disclaimer

The information written in this document is assumed to be accurate without guarantee. The
information in this manual is subject to change for functional or performance improvements
without notice. SEGGER Microcontroller GmbH (SEGGER) assumes no responsibility for any errors
or omissions in this document. SEGGER disclaims any warranties or conditions, express, implied
or statutory for the fitness of the product for a particular purpose. It is your sole responsibility
to evaluate the fitness of the product for any specific use.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the prior
written permission of SEGGER. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a license.

© 1995-2025 SEGGER Microcontroller GmbH, Monheim am Rhein / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respective holders.

Contact address
SEGGER Microcontroller GmbH

Ecolab-Allee 5

D-40789 Monheim am Rhein
Germany

Tel. +49 2173-99312-0
Fax. +49 2173-99312-28
E-mail: support @egger . conm®

Internet: VWWV. Segger. com

*By sending us an email your (personal) data will automatically be processed. For further information please refer to our
privacy policy which is available at https://www.segger.com/legal/privacy-policy/.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

https://www.segger.com

Manual versions

This manual describes the current software version. If you find an error in the manual or a
problem in the software, please inform us and we will try to assist you as soon as possible.
Contact us for further information on topics or functions that are not yet documented.

Print date: July 17, 2025

Software | Revision | Date By Description
5.22.0 0 250717 TS Update to latest software version.
5.20.0 0 241114 TS Update to latest software version.
5.18.3 0 230928 MC Update to latest software version.
5.18.2 0 230731 MC Update to latest software version.
5.18.1 0 230403 TS Update to latest software version.
5.18.0 1 221014 TS Chapter “Introduction and Basic Concepts” and “Shipment” updated.

Minor spelling & wording corrections.

Update to latest software version.
Chapter “Introduction and Basic Concepts” and others improved.
New chapter “Kernel” added.
5.18.0 0 220915 TS New API functions added:
e OS_TASK Get Status()
e OS _DEBUG GetError()
Minor spelling & wording corrections.

Update to latest software version.

5.16.2 0 220330 TS Minor spelling & wording corrections.

Update to latest software version.

>.16.1 0 220112 TS Minor spelling & wording corrections.

Update to latest software version.

New API functions OS_TI ME_Convert Cycl es2ns(), OS_TI ME_Convert m
5.16.0 0 211201 TS s2Cycl es() and OS_MAI LBOX_I sl nUse() added.

Chapter “Performance and Resource Usage” updated.

Minor spelling & wording corrections.

Update to latest software version.

New API function OS_| NT_Pr eser veAndDi sabl e() in chapter “Inter-
5.14.0 0 210504 TS rupts” added.

Chapter “Readers-Writer Lock” added.

Minor spelling & wording corrections.

Update to latest software version.
5.12.0 0 200929 TS New function OS_EVENT_Reset Mask() in chapter “Event Objects” added.
Minor spelling & wording corrections.

5.10.2 0 200706 TS Update to latest software version.

Update to latest software version.

3.10.1 0 200617 MM Tickless support chapter updated.

Update to latest software version.
5.10.0 0 200519 TS Additional software examples added.
Minor spelling & wording corrections.

5.8.2 1 200203 TS Minor spelling & wording corrections.
5.8.2 0 191217 MC Update to latest software version.
5.8.1 0 191111 TS Event object description improved.

Description of new API functions GS_TI ME_Convert ns2Ti cks() and

5.8.0 0 191028 TS OS_TI ME_Convert Ti cks2ns() added.
5.06 2 190619 TS Minor spelling & wording corrections.
5.06 1 190401 TS Minor spelling & wording corrections.
New API functions added.
>.06 0 190219 TS Minor spelling & wording corrections.
New API function OS_MJTEX | sMut ex() .
5.04 0 180913 TS Minor spelling & wording corrections.
5.02 0 180626 TS New API function OS_STAT_AddLoadMeasur enent Ex() .

Minor spelling & wording corrections.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

5.00

1

180524

TS

OS_TASK Del ay() parameter description corrected.
Timeout parameter description added where necessary.

5.00

180508

TS

New API names.
Chapter “Debugging” updated.
Minor spelling & wording corrections.

4.40

171220

MC

Introductory description in chapter “Software timers” expanded.
Description of limitations in chapter “Mailboxes” corrected.
Description of limitations in chapter "Queues” added.

Description of embQS trial edition in chapter “Shipment” updated.
Decription of OS_WD_Confi g() updated for change in parameters.
List of error codes in chapter "Debugging” updated.

Minor spelling & wording corrections.

4.38

170928

MC

Minor spelling & wording corrections.

4.38

170919

TS

First version generated with emDoc.

New function in chapter “Tasks” added:
e OS_Set Def aul t TaskSt ar t Hook()

New functions in chapter “"Debugging” added:
e OS_Set Obj Nane()
o OS_Get Obj Nane()

Minor corrections/updates.

4.36

170711

TS

New library mode OS_LI BMODE_SAFE added in chapter “Basic Concepts”.
New functions in chapter “Stacks” added:
e OS_Get StackCheckLimt()
e OS_Set St ackCheckLimt()
New functions in chapter *“MPU” added:
e OS_MPU_AddSani t yCheckBuf f er ()
e OS_MPU_Sani t yCheck()
Chapter “Source Code” updated.
New functions in chapter “Task Routines” added:
e OS _Config_Stop()
e OS_Stop()
Minor corrections/updates

4.34

170308

TS

New functions in chapter “Event Objects” added:
e OS_EVENT_Get MaskMode()
e OS_EVENT_Set MaskMode()

4.32

170105

RH/TS

Chapter “Watchdog” added.
New functions in chapter “Event Objects” added:
e OS_EVENT_Get Mask()
e OS_EVENT_Set Mask()
e OS_EVENT_ Wi t Mask()
e OS_EVENT_ Wi t MaskTi med()
New functions in chapter “Mailboxes” added:
e OS_Put Mai | Ti med()
e OS_Put Mai | Ti med1()

4.30

161130

MC/TS

Chapter “Basic Concepts”, “"Time Measurement”, *“MPU", “Profiling” and
“Updates” updated.

Chapters, “System Tick”, “Low Power Support”, “Configuration (BSP)"”
updated and re-structured.

Chapter “"Resource Semaphores” updated.

4.26

160907

RH

Chapter "embOSView”, “Interrupts” and "MPU” updated.
Minor corrections/updates.

4.24

160628

MC

Chapter “Multi-core Support” added.
Chapter “"Debugging” updated.

4.22

160525

MC

New functions in chapter “"Queues” added:
e OS_Q Put Ex()
e OS_Q Put Bl ockedEx()
e OS_Q Put Ti medEx()

4.20

160421

TS

Chapter *"MPU - Memory Protection” added.
OS_AddExt endTaskCont ext () added.

4.16

160210

TS

Minor corrections/updates

4.14a

160115

TS

Minor corrections/updates

UMO01001 User Guide & Reference Manual for embOS

151029

TS

Chapter “Interrupts” updated.

Description of new API function OS_Set Def aul t TaskCont ext Ext en-
si on() added.

Chapter “System Variables”: embOS info routines added.

© 1995-2025 SEGGER Microcontroller GmbH

Software | Revision | Date By Description

Chapter “Shipment” updated.
Chapter “Low Power Support” updated.
Chapter “Interrupts”: Description of
e OS_| NT_PRI O PRESERVE() and
e OS_| NT_PRI O RESTORE() added.
Chapter “Software Timerss”: Description of
e OS TriggerTinmer() and
e OS_TriggerTi mer Ex() added.

4.12b 0 150922 TS Update to latest software version.

4.12a 0 150916 TS Description of API function GS_I nl nterrupt () added.

New funtions in chapter “Mailboxes” added:
e OS_Muil _GetPtr()
4,12 0 150715 TS e OS_Mai | _get Pt r Cond()
e OS_Mai | _Purge()
Chapter “Debugging” with new error codes updated.

4.10b 1 150703 MC Minor spelling and wording corrections.

Minor spelling and wording corrections.

Chapter “Source Code of Kernel and Library” updated.
4.10b 0 150527 TS New chapter "embOS Shipment”.

New chapter “Update”.

New chapter “Low Power Support”.

Minow spelling and wording corrections.

4.10a 0 150519 MC Chapter "embOSView"”: added JTAG Chain configuration.
4,10 0 150430 TS Chapter "embOSView"” updated.
4.06b 0 150324 MC Minow spelling and wording corrections.
4.06a 0 150318 MC Minow spelling and wording corrections.
4.06 0 150312 TS Updated to latest software version.
4.04a 0 141201 TS Updated to latest software version.
Chapter “Tasks”
e Task priority description updated.
4.04 0 141112 TS Chapter “Debugging”
e New error number
Update to latest software version.
4.02a 0 140918 TS Minor corrections.
New functions in chapter “Time Measurement” added:
e OS_Config_SysTimer()
4.02 0 140818 TS . OS_Get Ti me_us()
e OS_Get Ti me_us64()
New functions added in chapter “System Tick”:
e OS_St opTi ckl esMbde()
New functions added in chapter “Profiling”:
4.00a 0 140723 TS e OS_STAT Start()
e OS_STAT_Stop()
e OS_STAT_GCet TaskExecTi ne()
4.00 0 140606 TS Tickless support added.
3.90a 0 140410 AW Software-Update, OS_Ter ni nat eTask() modified / corrected.
3.90 1 140312 SC Added cross-references to the API-lists.
New functions to globally enable / disable Interrupts:
e OS_| NTERRUPT_Maskd obal ()
3.90 0 140303 AW e OS_| NTERRUPT_Unnaskd obal ()

e OS_| NTERRUPT_Pr eser ved obal ()
e OS_| NTERRUPT_Rest or ed obal ()
e OS_| NTERRUPT_Pr eser veAndMaskd obal ()

New functions added, chapter “System Tick”:
e OS_Get Num dl eTi cks()
3.88h 0 131220 AW e OS_Adj ust Ti me()
Chapter “System Variables”: Description of internal variable OS_d ob-
al . Ti meDex corrected.

3.88g 1 131104 TS Corrections.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

3.88g

131030

TS

Update to latest software version.

3.88f

130922

TS

Update to latest software version.

3.88e

130906

TS

Update to latest software version.

3.88d

130904

AW

Update to latest software version.

3.88c

130808

TS

Update to latest software version.

3.88b

oO|j|o|o|oOo| O

130528

TS

Update to latest software version.

3.88a

130503

AW

Software update.
Event handling modified, the reset behaviour of events can be con-
trolled.
New functions added, chapter “Events”:
e OS_EVENT_Creat eEx()
e OS_EVENT_Set Reset Mode()
e OS_EVENT_Get Reset Mode()
Mailboxes message size limits enlarged.

3.88

130219

TS

Minor corrections.

3.86n

121210

AW/TS

Update to latest software version.

3.86l

121122

AW

Software update.
OS_AddTi ckHook() function corrected.
Several functions modified to allow most of MISRA rule checks.

3.86k

121004

TS

Chapter “Queue”:
e OS_Q Get MessageSi ze() and
e OS_Q PeekPtr () added.

3.86i

120926

TS

Update to latest software version.

3.86h

120906

AW

Software update, OS_EVENT handling with timeout corrected.

3.869

120806

AW

Software update, OS_Ret ri gger Ti ner () corrected.
Task events explained more in detail.
Additional software examples in the manual.

3.86f

120723

AW

Task event modified, default set to 32 bit on 32-bit CPUs.
Chapter 4:

e New API function OS_AddOnTer nmi nat eHook ()

e OS_ERR TI MESLI CE removed. A time slice value of zero is legal
when creating tasks.

3.86e

120529

AW

Update to latest software version with corrected functions:
e OS_Cet SysSt ackBase()
e OS_Get SysSt ackSi ze()
e OS_Cet SysSt ackSpace()
e OS_Get SysSt ackUsed()
e OS_Getlnt StackBase()
e OS_Getlnt StackSi ze()
e OS_Cet | nt StackSpace()
e OS _GetlntStackUsed()
could not be used in release builds of embOS.
Manual corrections:
e Several index entries corrected.
e OS_Ent er Regi on() described more in detail.

3.86d

120510

TS

Update to latest software version.

3.86¢

120508

TS

Update to latest software version.

3.86b

120502

TS

Chapter “Mailbox”
e OS_PeekMai | () added.
Chapter “Support” added.
Chapter “Debugging”:
» Application defined error codes added.

3.86

UMO01001 User Guide & Reference Manual for embOS

120323

AW

Timeout handling for waitable objects modified. A timeout will be re-
turned from the waiting function, when the object was not available
during the timeout time. Previous implementation of timeout functions
might have returned a signaled state when the object was signaled af-
ter the timeout when the calling task was blocked for a longer period by
higher priorized tasks
Modified functions:

e OS_UseTi med()

e OS_Wii t CSemaTi med()

© 1995-2025 SEGGER Microcontroller GmbH

Software | Revision | Date

By

Description

e OS_Get Mai | Ti ned()

e OS_\WMi t Mai | Ti med()

e OS_Q Get Pt r Ti med()

e OS_EVENT Wi t Ti ned()

e OS_ MEMF_Al | ocTi med()
New chapter “Extending the Task Context” added.
New functions added and described in the manual:

e OS_Cet TaskNane()

e OS GetTimeSliceRem()
Handling of queues described more in detail:

e 0S QGetPtr()

e 0OS _Q Get PtrCond()

e OS_Q Get Pt r Ti med()

e OS_Q Purge()
Chapter “Priority Inversion / Inheritance” updated.
Function names OS_Timing_Start() and OS_Ti m ng_End() corrected in
the API table.

3.84c 1 120130

AW/TS

Since version 3.822 of embOS, all pointer parameter pointing to objects
which were not modified by the function were declared as const, but the
manual was not updated accordingly.
The prototype descriptions of the following API functions are corrected
now:

e OS_Get Ti mer Val ue()

e OS GetTinerStatus()

e OS_Get Ti nmer Period()

e OS_Get SemaVal ue()

e OS_Get Resour ceOmner ()

e 0S Q IslnUse()

e OS_Q Get MessageCnt ()

e OS | sTask()

e OS_Get Event sCccured()

e OS_Get CSemaVal ue()

e OS_TI CK_RenoveHook()

e OS_MEMF_I sl nPool ()

e OS_MEMF_Get MaxUsed()

e OS_MEMF_Get NunBI ocks()

e OS_MEMF_GCet Bl ockSi ze()

e OS_Get SuspendCnt ()

e (OS GetPriority()

e OS_EVENT_Get ()

e OS_Timng_Cetus()
Chapter “Preface”:

e Segger Logo replaced
Chapter “Mailbox":

e OS_CREATEMB() changed to OS_Cr eat eMB()
Chapter “Queues”:

e Typos corrected

3.84c 0 120104

TS

Chapter “Events”:
e Return value of OS_EVENT_Wai t Ti ned() explained in more detail

3.84b 0 111221

TS

Chapter “Queues”:
e OS_Q Put Bl ocked() added

3.84a 0 111207

TS

General updates and corrections.

3.84 0 110927

TS

Chapter “Stacks”:
e OS_Get SysSt ackBase() added
e OS_Get SysSt ackSi ze() added
e OS_Get SysSt ackUsed() added
e OS_Cet SysSt ackSpace() added
e OS_Get I nt St ackBase() added
e OS_Getlnt StackSi ze() added
e OS_Getlnt StackUsed() added
e OS_Get I nt St ackSpace() added

3.82x 0 110829

TS

Chapter “Debugging”:
e New error code “"OS_ERR_REG ONCNT” added

3.82w 0 110812

TS

New embOS generic sources.
Chapter “Debugging” updated.

3.82v 0 110715

AW

OS _Terninate() renamed to OS_Ter nmi nat eTask() .

3.82u 0 110630

TS

New embOS generic sources.
Chapter 13: Fixed size memory pools modified.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

3.82t

0

110503

TS

New embOS generic sources.
Trial time limitation increased.

3.82s

110318

AW

Chapter “Timer” API functions table corrected.

All functions can be called from main(), task, ISR or Timer.
Chapter 6: OS_UseTi ned() added.

Chapter 9: OS_Q I sl nUse() added.

3.82p

110112

AW

Chapter “Mailboxes”:
e OS_Put Mai | ()
e OS_Put Mai | Cond()
e OS_Put Mai | Front ()
e OS_Put Mai | Front Cond()
parameter decklaration changed.
Chapter 4.3 API functions table corrected.
OS_Suspend() cannot be called from ISR or Timer.

3.820

110104

AW

Chapter “Mailboxes":
e OS_ Wi t Mai | Ti med() added

3.82n

101206

AW

Chapter “Taskroutines”:
e OS_ResuneAl | SuspendedTasks() added
e OS Setlnitial SuspendCnt () added
e OS_SuspendAl | Tasks() added
Chapter “Time Measurement”:
e Description of OS_Get Ti ne32() corrected
Chapter “List of Error Codes”:
¢ New error codes added

3.82k

100927

TS

Chapter “Taskroutines”:
e OS_Del ayus() added
e OS_Q Del ete() added

3.82i

100917

TS

General updates and corrections

3.82h

100621

AW

Chapter “Event Objects”:
e Samples added
Chapter “Configuration of Target System”:
e Detailed description of OS_I dl e() added

3.82f

100505

TS

Chapter “Profiling” added
Chapter “System Tick”:
e OS_Ti ckHandl eNoHook() added

3.82f

100419

AW

Chapter “Tasks”:
e OS_| sRunni ng() added
e Description of OS_Start () added

3.82e

100309

TS

Chapter “Working with embOS - Recommendations” added.
Chapter “Basics”:
e Priority inversion image added
Chapter “Interrupt”:
e subchapter “Using OS functions from high priority interrupts” added
Added text at chapter 22 “Performance and resource usage”

3.82

090922

TS

API function overview now contains information about allowed context of
cuntion usage (main, task, ISR or timer)
TOC format corrected

3.80

090612

AW

Scheduler optimized for higher task switching speed.

3.62c

080903

SK

Chapter structure updated.

Chapter “Interrupts”:
e OS_LeaveNest abl el nt errupt NoSwi t ch() removed
e OS_Leavel nterrupt NoSwi t ch() removed

Chapter “System Tick":
e OS_TI CK Config() added

3.60

080722

SK

Contact address updated.

3.60

080617

SK

General updates.
Chapter “Mailboxes":
e OS_Get Mai | Cond() / OS_Get Mai | Cond1() corrected

3.60

080117

00

General updates.
Chapter “System Tick” added.

3.52

071026

AW

Chapter “Task Routines”:
e OS_Set TaskNane() added

3.52

UMO01001 User Guide & Reference Manual for embOS

070824

00

Chapter “Task Routines”:
e OS_Ext endTaskCont ext () added

© 1995-2025 SEGGER Microcontroller GmbH

Software

Revision

Date

By

Description

Chapter “Interrupts”:
e Updated
e OS Cal | I SR() added
e OS_Cal | Nest abl el SR() added

3.50c

070814

AW

Chapter “List of Libraries” updated, XR library type added.

3.40c

070716

00

Chapter “Performance and Resource Usage” updated.

3.40c

070625

SK

Chapter “Debugging”, error codes updated:
e OS_ERR | SR | NDEX added
e OS_ERR | SR VECTOR added
e OS_ERR_RESOURCE_OWNER added
e OS_ERR_CSEMA_OVERFLOWadded
Chapter “Task Routines”:
e OS VYiel d() added
Chapter “Counting Semaphores” updated
e OS_Si gnal CSema(), additional information adjusted
Chapter “Performance and Resource Usage” updated:
e Minor changes in wording.

3.40a

070608

SK

Chapter “Counting Semaphores” updated:

e OS_Set CSenmVal ue() added

e OS_Creat eCSenm() : Data type of parameter InitValue changed from
unsigned char to unsigned int

e OS_Si gnal CSemaMax() : Data type of parameter MaxValue changed
from unsigned char to unsigned int

e OS_Si gnal CSena() : Additional information updated

3.40

070516

SK

Chapter “Performance and Resource Usage” added.

Chapter “Configuration of your Target System (RTOSInit.c)” renamed to
“Configuration of your Target System”.

Chapter "STOP/WAIT/IDLE modes” moved into chapter “Configuration of
your Target System”.

Chapter “Time-related Routines” renames to “Time Measurement”.

3.320

070422

SK

Chapter 4: OS_CREATETI MER_EX() , additional information corrected.

3.32m

070402

AW

Chapter 4: Extended timer added.
Chapter 8: API overview corrected, OS_Q Get MessageCount ()

3.32j

070216

AW

Chapter 6: OS_CSemaRequest () function added.

3.32e

061220

SK

About: Company description added.
Some minor formatting changes.

3.32e

061107

AW

Chapter 7: OS_Get MessageCnt () return value corrected to unsigned int.

3.32d

061106

AW

Chapter 8: 0S_Q Get Pt r Ti med() function added.

3.32a

061012

AW

Chapter 3: OS_Creat eTaskEx() function, description of parameter pCon-
t ext corrected.

Chapter 3: OS_Creat eTaskEx() function, type of parameter TimeSlice
corrected.

Chapter 3: OS_Creat eTask() function, type of parameter TimeSlice cor-
rected.

Chapter 9: OS_Get Event Cccur ed() renamed to OS_Get Event sCc-
cured().

Chapter 10: OS_EVENT_Wai t Ti ned() added.

3.32a

060804

AW

Chapter 3: OS_CREATETASK_EX() function added.
Chapter 3: OS_Cr eat eTaskEx() function added.

3.32

060717

00

Event objects introduced. Chapter 10 inserted which describes event ob-
jects.
Previous chapter “Events” renamed to “Task Events”.

3.30

060519

(0]0)

New software version.

3.28

060223

(0]0)

All chapters: Added API tables.
Some minor changes.

3.28

051109

AW

Chapter 7: OS_Si gnal CSemaMax() function added.
Chapter 14: Explanation of interrupt latencies and high / low priorities
added.

3.28

050926

AW

Chapter 6: OS_Del et eRSema() function added.

3.28

050707

AW

Chapter 4: OS_Get SuspendCnt () function added.

3.28

UMO01001 User Guide & Reference Manual for embOS

050425

AW

Version number changed to 3.28 to fit to current embOS version.

© 1995-2025 SEGGER Microcontroller GmbH

10

Software

Revision

Date

By

Description

Chapter 18.1.2: Type return value of OS_Get Ti ne32() corrected.

3.26

050209

AW

Chapter 4: OS_Ter mi nat e() modified due to new features of version
2.26.

Chapter 24: Source code version: additional compile time switches and
build process of libraries explained more in detail.

3.24

011115

AW

Chapter 6: Some prototype declarations showed in OS_SEMA instead of
OS_RSEMA. Corrected.

3.22

040816

AW

Chapter 8: New Mailbox functions added
e OS_Put Mai | Front ()
e OS_Put Mai | Front 1()
e OS_Put Mai | Front Cond()
e OS_Put Mai | Front Cond1()

3.20

040621

RS/AW

Software timers: Maximum timeout values and CS_TI MER_MAX_TI ME de-
scribed.

Chapter 14: Description of rules for interrupt handlers revised.
OS_LeaveNest abl el nt errupt NoSwi t ch() added which was not de-
scribed before.

3.20

040329

AW

OS_Creat eCSema() prototype declaration corrected. Return type is void.
OS_Q Get MessageCnt () prototype declaration corrected.

0S_Q C ear () function description added.

OS_MEMF_Fr eeBl ock() prototype declaration corrected.

3.20

031128

AW

OS_CREATEMB() Range for parameter MaxnofMsg corrected. Upper limit
is 65535, but was declared 65536 in previous manuals.

3.20

040831

AW

Code samples modified: Task stacks defined as array of int, because
most CPUs require alignment of stakc on integer aligned addresses.

3.20

031016

AW

Chapter 4: Type of task priority parameter corrected to unsigned char.
Chapter 4: OS_Del ayunti | () : Sample program modified.

Chapter 4: OS_Suspend() added.

Chapter 4: OS_Resune() added.

Chapter 5: OS_Get Ti nmer Val ue() : Range of return value corrected.
Chapter 6: Sample program for usage of resource semaphores modified.
Chapter 6: OS_Get Resour ceOaner () : Type of return value corrected.
Chapter 8: OS_CREATEMB() : Types and valid range of parameter correct-
ed.

Chapter 8: OS_Wii t Mai | () added

Chapter 10: OS_Wai t Event Ti ned() : Range of timeout value specified.

021015

AW

Chapter 8: OS_Get Mai | Ti med() added
Chapter 11 (Heap type memory management) inserted
Chapter 12 (Fixed block size memory pools) inserted

020926
020924
020910

KG

Index and glossary revised.

Section 16.3 (Example) added to Chapter 16 (Time-related Routines).
Revised for language/grammar.

Version control table added.

Screenshots added: superloop, cooperative/preemptive multitasking,
nested interrupts, low-res nad hi-res measurement.

Section 1.3 (Typographic conventions) changed to table.

Section 3.2 added (Single-task system).

Section 3.8 merged with section 3.9 (How the OS gains control).
Chapter 4 (Configuration for your target system) moved to after Chapter
15 (System variables)

Chapter 16 (Time-related routines) added.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

11

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

How to use this manual

The software tools used for building your application (assembler, linker, C compiler).
The C programming language.

The target processor.

DOS command line.

This manual explains all the functions and macros that the product offers. It assumes you have
a working knowledge of the C language. Knowledge of assembly programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keywor d Text t.hat you entgr at the commgnd pnjompt or that appears on
the display (that is system functions, file- or pathnames).
Par anet er Parameters in API functions.
Sanpl e Sample code in program examples.

Sanpl e comrent

Comments in program examples.

Reference to chapters, sections, tables and figures or other doc-

Reference

uments.
GUIElement Buttons, dialog boxes, menu names, menu commands.
Emphasis Very important sections.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

12

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

13

Table of contents

Introduction and BasiC CONCEPLSceevvuuiiiiiiiiiiii e e e e e e e e e e eeane 17
3 V1T T | T =Y 0 0] 0 10 1 18
3 A <] 01 1T =T 1o 1 19
1.3 eMBDOS POMS ottt i e 20
1.4 Singletasking systems (SUPEIrIOOP) .iiviiiiiiiii i i i e e e e 22
1.5 MUIitasKing SYStEMIS ittt i e e e 24
1.6 ThrEads VS. PrOCESSES .iiiiiutiiiiiittteriiteettattestaiatessainteessansteseannneseanneesraansnerennns 26
3 A Yo o =To U] 7.0 T P 27
1.8 Polling vs. Event based programmingc.oieiiiiiiiiiiii i 32
1.9 Synchronization and communication primitivesccoiiiiiiiiiiiiiiiic 33
1.10 How the OS gains CONIOl ...uiiiiiii i i e aneas 34
1.11 Valid context for @mbOS AP ..ot i i rr e 35
1.12 Blocking and Non blocking embOS API ... e 36
1.13 embOS API With TimMEOUL ..viiiiiii i e e e e rrnnaeeens 37
B o @ ST o o) = o1 =S 41
B T < 0 0 T T Y o T 43
1.16 Callback / HOOK FOULINES ittt et e i e e s s s s s rsaaaraeeeessinns 44
1.17 embOS [Ibrary MOGAES ..iuiiiiiiii i e e e 45
[T 1 48
5220 A 1 o | {0 Y 11T f oY 49
B Y = I 81 T o o 1 50
1= 1 PR 60
7 A 1 ol o Yo 11 T o 61
3.2 Cooperative vs. preemptive task switChesccciiiiiiiii i 62
3.3 Extending the task context ...coiiiiiiii i 63
7 S AN = I 11 o o o o 1= 65
o) 10TV = ST L 1= (T 111
s 1} o o [t o o o 112
A - = N U o o of [0 T 115
L= T S /=T L 141
o A 1 ol o Yo 1 T oY 142
o0 AN = I 1 o o = 143

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

14

UMO01001 User Guide & Reference Manual for embOS

10

11

12

13

14

15

16

17

V=T | @][o PP 157
(520 R 1 o o o Y 6 T f oY o T 158
(ST Y = N iV o Tt o [0 1 161
1Y L0 = 183
7275 S 1 0} f 0 T 1t o o TR 184
72 2 Y = U o Vot o o 1= 187
Y] 0 4 F= T 0] T] SRR 201
£ 290 R N o o o o 6 T f oY o T 202
A Y = N W o Tt o [0 1 204
(R LET= Lo (ST E YAV A (<Y Y01 215
18 AN 1 o 1 o Yo 16 f o) o 216
1S I Y = N W o Tt uf o) 1 217

1Y/ F= V1] o Yo) TR 229
N0 0 S I o o T 1 Lo f o) o T 230
10.2 API fUNCHIONS tiiiiiiiiiiiiiii e i ittt st s st s s s st aeessssssannsssssreessssssnnnnnnnns 233

L LT P 267
3 0 A A I o Y [0 f [) o 268
0 R = N 1 o P f oY T 270

MUItE ODJECT WAL ... e ettt e e e e e e e e e e e e eeeenenee 296
07278 SR 1 1o o T 11 Lo f o) o T 297
70 A @00] o e 1 i) T 0 10 111 0 1T 299
720G T Y o0 N 1 U o [{0 VS 307

LAY] e (o o SRR 313
1 0G0 AR I o o Y [0 f [) o 314
0G0 Y N 11 o Vo f 0 T 315

IO R oTo T IS U o] o o] g AU 322
<0 R I 1 o T 1 L f o) o T 323
I A Y 0 N 1 U o [{0 T 325

LY (=T A U] o] £ TP 333
15.1 What are interrupts? oo e 334
15.2 Interrupt latenCy ..ooiiii i e 335
15.3 Rules for interrupt handlerscooviieiiiiii e 340
15.4 Interrupt CONLrol ...vieiii e 352

(O g1 ior=1 I o= To o] o NS RPPUPUPPPPRPRPP 369
NS SR 1 o o Yo 1 Lo f o) o T 370
16.2 API fUNCHIONS tiiiiiiiiiiiiiii st e ittt et ettt st e s s st s eessssssannssssssreessssssnnnnnnnns 371
16.3 Disabling context transitionsciiiiiiiiiii i 374

TIME MEBASUIEIMENT .euiiieiieit ettt et e et et e et e e e e e e e e et e e st s seaeeeen e eaneeeaneennns 376
1 072 T 1 o o Y [0 f [) o 377
17.2 LOW-reSOlUtioON MEaASUIEIMENT .iiiiiiiiiiiiiiiiettrttrrssssisiisssssssssseeeeesssssssssnnnssnnnns 380
17.3 High-resolution measurementcoiiiiiiiiiiii e 386

© 1995-2025 SEGGER Microcontroller GmbH

15

UMO01001 User Guide & Reference Manual for embOS

18

19

20

21

22

23

24

25

26

27

LOW POWET SUPPOIT ..ottt ettt e e et e e e e e e e e e e eenna e s 404
3RS 700 N |l o Yo 18 L o] PP 405
18.2 Starting power save modes in OS_Idle() .civiiiiiiiiiiiiiii i 405
RS TG T o 4 (=TT = U1 o] o o] o v PP 406
18.4 Peripheral power CONrol ..o 418

Heap Type Memory ManagemeENtovieiuiiiiiiiieeeiiie ettt e 424
IR T S 1 o o' Yo 1F ot o] o I 425
19.2 AP fUNCHIONS .ttt e e e et 426

Fixed Block Size MemOry POOI oo 430
70 R N o) o o' Yo ¥ ot f [0 o P 431
D2 0 0 AN o A 1§ o Vo o o = PP 433

YY1 (= 1. 1 1T RSP 447
22 A N 1 o) o o Yo [T 0 o PP 448

21.1.1 Hooking into the system tickcooiiiiiiiiii 448
21.2 API fUNCHIONS ottt st et e et e 449

[T 010 o T 11 o [457
22.1 Runtime appliCation EITOrS ..iiiiiiiii i i i e e 458
22.2 Human readable object identifierscoiiiiiiiiii 467
DG B = 0] 51 @ AR Y o O ol =T PP 472

(01T Vo PP 476
D20 T R I 1= Q= *q= o{ 1] [0 o PP 477

23.1.1 API fUNCHIONS 1iiiiiiii i e 477
23.2 Task specific CPU load measurementooeiiiiiiiiiiii e ee e 480
23.2.1 API fUNCHIONS 1ttt e 482
26 TG T O o U I o = o B 0 g V== 1T U] < 0 g =T o | G PP 488
23.3.1 API fUNCHIONS 1ttt e 489

EIMDOSVIBW <. it e e e e e e e e e e e 494
22 R N oY o o' Yo ¥ ot f [0 o P 495
24.2 Setup embOSView for commuNiCationc.oiiiiiiiiiiii i 497
24.3 Setup target for commuUNICAtioON ...oiiviiiiiiii i e 501
24.4 Sharing the SIO for terminal I/O ...ciiiiiiiiiiii i e 508
24.5 embOSVIEW APIL LraCe ..viiiiiriii i e s ar s s e e e e e aeas 511

1YL= R \V (=T 0 g To YA =] (=T 1o o S 531
92250 SN 1 0} o Yo [T] o P 532
25.2 Memory ACCESS PEIMISSIONS .iiuiiiriiiitirseiiriatsrerasaasraesassreraesasssesasaanssnesnnss 535
25.3 ROM placement of @mMbOS ... 536
25.4 Allowed embQOS API in unprivileged taskscooiiiiiiiiiii 537
DA T T B TNV ol I« [Y =T 538
25.6 API fUNCHIONS 1ttt et e e 540

S = 1) G PSSR 559
7S SN N o) o ' Yo ¥ ot f [0 o P 560
B ST AN o A 1§ o Vo o o =P 562

Board SUPPOrt PACKAQJEceuuvuiiiiiiiiiie e s e e e e e e e e 577
22 RN 1 o) o Yo [T] o PP 578
27.2 How to create a new board support packagecoooiiiiiiiiiiiii 578
B G T > o 2] 5] U= 579

© 1995-2025 SEGGER Microcontroller GmbH

16

28

29

30

31

32

33

34

35

27.4 Mandatory FOULINES ..uiiriiiiiiii i e e e a e s e s e e e e s e seaaneaneannannans 580
B T © oY u (o] o F= | NN /o 161 o[=T PP 584
27.6 SEEEINGS iiiiiiiiii s 587
27.7 UART routines for @mbOSVIEWviiiiiiiiiiiiii i i enee e eeaneas 588
SyStem VariabIesooooiiiii 589
7 < 28 R 1 0}/ o Yo 1 [o] o 590
28.2 OS _GlODal .ttt 591
28.3 0OS information FOULINES ..uiiviiiiii i e 592
7S G T A Y = A 10 o o f o o = 592
SOUICE COUB ..oviiiiiiiiieiie ettt e e e e e e e e e e e e e et e e e e e eata e e e e e eesaaaaeaaeens 599
374 0 RN N 0o oo Y [T o] o 600
29.2 Building embOS [IDraries ...cviiriiiiiiiii i rr i 601
29.3 Compile time SWILCRES ..iiiiiii i e 602
2SI S Yo 1| gl =R oo Ta [T o] o) 1= ol s P 604
29.4.1 Compiler OPtiONS .viiiiiii i e 604

Y 11 0] 1 1= o PSS 605
G110 0 AN 1 o) o Yo [T] o [PP 606
30.2 Object code PacKageooviiiiiiiii i e 607
C10 J0C B Yo 181 ol ol Lo [T = [0l &= T [P 608
(o0 Lo PP PPPPUPPPPPPPPP 609
3 0 N N 0o oY [T o o 610
31.2 How to update an existing projectooviiiiiiiiiii 611
31.3 embOS MIgration gUIdec.iciiiiiiiii i i e 612
IS o L | S PP 619
G720 N (o] o) =T u n 'o =1 5] o] Yo o P 620
32.1.1 Where can I find the license number?cccoiiiiiiiiiiiiiiiii 620
Performance and RESOUICE USAJEccoeeieiiiiiiiiiiiiiiiitti et 621
1G5 280 RN N o) v oY [T o] o 622
33.2 RESOUICE USAGE .uiiuiiitiiiitiititisit ittt ras sttt saa st se st s ae s aateseaeans 622
3G 9 TN == o (0] o/ =1 Ll 623
Supported Development TOOISccoooiiiiiiee e 630
2 S R =< o |l = i ot 631
N o] 0 o Y| 1= V=T =] o o I 632
34.3 Compiler OPtiONS v e 632
T S O A O S e = = o o 1= ol 633
GIOSSAIY ..ottt e e e ettt e et a e e e e e e e 634

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 1

Introduction and Basic
Concepts

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

18 CHAPTER 1 What is embOS?

1.1 What is embQOS?

embQOS is a priority-controlled multitasking system, designed to be used as an embedded
operating system for the development of real-time applications for a variety of microcon-
trollers.

embOS is a high-performance tool that has been optimized for minimal memory consump-
tion in both RAM and ROM, as well as high speed and versatility. Throughout the develop-
ment process of embOS, the limited resources of microcontrollers have always been kept
in mind. The internal structure of the real-time operating system (RTOS) has been opti-
mized in a variety of applications with different customers, to fit the needs of industry.
Fully source-compatible implementations of embOS are available for a variety of micro-
controllers, making it well worth the time and effort to learn how to structure real-time
programs with an RTOS.

embQOS is highly modular. This means that only those functions that are required are linked
into an application, keeping the ROM size very small. A couple of files are supplied in source
code to make sure that you do not loose any flexibility by using embOS libraries and that
you can customize the system to fully fit your needs.

The tasks you create can easily and safely communicate with each other using a number
of communication mechanisms such as semaphores, mailboxes, and events.

Some features of embOS include:

e Time resolution can be freely selected (default is 1 millisecond).

e Easily accessible time variable.

e Preemptive scheduling:

Guarantees that of all tasks in READY state the one with the highest priority executes,
except for situations in which priority inheritance applies.

Round-robin scheduling for tasks with identical priorities.

Preemptions can be disabled for entire tasks or for sections of a program.

e Upto4,294,967,296 priorities. Every task can have an individual priority, which means
that the response of tasks can be precisely defined according to the requirements of
the application.

e Unlimited number of tasks, software timers and all other synchronization and

communication primitives like event objects, semaphores, mutexes, mailboxes and

queues. (limited only by the amount of available memory).

Size and number of messages can be freely defined when initializing mailboxes.

Up to 32-bit events for every task.

Power management.

Calculation time in which embQS is idle can automatically be spent in power save mode.

Power-consumption is minimized.

e Full interrupt support:

Interrupts may call any function except those that require waiting for data, as well
as create, delete or change the priority of a task. Interrupts can wake up or suspend
tasks and directly communicate with tasks using all available communication methods
(mailboxes, semaphores, events).

e Disabling interrupts for very short periods allows minimal interrupt latency.

e Nested interrupts are permitted.

e embOS has its own, optional interrupt stack.

e Application samples for an easy start.

e Debug build performs runtime checks that catch common programming errors early on.

e Profiling and stack-check may be implemented by choosing specified libraries.

e Monitoring during runtime is available using embOSView via UART, Debug
Communications Channel (DCC) and memory read/write, or else via Ethernet.

e \Very fast and efficient, yet small code.

e Minimal RAM usage.

e API can be called from assembly, C or C++ code.

e Board support packages (BSP) as source code available.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

19

CHAPTER 1 embOS editions

1.2 embOS editions

embOS is the general name for different embOS product editions:

embOS-Classic
embOS-Classic-Safe
embOS-Classic-MPU
embOS-Classic-MPU-Safe
embOS-Ultra
embOS-Ultra-Safe
embOS-Ultra-MPU
embOS-Ultra-MPU-Safe

1.2.1 embOS-Classic

embOS-Classic is a preemptive RTOS designed to be the foundation for developing embed-
ded applications. Now in its 4th decade of continuous use and enhancement, its reliability
and performance underpin the firmware in every J-Link and J-Trace.

1.2.2 embOS-Ultra

embQOS-Ultra is a revolutionary RTOS using cycle-resolution timing to improve timing and
performance and to reduce energy consumption. Using SEGGER’s innovative Cycle-based
Scheduling, embOS-Ultra is the first choice for applications requiring ultra low power or
extremely high precision. Its time resolution is based on the CPU cycle and provides the
highest precision possible. Removing iterative scheduler calls from the kernel reduces the
energy consumption significantly.

1.2.3 embOS-MPU

embOS-MPU adds comprehensive memory protection to embOS-Classic which tightens the
safety of embedded devices. All unprivileged tasks are 100% sandboxed, making devices
suitable for any safety-critical application. embOS-MPU uses the hardware’s memory pro-
tection unit and additional implemented software mechanisms to prevent one task from
affecting the entire system. This guarantees that even if a bug occurs in one task, all other
tasks and the operating system itself continue their execution, enhancing both the stability
and safety of embedded applications.

1.2.4 embOS-Safe

embQOS-Safe is the pre-certified version of embOS-Classic, emb0OS-Classic-MPU, embQS-UI-
tra and embOS-Ultra-MPU. embOS-Safe has been certified in accordance with TUV SUD
Germany. Certification is compliant with IEC 61508 SIL 3, IEC 62304 Class C, and ISO
26262 ASIL D.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

20 CHAPTER 1 embQOS ports

1.3 embOS ports

embQOS is available for many core and compiler combinations. The embOS sources are
written in C but a small part is written in assembler and therefore core and compiler specific.
Hence, an embOQOS port is always technically limited to one core or core family and one
compiler. An embOS port includes several board support packages for different devices and
evaluation boards. Each board support package includes a project for a specific IDE. In
most embOS ports the same IDE is used for all board support packages.

1.3.1 Additional documentation

Some embOS aspects are core and compiler specific and explained in a separate embOS
manual which is shipped in the according embOS port shipment. For example an embQOS
port could provide additional core specific API functions which are described in the core
and compiler specific manual.

Example Cover of embOS-Classic Cortex-M ES Manual

embOS-Base

Real-Time Operating System

CPU & Compiler specifics for
Cortex-M using Embedded Studio

Document: UM01061
Software Version: 5.20.0.0
Revision: 0
Date: November 12, 2024

N\
/ SEGGER

A product of SEGGER Microcontroller GmbH

www.segger.com

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

21 CHAPTER 1 embQOS ports

1.3.2 Naming convention

All embOS ports use the same naming convention: enbOS_<edition>_<core>_<compiler>.
For example: enbOS_Cl assi c_Cort exM ES, embOS-Classic for Cortex-M and Embedded
Studio

1.3.3 Version number convention

SEGGER releases new embQOS versions with new features and bug fixes. As soon as a new
embOS version is released embOS ports are updated to this version.

Generic embOS

Each release of the generic embOS sources has a unique version number:
V<Maj or >. <M nor >. <Pat ch>

For example:

V5.20.0

Major: 5
Minor: 20
Patch: O

Major and minor values are used for new features. The patch value is used for bug fixes only.

embOS Ports

An updated embOS port has the same version humber as the used generic embOS sources,
plus an additional revision for the port. This is because an embOS port may be updated
for changes in the CPU/compiler specific part, while still using the same generic embOS
sources. The complete version number for a specific embOS port is defined as:

V<Maj or >. <M nor >. <Pat ch>. <Revi si on>
For example:

V5. 20.0.0
Major: 5
Minor: 20

Patch: O
Revision: 0

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

22 CHAPTER 1 Singletasking systems (superloop)

1.4 Singletasking systems (superloop)

The classic way of designing embedded systems does not use the services of an RTOS,
which is also called “superloop design”. Typically, no real time kernel is used, so interrupt
service routines (ISRs) are used for the real-time parts of the application and for critical
operations (at interrupt level). This type of system is typically used in small, simple systems
or if real-time behavior is not critical.

A
> ISR (nested) B Interrupt
= e level
o Superloop Task level
>
Time

Typically, since no real-time kernel and only one stack is used, both program (ROM) size and
RAM size are smaller for simple applications when compared to using an RTOS. Obviously,
there are no inter-task synchronization problems with a superloop application. However,
superloops can become difficult to maintain if the program becomes too large or uses
complex interactions. As sequential processes cannot interrupt themselves, reaction times
depend on the execution time of the entire sequence, resulting in a poor real-time behavior.

1.4.1 Advantages & disadvantages

Advantages

e Simple structure (for small applications)
e Low stack usage (only one stack required)

Disadvantages

No “delay” capability

Higher power consumption due to the lack of a power save mode in most architectures
Difficult to maintain as program grows

Timing of all software components depends on all other software components:

Small change in one place can have major side effects in other places

Defeats modular programming

e Real time behavior only with interrupts

1.4.2 Using embOS in superloop applications

In a true superloop application, no tasks are used, hence the biggest advantage of using
an RTOS cannot be utilized unless the application is re-written for multitasking. However,
even with just one single task, using embOS offers the following advantages:

e Software timers are available
e Power saving: Idle mode can be used
e Future extensions can be put in a separate task

1.4.3 Migrating from superloop to multi-tasking

A common situation is that an application exists for some time and has been designed as
a single-task super-loop-application. At some point, the disadvantages of this approach
result in a decision to use an RTOS. The typical question now usually is: How do I do this?

The easiest way is to start with one of the sample applications that come with embOS and
to add the existing “super-loop code” into one task. At this point, you should also ensure
that the stack size of this task is sufficient. Later, additional functionality is added to the

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

23 CHAPTER 1 Singletasking systems (superloop)

software and can be put in one or more additional tasks; the functionality of the super-loop
can also be distributed over multiple tasks.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

24

CHAPTER 1 Multitasking systems

1.5 Multitasking systems

In a multitasking system, there are different ways to distribute CPU time among different
tasks. This process is called scheduling.

A
ISR I
>
= | High prio task
ke,
a | Low prio task
Idle

Time

1.5.1 Task switches

There are two types of task switches, also called context switches: Cooperative and pre-
emptive task switches.

A cooperative task switch is performed by the task itself. As its name indicates, it requires
the cooperation of the task: it suspends itself by calling a blocking RTOS function, e.g.
OS _TASK Del ay() or OS_TASKEVENT Cet Bl ocked() .

A preemptive task switch, on the other hand, is a task switch that is caused externally.
For example, a task of higher priority becomes ready for execution and, as a result, the
scheduler suspends the current task in favor of that task.

1.5.2 Cooperative multitasking

Cooperative multitasking requires all tasks to cooperate by using blocking functions. A task
switch can only take place if the running task blocks itself by calling a blocking function
such as OS_TASK Del ay() or OS_MAI LBOX Get Bl ocked() . This is illustrated in the diagram
below.

A High priority task
OS_TASK_Delay() resumes

Lower priority

ngh prlO taSk task is executed

Low prio task

Priority

Idle

Time

If tasks in a pure cooperative multi-tasking system do not cooperate, the system “hangs”.
This means that other tasks have no chance of being executed by the CPU while the first
task is being carried out. Even if an ISR makes a higher-priority task ready to run, the
interrupted task will be resumed and completes before the task switch is made.

A pure cooperative multi-tasking system has the disadvantage of longer reaction times
when high priority tasks become ready for execution. This makes their usage in embedded
real-time systems uncommon.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

25

CHAPTER 1 Multitasking systems

1.5.3 Preemptive multitasking

An RTOS like embOQOS operates with preemptive multitasking. The highest-priority task in
the READY state always executes as long as the task is not suspended by a call of any
blocking operating system function. A high-priority task waiting for an event is signaled
READY as soon as the event occurs. The event can be set by an interrupt handler, which then
activates the task immediately. Other tasks with lower priority are suspended (preempted)
for as long as the high-priority task is executing. Usually, an RTOS utilizes a timer interrupt
that interrupts tasks and thereby allows to perform task switches whenever timed task
switches are necessary.

ISR puts high priority
A task in READY state;
task switch occurs
High priority
IS R task is executed
B Executing task Interrupted
0 0 u
: H Igh pr|0 taSk is interrupted task resumes
@)
= .
o | Low prio task
Idle
>

Time

Preemptive multitasking may be switched off in sections of a program where task switch-
es are prohibited, known as critical regions. embOS itself will also temporarily disable pre-
emptive task switches during critical operations, which might be performed during the ex-
ecution of some embOS API functions.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

26 CHAPTER 1 Threads vs. Processes

1.6 Threads vs. Processes

In this context, a task is a program running on the CPU core of a microcontroller. Without
a multitasking kernel (an RTOS), only one task can be executed by the CPU. This is called
a single-task system. The RTOS, on the other hand, allows the execution of multiple tasks
on a single CPU. All tasks execute as if they completely “owned” the entire CPU. The tasks
are scheduled for execution, meaning that the RTOS can activate and deactivate each task
according to its priority, with the highest priority task being executed in general.

Thread 1

Thread 2 Process 1 Process 2 Process 3

Thread 3

Threads are tasks that share the same memory layout, hence any two threads can access
the same memory locations. If virtual memory is used, the same virtual to physical trans-
lation and access rights are used.

With embOS, all tasks are threads: they all have the same memory access rights and
translation (in systems with virtual memory).

Processes are tasks with their own memory layout. Two processes cannot normally access
the same memory locations. Different processes typically have different access rights and
(in case of MMUs) different translation tables. Processes are not supported with the current
version of embOS.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

27 CHAPTER 1 Scheduling

1.7 Scheduling

There are different algorithms used by schedulers to determine which task to execute. But
all schedulers have one thing in common: they distinguish between tasks that are ready
to be executed (in the READY state) and other tasks that are suspended for some reason
(delay, waiting for mailbox, waiting for semaphore, waiting for event, etc). The scheduler
selects one of the tasks in the READY state and activates it (executes the body of this
task). The task which is currently executing is referred to as the running task. The main
difference between schedulers is the way they distribute computation time between tasks
in the READY state.

1.7.1 Priority-controlled scheduling algorithm

In real-world applications, different tasks require different response times. For example, in
an application that controls a motor, a keyboard, and a display, the motor usually requires
faster reaction time than the keyboard and the display. E.g., even while the display is being
updated, the motor needs to be controlled. This renders preemptive multitasking essential.
Round-robin might work, but as it cannot guarantee any specific reaction time, a more
suitable algorithm should be used.

In priority-controlled scheduling, every task is assigned a priority. Depending on these
priorities, a task is chosen for execution according to one simple rule:

Note

The scheduler activates the task that has the highest priority of all tasks and is ready
for execution.

This means that every time a task with a priority higher than the running task becomes
ready, it becomes the running task, and the previous task gets preempted. However, the
scheduler can be switched off in sections of a program where task switches are prohibited,
known as critical regions.

embOS uses a priority-controlled scheduling algorithm with round-robin between tasks of
identical priority. One hint at this point: round-robin scheduling is a nice feature because
you do not need to decide whether one task is more important than another. Tasks with
identical priority cannot block each other for longer periods than their time slices. But
round-robin scheduling also costs time if two or more tasks of identical priority are ready
and no task of higher priority is, because execution constantly switches between the identi-
cal-priority tasks. It usually is more efficient to assign distinct priority to each task, thereby
avoiding unnecessary task switches.

1.7.2 Round-robin scheduling algorithm

With round-robin scheduling, the scheduler has a list of tasks and, when deactivating the
running task, it activates the next task that is in the READY state. Round-robin can be used
with either preemptive or cooperative multitasking. It works well if you do not need to
guarantee response time. Round-robin scheduling can be illustrated as follows:

The possession of the CPU changes periodically after a predefined execution time among
all tasks with the same priority. This time is specified inti ne slices and may be defined
individually for each task.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

28 CHAPTER 1 Scheduling

1.7.3 Priority inversion / priority inheritance

The rule the scheduler obeys is:
Activate the task that has the highest priority of all tasks in the READY state.

But what happens if the highest-priority task is blocked because it is waiting for a resource
owned by a lower-priority task? According to the above rule, it would wait until the low-
priority task is resumed and releases the resource. Up to this point, everything works as
expected. Problems arise when a task with medium priority becomes ready during the
execution of the higher prioritized task.

When the higher priority task is suspended waiting for the resource, the task with the
medium priority will run until it finishes its work, because it has a higher priority than the
low-priority task. In this scenario, a task with medium priority runs in place of the task with
high priority. This is known as priority inversion.

A
OS_MUTEX_LockBlocked() OS_MUTEX_Unlock()
J s Interrupt activates

ngh prlo taSk high prio task 0S_TASK_Delay() -
= . .
‘= | Medium prio task
o 0S_MUTEX_LockBlocked|() OS_MUTEX_Unloc()
a | Low prio task

Idle

>
Time

The low priority task claims the mutex with GS_MJUTEX_LockBI ocked() . An interrupt acti-
vates the high priority task, which also calls OS_MJTEX LockBl ocked(). Meanwhile a task
with medium priority becomes ready and runs when the high priority task is suspended. The
task with medium priority eventually calls 05 TASK Del ay() and is therefore suspended.
The task with lower priority now continues and calls GS_MJTEX Unl ock() to release the
mutex. After the low priority task releases the mutex, the high priority task is activated
and claims the mutex.

To avoid this situation, embQOS temporarily raises the low-priority task to high priority until
it releases the resource. This unblocks the task that originally had the highest priority and
can now be resumed. This is known as priority inheritance.

A
OS_MUTEX_LockBlocked() OS_MUTEX_Unlock()
. . Interrupt e
- prio task
2| Medium prio task 05 MUTEX_
) OS_MUTEX_LockBlocked(), Unlock()
a | Low prio task
Idle

Time

With priority inheritance, the low priority task inherits the priority of the waiting high priority
task as long as it holds the mutex. The lower priority task is activated instead of the medium
priority task when the high priority task tries to claim the mutex.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

29

CHAPTER 1 Scheduling

1.7.4 Change of task status

A task may be in one of several states at any given time. When a task is created, it is
placed into the READY state.

A task in the READY state is activated as soon as there is no other task in the READY state
with higher priority. Only one task may be running at a time. If a task with higher priority
becomes READY, this higher priority task is activated and the preempted task remains in
the READY state.

The running task may be delayed for or until a specified time; in this case it is placed into
the WAITING state and the next-highest-priority task in the READY state is activated.

The running task might need to wait for an event (or semaphore, mailbox or queue). If
the event has not yet occurred, the task is placed into the waiting state and the next-
highest-priority task in the READY state is activated.

A non-existent task is one that is not yet available to embOS; it either has been terminated
or was not created at all.

The following illustration shows all possible task states and transitions between them.

Not existing

OS_TASK_Create()
OS_TASK_CreateEx()

OS_TASK_Terminate()

Scheduler Running

API class such as:
0S_EVENT_Set()
or delay expiration

API class such as:
OS_TASK_Delay()
OS_..._Blocked()

Waiting

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

30

CHAPTER 1 Scheduling

1.7.5 How task switching works

A real-time multitasking system lets multiple tasks run like multiple single-task programs,
quasi-simultaneously, on a single CPU. A task consists of three parts in the multitasking
world:

e The program code, which typically resides in ROM
e A stack, residing in a RAM area that can be accessed by the stack pointer
e A task control block, residing in RAM.

The task’s stack has the same function as in a single-task system: storage of return ad-
dresses of function calls, parameters and local variables, and temporary storage of inter-
mediate results and register values. Each task can have a different stack size. More infor-
mation can be found in chapter Stack on page 559.

The task control block (TCB) is a data structure assigned to a task when it is created.
The TCB contains status information for the task, including the stack pointer, task priority,
current task status (ready, waiting, reason for suspension) and other management data.
Knowledge of the stack pointer allows access to the other registers, which are typically
stored (pushed onto) the stack when the task is created and each time it is suspended.
This information allows an interrupted task to continue execution exactly where it left off.
TCBs are only accessed by the RTOS.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

31

CHAPTER 1

1.7.6 Switching stacks

The following diagram demonstrates the process of switching from one stack to another.

Scheduling

Task O

Task 0 Stack

Task Control Block

Stack Pointer .
Variables

Temp. Storage
Ret. Addresses
CPU Register

Free Stack Area

Task 1

Task Control Block Task 1 Stack

Stack Pointer

Variables
Temp. Storage
Ret. Addresses

CPU Register

CPU Register

Free Stack Area

The scheduler deactivates the task to be suspended (Task 0) by saving the processor reg-
isters on its stack. It then activates the higher-priority task (Task 1) by loading the stack
pointer (SP) and the processor registers from the values stored on Task 1’s stack.

Deactivating a task

The scheduler deactivates the task to be suspended (Task 0) as follows:

1. Save (push) the processor registers on the task’s stack.
2. Save the stack pointer in the Task Control Block.

Activating a task

The scheduler activates the higher-priority task (Task 1) by performing the sequence in

reverse order:

1. Load (pop) the stack pointer (SP) from the Task Control Block.
2. Load the processor registers from the values stored on Task 1’s stack.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

32 CHAPTER 1 Polling vs. Event based programming

1.8 Polling vs. Event based programming

The easiest way to communicate between different pieces of code is by using global vari-
ables. In an application without RTOS you could set a flag in an UART interrupt routine and
poll in main() for the flag until it is set.

static int Uar t RxFl ag;
static unsigned char Data;

voi d Uart Rxl SR(void) ({
Uart RxFl ag = 1;
Dat a = UART_RX_REQ STER;
}

int main(void) {
while (1) {
if (UartRxFlag !'= 0) {
printf("Uart: %", Data);
Uart RxFl ag = O;
}
}

return O;

}

This has the disadvantage that the CPU cannot execute any other part of the application
while it waits for new UART characters.

An RTOS offers the opportunity to implement an event based application. Such an event
can be an interrupt. Uart RxTask() calls OS_MAlI LBOX Get Bl ocked() and is suspended until
a new message is stored in the mailbox. Uar t Rxl SR() stores a new message (the received
character) in the mailbox with OS_MAI LBOX Put (). Therefore Uart RxTask() is executed
only when a new UART character is received and does not waste any precious computation
time and energy. Additionally the CPU can execute other parts of the application in the
meantime.

voi d Uart RxI SR(voi d) {
unsi gned char Dat a;

OS_INT_Enter();
Dat a = UART_RX_REQ STER;
OS_MAI LBOX_Put (&Wai | box, &Dat a);
OS_|I NT_Leave();
}

voi d Uart RxTask(void) {
unsi gned char c;
while (1) {
OS_MAI LBOX_Cet Bl ocked(&Wai | box, &c);
printf("Uart: %", c);

}
}
A
UartRxISR
>
ot
§ UartRxTask
Q| |dle

Time

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

33 CHAPTER 1 Synchronization and communication primitives

1.9 Synchronization and communication primitives

1.9.1 Synchronization primitives

In a multitasking (multithreaded) program, multiple tasks work completely separately. Be-
cause they all work in the same application, it will be necessary for them to synchronize
with each other. Semaphores, mutexes and readers-write locks are used for task synchro-
nization and to manage resources of any kind.

For details and samples, refer to the chapters Mutex on page 183, Semaphore on
page 201 and Readers-Writer Lock on page 215.

1.9.2 Event driven primitives

A task can wait for a particular event without consuming any CPU time. The idea is as
simple as it is convincing, there is no sense in polling if we can simply activate a task once
the event it is waiting for occurs. This saves processor cycles and energy and ensures that
the task can respond to the event without delay. Typical applications for events are those
where a task waits for some data, a pressed key, a received command or character, or the
pulse of an external real-time clock.

For further details, refer to the chapters Task Event on page 141 and Event Object on
page 157.

1.9.3 Communication primitives

A mailbox is a data buffer managed by the RTOS. It is used for sending a message from
a task or an ISR to a task. It works without conflicts even if multiple tasks and interrupts
try to access the same mailbox simultaneously. embOS activates any task that is waiting
for a message in a mailbox the moment it receives new data and, if necessary, switches
to this task.

A queue works in a similar manner, but handles larger messages than mailboxes, and each
message may have an individual size.

For more information, refer to the chapters Mailbox on page 229 and Queue on page 267.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

34 CHAPTER 1 How the OS gains control

1.10 How the OS gains control

Upon CPU reset, the special-function registers are set to their default values. After reset,
program execution begins: The PC register is set to the start address defined by the start
vector or start address (depending on the CPU). This start address is usually in a startup
module shipped with the C compiler, and is sometimes part of the standard library.

The startup code performs the following:

e Loads the stack pointer(s) with the default values, which is for most CPUs the end of
the defined stack segment(s)

o Initializes all data segments to their respective values

e Calls the mai n() function.

The mai n() function is the part of your program which takes control immediately after
the C startup. Normally, embOS works with the standard C startup module without any
modification. If there are any changes required, they are documented in the CPU & Compiler
Specifics manual of the embOS documentation.

With embQS, the mai n() function is still part of your application program. Essentially,
mai n() creates one or more tasks and then starts multitasking by calling S _Start (). From
this point, the scheduler controls which task is executed.

St art up_code()
mai n()
s Init();
CS_ I nitHW);
OS_TASK_CREATE() ;
CS Start();

The mai n() function will not be interrupted by any of the created tasks because those
tasks execute only following the call to OS_Start () . It is therefore usually recommended to
create all or most of your tasks here, as well as your control structures such as mailboxes
and semaphores. Good practice is to write software in the form of modules which are (up
to a point) reusable. These modules usually have an initialization routine, which creates
any required task(s) and control structures. A typical mai n() function looks similar to the
following example:

Example

int main(void) {
oS Init(); I/l Initialize enbOS (nust be first)
OS_Ini t HW() ; // Initialize hardware for enbOS (in RTOSInit.c)
/1 Call Init routines of all program nodules which in turn will create
/'l the tasks they need ... (Order of creation may be inportant)
MODULEL_Init();
MODULE2_I nit();
MODULE3_I nit();
MODULE4_I nit();
MODULES_I nit();
oS Start(); // Start multitasking
return O;

}

With the call to G5 Start (), the scheduler starts the highest-priority task created in
mai n() . Note that OS_St art () is called only once during the startup process and does not
return.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

35 CHAPTER 1 Valid context for embOS API

1.11 Valid context for embQOS API

Some embOS functions may only be called from specific locations inside your application.
We distinguish between mai n() (before the call of OS_St art ()), privileged and unprivileged
task, interrupt routine and embOS software timer.

With embQOS-Classic there are privileged tasks only. With embOS-MPU a task is a unprivi-
leged task after the call to OS_MPU_Swi t chToUnpri vState() .

Note

Please consult the embOS API tables to determine whether an embOS function is
allowed from within a specific execution context. Please find the API tables at beginning
of each chapter.

Example
v|S @)
3|22 |2
Routine Description 5 |< (€|
S e = |P|3
28| |2
~

Suspends the calling task for a specified
OS_TASK Del ay() amount of system ticks, or waits actively when | e
called from main().

This table entry says it is allowed to call 0S_TASK_Del ay() from main() and a privileged/un-
privileged task but not from an embOS software timer or an interrupt handler. Please
note the differentiation between privileged and unprivileged tasks is relevant only for em-
bOS-MPU. With embOS all tasks are privileged.

Debug check

An embOS debug build will check for violations of these rules and call OS_Error () with an
according error code:

Error code Description
OS ERR I LLEGAL I N MAIN Not a legal API call from mai n() .
OS_ERR | LLEGAL_I N_TASK Not a legal API call after OS_Start ().

OS_ERR | LLEGAL_AFTER OSSTART |0S Start() called twice.
OS_ I NT_Ent er () has been called, but CPU is not in

OS_ERR_OS_| NT_ENTER_CALLED

ISR state.
OS ERR I LLEGAL I N TI MER Not a legal API call from an embOS software timer.
0S ERR OS | NT_EN OS | NT_Enter () has not been called, but CPU is in
TER _NOT_CALLED ISR state.
OS ERR | LLEGAL_QUT_I SR Not a legal API call outside an interrupt.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

36 CHAPTER 1 Blocking and Non blocking embOS API

1.12 Blocking and Non blocking embOS API

Most embOS API comes in three different version: Non blocking, blocking and blocking with
a timeout. The embOS API uses a specific naming convention for those API functions. API
functions which do not block a task have no suffix. API functions which could block a task
have the suffix "Blocked”. API functions which could block a task but have a timeout have
the suffix “Timed".

Blocking API functions (with or without a timeout) must not be called from any context
other than a task context.

Non blocking API

Non blocking API functions always return at once, irrespective of the state of the OS object.
The return value can be checked in order to find out if e.g. hew data is available in a mailbox.

static OS_MAI LBOX MyMai | box;
static char Buffer[10];

voi d Task(void) {
char r;
while (1) {
r = OS_MAI LBOX_Get (MyMai | box, Buffer);
if (r == 0u) {
/'l Process nessage
}
}
}

Blocking API

Blocking API functions suspend the task until it is activated again by another embQOS API
function. The task does not cause any CPU load while it is waiting for the next activation.

static OS_MAI LBOX MyMai | box;
static char Buffer[10];

voi d Task(void) {
while (1) {
/1 Suspend task until a new nessage is avail able
OS_MAI LBOX_Cet Bl ocked(MyMai | box, Buffer);
/'l Process nessage
}
}

Blocking API with timeout

These API functions have an additional timeout. They are blocking until the timeout occurs.

static OS_MAI LBOX MyMai | box;
static char Buffer[10];

voi d Task(void) {
char r;
while (1) {
/1 Suspend task until a new nessage is available or the tineout occurs
r = OS_MAI LBOX_Get Ti ned(MyMai | box, Buffer, 10);
if (r == 0u) {
/'l Process nessage
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

37 CHAPTER 1 embOS API with timeout

1.13 embOS API with timeout
1.13.1 Usage

The embOS system tick in OS_d obal . Ti me is based on a hardware timer. The hardware
timer periodically generates an interrupt which increments OS_d obal . Ti me. embOS API
functions like OS_TASK Del ay() and OS_TASKEVENT_GCet Ti med() expect a timeout value as
a parameter. The timeout unit is system ticks.

If for example OS_TASK Del ay(1) was called shortly after the timer interrupt the actual
timeout is nearly one system tick.

0S_TASK_Delay(1)

L 4

¥

0 1 2 3 4 5 6
0OS Global.Time

But if 08 _TASK Del ay(1) is called shortly before the next timer interrupt the actual timeout
will be less than a full system tick or even almost zero.

OS_TASK_pDelay(1)

L

L4

0 1 2 3 4 5 6
0OS_Global.Time

The actual timeout depends on when the API function is called in relation to the next timer
interrupt. A timeout of 1 could cause the API function to almost return immediately.

Note

OS5 _TASK Del ay(1) does not guarantee a timeout of a full system tick. If you need a
timeout of at least one full system tick please use OS5 _TASK Del ay(2) instead.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

38 CHAPTER 1 embOS API with timeout

1.13.2 Implementation details

0S_d obal . Ti ne holds the system time (in system ticks) since reset and always is a signed
32-bit variable. OS_Q obal . Ti ne starts at 0x00000000 and is incremented with every sys-
tem tick in the interrupt handler (assuming OS_TI CK_Confi g() is not used). After OS_Q ob-
al . Ti me reaches OxFFFFFFFF, it starts at 0x00000000 again. With a typical system tick
period of 1 millisecond, this happens after ~49 days.

Note

You must not rely on OS_d obal . Ti me as a timestamp since reset because it overflows
after OxFFFFFFFF system ticks. Please use OS Tl ME_Get us64() instead.

When calling OS_TASK_Del ay(), or an API function with a timeout (e.g. OS_EVENT_GCet -
Ti med()), embOS calculates the end time and stores it in OS_d obal . Ti mreDex. The end
time is the current time plus the desired timeout. OS_d obal . Ti reDex is also a signed
integer value.

OS_G obal . TineDex = OS_d obal . Ti me + Ti nmeout

Exanpl e:
OGS Gobal.Tine =5

OS_TASK_Del ay(10)

OS_d obal . Ti neDex = 15

With each system tick, embOS checks whether the current system time is equal or greater
than GS_d obal . Ti neDex. This is implemented as a subtraction of signed values. This cal-
culation guarantees that wrap-arounds are handled correctly as long as the timeout value
limitation (explained below) is respected.

if ((CS_Gobal.Tine - OS dobal.Tinebex) >= 0) {
/1 Timeout has expired

} else {
/1 Timeout has not yet expired

}

Note

You must not choose a timeout value which violates the following limitation:
The maximum timeout is half of the available range minus one.

1 < Ti meout < 215 -1 = Ox7FFF for 8/16-bit CPUs.
1 < Ti meout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Example

With a 32-bit CPU and a one millisecond system tick the maximum timeout is ~24 days.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

39

Description

CHAPTER 1 embOS API with timeout

The actual width of embOS timing variables is core specific, but for the following examples
we assume 8-bit variables for easier understanding. The range is 0x00 to 0xFF, where 0x00
to 0x7F represent positive values and 0x80 to OxFF negative values.

0x00 O
0x01 1

Ox7F 127
0x80 -128

OxFF -1

Four cases exist: Both OS_Qd obal . Ti re and OS_Q obal . Ti nreDex are positive values, both
are negative values, and one positive and one negative value (and vice versa).

OS_Global.Time and OS_Global.TimeDex are positive

OS_d obal .

Ti neout

OS_d obal .
OS_d obal .

OS_d obal .
OS_d obal .
OS_d obal .

Ti

Ti
Ti

Ti
Ti
Ti

nme = 100 (0x64)

= 20 (0x14)
meDex = 120 (0x78)
me - OS_d obal . Ti neDex

nme = 121 (0x79)
meDex = 120 (0x78)
me - OS_d obal . Ti neDex

-20 < 0 => Tineout has not yet expired

1 >= 0 => Timeout has expired

OS_Global.Time and OS_Global.TimeDex are negative

OS_d obal
Ti meout

OS_d obal
OS_d obal

OS_d obal
OS_d obal

.Ti

.Ti
.Ti

.Ti
.Ti
OS_d obal .

Ti

e = -128 (0x80)
=8 (0x08)

meDex = -120 (0x88)

me - OS _d obal . Ti neDex

nme = -119 (0x89)
meDex = -120 (0x78)
me - OS_d obal . Ti neDex

-8 < 0 => Tineout has not yet expired

1 >= 0 => Ti meout has expired

OS_Global.Time is positive and OS_Global. TimeDex is negative

CS_d obal
Ti neout

CS_d obal
CS_d obal

CS_d obal
CS_d obal
CS_d obal

. Ti

. Ti
. Ti

. Ti
. Ti
. Ti

me = 120 (0x88)

= 16 (0x10)
meDex = -120 (0x88)
nme - OS_d obal . Ti neDex

me = -119 (0x89)
meDex = -120 (0x88)
nme - OS_d obal . Ti neDex

-16 < 0 => Tineout has not yet expired

1 >= 0 => Tinmeout has expired

OS_Global.Time is negative and OS_Global.TimeDex is positive

CS_d obal .

Ti meout

CS_d obal .
CS_d obal .

CS_d obal .

CS_d obal .
CS_d obal .

UMO01001 User Guide & Reference Manual for embOS

Ti

Ti
Ti

Ti
Ti
Ti

me = -1
= 16
meDex = 15
nme - OS_d obal . Ti neDex

me = 16
meDex = 15
nme - OS_d obal . Ti neDex

-16 < 0 => Tineout has not yet expired

1 >= 0 => Tinmeout has expired

© 1995-2025 SEGGER Microcontroller GmbH

40

CHAPTER 1 embOS API with timeout

Limitation

This check may only be performed if the difference between OS_d obal . Ti ne and CS_d ob-
al . Ti neDex is less than half of the available range minus one. Otherwise, it is undecidable
whether CS_d obal . Ti ne has lapped OS_d obal . Ti nreDex. The following example shows
how the calculation fails if the timeout limit is violated.

8-bit range => Maxi mum ti meout value = 128 - 1 = 127

OS _d obal . Ti ne =0
I nval id Ti meout = 130
OS _d obal . Ti mneDex = 130

OS G obal.Time - OS dobal.TineDex = 126 > 0
=> Wong result, Tineout has not yet expired

Conclusion

As long as the timeout limitation is not violated, a wrap-around of GS_d obal . Ti ne is no
problem. As shown in the above examples all calculations are performed correctly. There-
fore you will find the timeout limitation in the timeout parameter description of all according
API functions.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

41 CHAPTER 1 RTOS objects

1.14 RTOS objects

Most embOS API functions require an according RTOS object. The RTOS object is based on a
C structure and stores application specific information. For example, if you create a new task
with OS_TASK Creat e(), you will need to specify a task control block. OS_TASK_ Cr eat e()
expects a pointer to an RTOS object of the type OS_TASK to store information like the task
priority.

Examples for RTOS objects:

0S_TASK

0S_TI MER
OS_EVENT
0S_MJTEX
0S_SEMAPHORE
0S_RW.OCK
0S_MAI LBOX
0S_QUEUE

oS WD

It is the developer’s responsibility to allocate RAM for the RTOS object. The memory can
be allocated statically or dynamically. Whether it is preferable to use static or dynamic
memory allocation depends on the application. Both methods can be used with embQOS and
also within the same embOS application.

The RTOS object must be located in RAM; it is the developer’s responsibility to allocate
sufficient memory for it. Furthermore, the RTOS object must not be located at address 0x00.
If the target has RAM at address 0x00, the linker file should define the RAM start at e.g.
address 0x04. Consequently, NULL must never be passed to an embQOS API function that
expects an RTOS object as parameter (unless explicitly stated otherwise in the respective
API function description).

Static allocation

static OS_MJTEX _Mit ex;

int main(void) {
.(ﬁl_l\/UTEX_Cr eat e(& Mut ex);
ret urn O;

}

Dynamic allocation

static OS_MJTEX* _pMit ex;
int main(void) {
_pMiutex = (OS_MJUTEX*) nmal | oc(si zeof (OS_MJTEX)) ;

if (_pMutex !'= NULL) {
OS_MJTEX_Cr eat e(_pMut ex) ;

}

return O;

Note
An RTOS object may be modified by an embOS API function only. You must not modify

an RTOS object directly. For example, you must not free memory containing an RTOS
object which is still in use.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

42 CHAPTER 1 RTOS objects

Bad examples

Write to a member of an RTOS object:

static OS_ MJUTEX _Mit ex;
int main(void) {

.CI.S._I\/UTEX_Cr eat e(& Mut ex);
_Mut ex. UseCnt = 42;
ret urn O;
}
Memory freed while the RTOS object is still in use:

static OS_MJTEX* _pMit ex;

voi d Task(void) {
while (1) {
OS_MJTEX_LockBI ocked(_pMit ex) ;
}
}

int main(void) {
_pMutex = (OS_MJTEX*) mal | oc(si zeof (OS_MJUTEX)) ;
OS_MJTEX_Cr eat e(_pMut ex) ;
free(_pMitex);

CS Start();
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

43

CHAPTER 1

1.15 embOS types

In addition to embOS object types, embOS uses further data types for API routine argu-
ments and return values.
Per default they are defined as:

embOS types

Type C type
s 18 signed char
cs U8 unsigned char
s 116 signed short
0S _Ule unsigned short
0s_ 132 signed long
0s_u32 unsigned long
CS 164 signed long long
OS _Ue4 unsigned long long
OS_Ul NT unsigned int
0S_BOOL unsigned char (0 = false / 1 = true)
oS _TI ME int
OS_TASKEVENT unsigned char (8/16-bit CPU) / unsigned long (32-bit CPU)
OS _TASK PRI O unsigned char (8/16-bit CPU) / unsigned long (32-bit CPU)

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

44 CHAPTER 1 Callback / Hook routines

1.16 Callback / Hook routines

Both terms are used with embOS and mean the same. Some embOS API functions use a
function pointer parameter for a callback routine. The callback routine must be implemented
by the application and is defined as determined by the function pointer type. The following
function pointer types are used:

Type Definition

OS_ROUTI NE_VO D voi d Routine(void)

OS_ROUTI NE_VA D _PTR voi d Routi ne(voi d* p)

OS_ROUTI NE_BOOL_VA D _PTR OS_BOOL Routine(voi d* p, void* pParam

OS_ROUTI NE_CHAR voi d Routine(OS U8 Dat a)

OS_ROUTI NE_WD_PTR voi d Routine(OS_CONST_PTR OS_W»* pWD)

OS_RQUTI NE_TASK_PTR voi d Routine(OS_CONST_PTR OS_TASK* pTask)
; ; *

cs_FouTi Ak PR e | v, U el CEOOST PR o8 T

Example
void OS_ WD Config(OS_ROUTI NE_VO D* pfTrigger, OS_ROUTI NE WD PTR* pf Reset);

static void _TriggerRoutine(void) ({

}

static void _ResetRouti ne(OS_CONST_PTR OS_W»* pWD) ({
} ce
int main(void) {

.C.B._V\D_Conf i g(& TriggerRoutine, & ResetRoutine);

ret urn O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

45 CHAPTER 1 embOS library modes

1.17 embOS library modes

embOS comes in different builds or versions of the libraries. The reason for different builds
is that requirements vary during development. While developing software, the performance
(and resource usage) is not as important as in the final version which usually goes as
release build into the product. But during development, even small programming errors
should be caught by use of assertions. These assertions are compiled into the debug build
of the embOS libraries and make the code a little bigger (about 50%) and also slightly
slower than the release or stack-check build used for the final product.

This concept gives you the best of both worlds: a compact and very efficient build for your
final product (release or stack-check build of the libraries), and a safer (though bigger
and slower) build for development which will catch most common application programming
errors. Of course, you may also use the release build of embOS during development, but
it will not catch these errors.

The features are enabled and disabled with compile-time switches in the C source code.
For example the macro OS_DEBUG controls whether the debug code is included in the build.
Please have a look in the chapter Compile time switches on page 602 for more details.

The following features are included in the different embOS builds:

Debug code

The embOS debug code detects application programming errors like calling an API func-
tion from an invalid context. An application using an embQOS debug library has to include
CS Error.c. GS Error. c contains the Gs Error () function which will be called if a debug
assertion fails. It is advisable to always use embQOS debug code during development.

Stack Check

The embOS stack check detects overflows of task stacks, system stack and interrupt stack.
Furthermore, it enables additional information in embOSView and IDE RTOS plug-ins, and
provides additional embQOS API regarding stack information. An application using an em-
bOS stack check library has to include OS_Error.c. OS_Error.c contains the GS_Error ()
function which will be called if a stack overflow occurs.

Profiling

The embOS profiling code makes precise information available about the execution time
of individual tasks. You may always use the profiling libraries, but they induce larger task
control blocks as well as additional ROM and runtime overhead. This overhead is usually
acceptable, but for best performance you may want to use non-profiling builds of embOS
if you do not use this feature.

Libraries including support for profiling do also include the support for SystemView.

embOS API Trace

embOS API trace saves information about called API in a trace buffer. The trace data can
be visualized in e.g. SystemView.

embOSView API Trace

embOSView API trace saves information about called API in a trace buffer. The trace data
can be visualized in embOSView.

Round-Robin

Round-Robin lets all tasks at the same priority execute periodically for a pre-defined period
of time.

Object Names

Tasks and OS object names can be used to easily identify a task or e.g. a mailbox in tools
like embOSView, SystemView or IDE RTOS plug-ins.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

46

CHAPTER 1 embOS library modes

Task Context Extension

For some applications it might be useful or required to have individual data in tasks that are
unique to the task or to execute specific actions at context switch. With the task context
extension support each task control block includes function pointer to a save and a restore
routine which are executed during the context switch from and to the task.

1.17.1 Available library modes

In your application program, you need to let the compiler know which build of embQOS you
are using. This is done by adding the corresponding define to your preprocessor settings and
linking the appropriate library file. If the preprocessor setting does not match the library,
a linker error will occur. Using the preprocessor define, RTCS. h will set embQOS structures
to the same configuration that was used during the creation of the library, thus ensuring
identical structure definitions in both the application and the library. If no preprocessor
setting is given, OS_Confi g. h will be included and will set a library mode automatically
(see GS_Confi g. h).

v (7))) Py} o —

& o g &

S | 8 | 3 |%3|%2| 5 | ¢ |%¢

. =~ o = 5 o) o 2 D

Name / Define Q =h o —] 5 0O

o 0 = = 3 =) o zZ o O

= S Q o < Q =0 3

o I Q@ o wmn o = o 3 o =~

o o ® ® o S

® ~ = = 3 =

OS_LI BMODE_XR

OS_LI BMODE_R ° ° °
OS_LI BMODE_S ° ° ° °
OS_LI BMODE_SP ° ° ° ° ° °
OS_LI BMODE_D) ° ° ° °
OS_LI BMODE_DP) ° ° ° ° ° °
CS_LI BMODE_DT ° ° ° ° ° ° ° °
OS_LI BMODE_SAFE) ° ° ° ° ° °

1.17.2 OS_Config.h

OS Config. h is part of every embOS port and located in the Start\ I nc folder. Use of
OS _Confi g. h is optional but makes it easier to define the embOS library mode: Instead
of defining GS_LI BMODE_* in your preprocessor settings, you may define DEBUG=1 in your
preprocessor settings in debug compile configurations and define nothing in the preproces-
sor settings in release compile configurations. Subsequently, GS _Confi g. h will automati-
cally define OS_LI BMODE_DP for debug compile configurations and GS_LI BMODE_R for release
compile configurations. GS_Confi g. h will be included only when no GS LI BMODE_* is de-
fined.

Compile Configuration Preprocessor Define Define Set by OS_Confi g. h
Debug DEBUG=1 Os_LI BMODE_DP
Release OS LI BMODE_R
Note

The macro DEBUG may not be appropriate for a specific project. For example the
identifier may already be used in other 3rd party software or it is preferred to use
another macro like NDEBUG. You can customize OS_Confi g. h to fully fit your needs
and keep it with your next embOS update.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

a7 CHAPTER 1 embOS library modes

1.17.3 OS_LIBMODE_SAFE

OS_LI BMODE_SAFE is usually used with embOS-Safe only for the safety certified embOS
library. OS_LI BMODE_SAFE excludes/adds some embOQOS features which are not mentioned
above:

embOS API not supported with OS_LIBMODE_SAFE

Heap Type Memory Management
CPU Load Measurement
Spinlock API

embOSView / embOSView trace
Thread local storage

Additional embOS API supported with OS_LIBMODE_SAFE

e Configurable stack check limit
e MPU sanity check buffer

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 2

Kernel

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

CHAPTER 2 Introduction

Introduction

The embOS kernel is started with OS_Start () in main() after the kernel was initialized
with OS_I ni t (). Typically, applications will also initialize the required hardware, and create
at least one task before calling OGS _Start (). OS_Start() usually never returns but runs
the embOS scheduler which decides which task to run next. It is possible to stop and de-
initialize the kernel with OS_St op() and OS_Del nit ().

Example

int mai n(void) {
CS Init(); /1 Initialize enbCS
OS InitHW); // Initialize required hardware
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP):
OS Start(); /1 Start embOS

return O;

}

Interrupts in main()

CS Start () enables interrupts, but interrupts may also be used in main(). It is not nec-
essary to disable interrupts in main(). When using embOS interrupts in main(), please en-
sure they are enabled after GS I nit () only. It is good practice to call G5 I nit () as first
instruction in main().

voi d UART_I| SR(voi d) {
/1 Handl e UART interrupt

}

int main(void) {
oS Init(); /1 Initialize enbQS
UART Init(); // Initialize UART and UART interrupts
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS Start(); /1 Start embOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

50 CHAPTER 2 API functions

2.2 API functions

c
=] (0]
3123112
Routine Description |4 (< |24
Sle = |P|3
28| |a
~
OS_Confi gStop() Configures the Gs_St op() function. °
OS Del nit() De-initializes the embOS kernel. °
CS Init() Initializes the embOS kernel. °
: Determines whether the embOS kernel was start-
OS_I'sRunni ng() ed by a callto CS_Start (). i R I e
OS Start () Starts the embQOS kernel. °
Stops the embOS kernel and returns from CS_S-
O5_Stop() tar?(). B *

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

51 CHAPTER 2

2.2.1 OS_ConfigStop()

Description
Configures the Gs_St op() function.

API functions

Prototype

voi d OS_Confi gSt op(OS_MAI N_CONTEXT* pCont ext,
voi d* Addr,
0s_U32 Si ze) ;

Parameters

Parameter Description

pCont ext Pointer to an object of type OS_MAI N_CONTEXT.

Addr Address of the buffer which is used to save the main() stack.

Si ze Si ze of the buffer.

Additional information

This function configures the OS_St op() function. When configured, OS_Start () saves the
context and stack from within main(), which subsequently are restored by CS_St op() . The
main() context and stack are saved to the resources configured by OS_Confi gSt op() . Only
the stack that was actually used during main() is saved. Therefore, the size of the buffer
depends on the used stack. The structure OS_MAI N_CONTEXT is core and compiler specific;

it is specifically defined with each embOS port.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
227: OS_ERR | LLEGAL_I N_TASK

For details, refer to the chapter Runtime application errors on page 458.

Example

#i ncl ude "RTGCS. h"
#i ncl ude "stdio. h"

#def i ne BUFFER_SI ZE (32u)

static OS_U8 Buf f er[BUFFER_SI ZE]; //
static OS_MAI N_CONTEXT Mai nCont ext ; /1
static OS_STACKPTR int StackHP[128]; /1
static OS_TASK TCBHP; /1
static void HPTask(void) {

OS_TASK Del ay(50);
CS_INT_Di sabl e();
CS_Stop();

}

int mai n(void) {
i nt TheAnswer ToEveryt hi ng = 42;
CS Init(); /[l Initialize enbCS
OS_InitHW); Il
OS_TASK_CREATE(&TCBHP, "HP Task",
CS_Confi gSt op(&\vai nCont ext, Buffer,
CS Start(); /1 Start enbOS

UMO01001 User Guide & Reference Manual for embOS

Buf fer for main stack copy
Mai n context control structure
Task stack

Task control bl ock

Initialize required hardware
100, HPTask,
BUFFER_SI ZE) ;

St ackHP) ;

© 1995-2025 SEGGER Microcontroller GmbH

52 CHAPTER 2 API functions

I
/1 W arrive here because OS _Stop() was call ed.
/1l The local stack variable still has its val ue.
I

printf("%l", TheAnswer ToEverything);
whi |l e (TheAnswer ToEverything == 42) {
}

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

53

CHAPTER 2 API functions

2.2.2 0OS_Delnit()

Description

De-initializes the embOS kernel.

Prototype

void OS Delnit(void);

Additional information

0S Delnit() can be used to de-initializes the embOS kernel and the hardware which was
initialized in OS_Init (). OS_Delnit() is usually used after returning from OS_Start (). It
does not de-initialize the hardware which was configured in e.g. OS_| ni t H\() but it resets
all embOS variables to their default values.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR_CPU_STATE_ | LLEGAL
227: OS_ERR | LLEGAL_I N_TASK

For details, refer to the chapter Runtime application errors on page 458.
Example

#def i ne BUFFER_SI ZE (32u)

static OS_STACKPTR int StackHP[128] // Task stacks

static OS_TASK TCBHP; /'l Task control bl ocks
static OS_U8 Buf f er [BUFFER_SI ZE] ;

static OS_MAI N _CONTEXT Mai nCont ext ;

static void HPTask(void) {

while (1) {
OS_TASK Del ay(50);
OS_Stop();
}
}
int mai n(void) {
CS Init(); /[l Initialize enbCS
OS_Ini t HW() ; /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_Confi gSt op(&Mai nCont ext, Buffer, BUFFER_SI ZE);

CS start(); /1 Start enbOS

OS Delnit();

OS_Del nit HW) ;

DoSonet hi ngEl se() ;

I

/1 Start enbCS for the 2nd tine

I

OS_ Init();

OS_InitHW);

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
CS_Confi gSt op(&Mai nCont ext, Buffer, BUFFER_SI ZE);

CS Start();

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

54

CHAPTER 2 API functions

2.2.3 0S_Init()

Description

Initializes the embOS kernel.

Prototype

void OS | nit(void);

Additional information

In library mode OS_LI BMODE_SAFE all RTOS variables are explicitly initialized. All other li-
brary modes presume that, according to the C standard, all initialized variables have their
initial value and all non initialized variables are set to zero.

Note

OS I nit () must be called prior to any other embQOS API.
When using embOS API in C++ constructors, please be aware C++ constructors might
be executed before main().

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
227: 0OS_ERR | LLEGAL_| N_TASK

For details, refer to the chapter Runtime application errors on page 458.
Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control bl ocks

static void HPTask(void) {
while (1) {
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
OS_TASK_Del ay(200) ;
}
}

/***

*

* mai n()
*/
int main(void) {
CS Init(); /1 Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enmbCS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

55 CHAPTER 2 API functions

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

56

CHAPTER 2 API functions

2.2.4 0OS_IsRunning()

Description

Determines whether the embOS kernel was started by a call to S Start ().

Prototype

OS_BOOL OS_I sRunni ng(voi d);

Return value

=0 Kernel is not started.
*0 Kernel is running, OS_Start () has been called.

Additional information

This function may be helpful for some functions which might be called from main() or from
running tasks. As long as the kernel is not started and a function is called from main(),
blocking task switches are not allowed. A function which may be called from a task or
main() may use OS_I| sRunni ng() to determine whether a subsequent call to a blocking API
function is allowed.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

void PrintStatus() {
0S_BOOL b;

b = OS_I SRunni ng();
if (b ==0) {
printf("enbOS schedul er not started, yet.\n");
} else {
printf("enbOS scheduler is running.\n");
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

57

CHAPTER 2 API functions

2.2.5 0OS Start()

Description
Starts the embOS scheduler.

Prototype

void OS_Start(void);

Additional information

This function starts the embOS scheduler, which will activate and start the task with the
highest priority.

0s _Start () marks embOS as running; this may be examined by a call of the function
OS IsRunning(). GS Start() automatically enables interrupts. It must be called from
main() context only.

embOS will reuse the main stack after OS_Start () was called. Therefore, local data locat-
ed on the main stack may not be used after calling CS_Start (). If OS_Stop() is used,
0S_Confi gSt op() will save the main stack and restore it upon stopping embOS.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

165: OS_ERR | NI T_NOT_CALLED
228: OS_ERR | LLEGAL_AFTER OSSTART

For details, refer to the chapter Runtime application errors on page 458.

Example

#i ncl ude "RTGCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /'l Task control bl ocks

static void HPTask(void) {
while (1) {
OS_TASK Del ay(50);
}

}

static void LPTask(void) {
while (1) {
OS_TASK Del ay(200);
}

}

/***

*

* mai n()
*/
int mai n(void) {
CS Init(); /[l Initialize enbQCS
OS_Ini t HW() ; /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

58 CHAPTER 2 API functions

2.2.6 0OS Stop()

Description
Stops the embOS kernel and returns from GS_Start ().

Prototype

voi d OS_Stop(void);

Additional information

This function stops the embOS kernel and the application returns from OS_Start ().
0S_Confi gSt op() must be called prior to OS_St op() . OS_St op() restores context and stack
to their state prior to calling OS_Start (). CS_St op() does not deinitialize any hardware. It's
the application’s responsibility to de-initialize all hardware that was initialized, for example,
during OS_I ni t HW() .

It is possible to restart embOS after OS_St op() . To do so, G5 | nit () must be called and
any task must be recreated. It also is the application’s responsibility to initialize all embOS
variables to their default values. With the embOS source code, this can easily be achieved
using the compile time switch OS_I NI T_EXPLI CI TLY.

With some cores it is not possible to save and restore the main() stack. This is e.g. true for
8051. Hence, in that case no functionality should be implemented that relies on the stack
to be preserved. But OS_St op() can be used anyway.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N
250: OS_ERR_CONFI G_OSSTOP

For details, refer to the chapter Runtime application errors on page 458.
Example

#i ncl ude "RTGCS. h"
#i ncl ude "stdio. h"

#def i ne BUFFER_SI ZE (32u)
static OS_U8 Buf f er [BUFFER_SI ZE] ;
static OS_MAI N_CONTEXT Mai nCont ext ;

static OS_STACKPTR int StackHP[128];
static OS_TASK TCBHP;

static void HPTask(void) {
OS_TASK Del ay(50);
OS_Stop();

}

int mai n(void) {
i nt TheAnswer ToEveryt hi ng = 42;
s Init();
CS_ I nitHW);
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_Confi gSt op(&Mai nCont ext, Buffer, BUFFER_SI ZE);
CS Start();
11
/1l W arrive here because OS _Stop() was call ed.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

59 CHAPTER 2 API functions

/1l The local stack variable still has its val ue.
I

printf("%l", TheAnswer ToEverything);

while (1) {
}
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 3
Task

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

61 CHAPTER 3 Introduction

3.1 Introduction

A task that should run under embOS needs a task control block (TCB), a task stack, and a
task body written in C. The following rules apply to task routines:

e The task routine can either not take parameters (void parameter list), in which case
OS TASK Create() is used to create it, or take a single void pointer as parameter, in
which case OS_TASK Creat eEx() is used to create it.

The task routine must not return.
The task routine must be implemented as an endless loop or it must terminate itself
(see examples below).

3.1.1 Example of atask routine as an endless loop

voi d Taskl(void) {

while(l) {

DoSonet hi ng() ; /1 Do somet hing

OS_TASK Del ay(10); // Gve other tasks a chance to run
}

}

3.1.2 Example of atask routine that terminates itself

voi d Task2(void) {
char DoSomeMor e;

do {

DoSoneMore = DoSonet hi ngEl se(); // Do sonething

OS_TASK Del ay(10); /1 Gve other tasks a chance to run
} while (DoSonmeMbre);
OS_TASK Ter mi nat e(NULL) ; /1 Terminate this task

}

There are different ways to create a task: On the one hand, embOS offers a simple macro
to facilitate task creation, which is sufficient in most cases. However, if you are dynamically
creating and deleting tasks, a function is available allowing “fine-tuning” of all parameters.
For most applications, at least initially, we recommend using the macro.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

62 CHAPTER 3 Cooperative vs. preemptive task switches

3.2 Cooperative vs. preemptive task switches

In general, preemptive task switches are an important feature of an RTOS. Preemptive
task switches are required to guarantee responsiveness of high-priority, time critical tasks.
However, it may be desirable to disable preemptive task switches for certain tasks in some
circumstances. The default behavior of embOS is to allow preemptive task switches in all
circumstances.

3.2.1 Disabling preemptive task switches for tasks of equal
priority

In some situations, preemptive task switches between tasks running at identical priorities
are not desirable. To inhibit time slicing of equal-priority tasks, the time slice of the tasks
running at identical priorities must be set to zero as in the example below:

#i ncl ude "RTCS. h"

#define PRI O_COOP 10
#define TIME_SLICE_NULL O

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control bl ocks

static void TaskEx(voi d* pData) {
while (1) {
OS_TASK Del ay((OS_TI ME) pDat a) ;
}
}

/***

*

* mai n()

*/

int main(void) {
CS Init(); /1 Initialize enbOS
CS InitHW); /'l Initialize required hardware
BSP_Init(); /1 Initialize LED ports

OS_TASK Creat eEx(&TCBHP, "HP Task", PRI O COOP, TaskEx, StackHP,
si zeof (StackHP), TIME_SLI CE_NULL, (void *) 50);

OS_TASK Creat eEx(&TCBLP, "LP Task", PRI O COOP, TaskEx, StackLP,
si zeof (StackLP), TIME_SLICE_NULL, (void *) 200);

CS Start(); /1 Start enmbCS

return O;

3.2.2 Completely disabling preemptions for a task

This is simple: The first line of code should be OS_TASK Ent er Regi on() as shown in the
following sample:

voi d MyTask(voi d* pContext) {
OS_TASK EnterRegion(); // Disable preenptive context switches
while (1) {
/'l Do sonmething. In the code, nmake sure that you call a bl ocking
/1 function periodically to give other tasks a chance to run.

}
}

This will entirely disable preemptive context switches from that particular task and will
therefore affect the timing of higher-priority tasks. Do not use this carelessly.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

63 CHAPTER 3 Extending the task context

3.3 Extending the task context

For some applications it might be useful or required to have individual data in tasks that are
unique to the task. Local variables, declared in the task, are unique to the task and remain
valid, even when the task is suspended and resumed again. When the same task function
is used for multiple tasks, local variables in the task may be used, but cannot be initialized
individually for every task. embOS offers different options to extend the task context.

3.3.1 Passing one parameter to a task during task creation

Very often it is sufficient to have just one individual parameter passed to a task. Using the
OS_TASK _CREATEEX() or OS_TASK CreateEx() function to create a task allows passing a
void-pointer to the task. The pointer may point to individual data, or may represent any
data type that can be held within a pointer.

3.3.2 Extending the task context individually at runtime

Sometimes it may be required to have an extended task context for individual tasks to store
global data or special CPU registers such as floating-point registers in the task context.
The standard libraries for file I/0, locale support and others may require task-local stor-
age for specific data like errno and other variables. embOS enables extension of the task
context for individual tasks during runtime by a call of OS_TASK_Set Cont ext Ext ensi on() .
The sample application file OS_Ext endTaskCont ext . ¢ delivered in the application samples
folder of embOS demonstrates how the individual task context extension can be used.

3.3.3 Extending the task context by using own task struc-
tures

When complex data is needed for an individual task context, the OS_TASK CREATEEX() or
OS_TASK Creat eEx() functions may be used, passing a pointer to individual data structures
to the task. Alternatively you may define your own task structure which can be used. Note,
that the first item in the task structure must be an embOS task control structure OS_TASK.
This can be followed by any amount and type of additional data of different types.

The following code shows the example application OS_Ext endedTask. ¢ which is delivered
in the sample application folder of embQOS.

#i ncl ude "RTGCS. h"

/***
*
*
Types, | ocal
*

EE R IR Sk S I I S S R R I I S I I S R S I R S I I S S R R R S I R I Sk I R b I S S

*/

Il
/'l Customtask structure with extended task context.
Il
typedef struct {
OS_TASK Task; /'l OS_TASK has to be the first el enent
OS_TIME Timeout; // Any other data type nay be used to extend the context
char* pString; // Any nunber of elenents nay be used to extend the context
} MY_APP_TASK;

/***
*

* Static data

*

EE R IR Sk S I I S I R S I S I I S I R S I S S R S I I S R R I S I R I Sk I I I R b I S O
*/

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

64

CHAPTER 3 Extending the task context

static MY_APP_TASK TCBHP, TCBLP; /'l Task-control -bl ocks

/***
*

2 Local functions

*

R R R S kS O O I S O R O S

*/

/***

*

* MyTask()

*/

static void MyTask(void) {
MY_APP_TASK* pThis;
CS_TI ME Ti meout ;
char* pString;

pThis = (MY_APP_TASK*) OS_TASK Get | D();
while (1) {
Ti neout = pThi s->Ti neout ;
pString = pThis->pString;
OS_COM SendsString(pString);
OS_TASK Del ay(Ti neout) ;
}
}

/***
*

2 d obal functions

*

R R R S kS I kR S R O S

*/

/***

*

* mai n()

*/

int main(void) {
CS Init(); /'l Initialize enhOS
OS InitHW); // Initialize required hardware
/1

/1l Create the extended tasks just as nornal tasks.

/1l Note that the first paraneter has to be of type OS TASK
I

OS_TASK_CREATE(&TCBHP. Task, "HP Task", 100, MyTask, StackHP);
OS_TASK_CREATE(&TCBLP. Task, "LP Task", 50, MyTask, StackLP);

/1

/!l Gve task contexts individual data
/1

TCBHP. Ti neout 200;

TCBHP. pString "HP task running\n";
TCBLP. Ti neout 500;

TCBLP. pString = "LP task runni ng\n";
OS Start(); /1 Start enbCs
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

65 CHAPTER 3 API functions

3.4 API functions

Routine Description

urew
Jsel Alld
ysel Audun
Sl
Wil MS

Adds the specified task context
extension.

Adds the specified hook (call-
. back) routine to the list of rou-
O5_TASK_AddTer m nat eHook () tines which are called when a task | ¢ | ®

is terminated.
OS _TASK Create() Creates a new task. oo

05 TASK_Gr eat eEx() Creates a new task and passes a ol e
— — parameter to the task.

OS_TASK_AddCont ext Ext ensi on()

Suspends the calling task for a
specified amount of system ticks,
O5_TASK_Del ay() or waits actively when called from i I

main().

Actively waits for the given time
O5_TASK_Del ay_us() (in microseconds) to expire. i e

Suspends the calling task until a
OS_TASK Del ayUntil () specified time, or waits actively oo |0
when called from main().

Returns a pointer to the task con-
OS_TASK Getl IX) trol block structure of the current- (e | e | e e | @
ly scheduled task.

0S_TASK_Get Name() Returns _a_pomter to the name of ol olelele
- - the specified task.

OS _TASK Get Numrasks() Returns the number of tasks. o o 0|00

Returns the task priority of the
specified task.

OS_TASK GetPriority()

Returns the current task status of
O5_TASK Get Status() the the specified task. i R I e

Returns the suspension count and
OS_TASK_ Get SuspendCnt () thus suspension state of thespec- (e | e | o |0 | @
ified task.

Returns the remaining time slice
OS _TASK Get Ti meSl i ceRen() value of the specified task insys- |e | e | o o | @
tem ticks.

Determines whether the speci-
OS_TASK | sTask() fied task control block belongsto |e|e | e e | e
a valid task.

Returns the task control block of
O5_TASK_I'ndex2Ptr () the task with the specified Index. o I I i

Removes all hook functions from
the OS_ON_TERM NATE_HOX list
which contains the list of functions | e | e
that are called when a task is ter-
minated.

OS_TASK RenpveAl | Ter m nat e-
Hooks()

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

66

UMO01001 User Guide & Reference Manual for embOS

CHAPTER 3

API functions

Routine

Description

urew
)se] Alld
ysel Audun

ds|
JBWIL MS

OS_TASK_RenoveTer i nat eHook()

OS_TASK_RenoveTer ni nat eHook()
removes the specified hook func-
tion from the OS_ON_TERM -
NATE_HOX list which contains the
list of functions that are called
when a task is terminated.

OS_TASK_Resune()

Resumes the specified suspended
task.

OS_TASK ResuneAl |l ()

Decrements the suspend count of
all tasks that have a nonzero sus-
pend count and resumes these
tasks when their respective sus-
pend count reaches zero.

OS_TASK_ Set Cont ext Ext ensi on()

Makes global variables or proces-
sor registers task-specific.

OS_TASK_Set Def aul t Cont ext Ex-
t ensi on()

Sets the specified context exten-
sion as the default task context
extension.

OS_TASK_Set Def aul t St ar t Hook ()

Sets a default hook routine which
is executed before a task starts.

OS_TASK_Set | niti al SuspendCnt ()

Sets the initial suspend count for
newly created tasks to 1 or O.

OS_TASK_ Set Name()

Set the specified task name for
the specified task.

OS _TASK SetPriority()

Assigns the specified task priority
to the specified task.

OS_TASK_Set Ti meSli ce()

Assigns the specified time-slice
period to a specified task.

OS_TASK_Suspend()

Suspends the specified task and
increments the task’s suspend
count.

OS_TASK SuspendAl | ()

Suspends all tasks except the run-
ning task.

OS_TASK Term nat e()

Ends (terminates) the specified
task.

0S_TASK_Wake()

Ends delay of the specified task
immediately.

OS_TASK_Yi el d()

Calls the scheduler to force a task
switch.

© 1995-2025 SEGGER Microcontroller GmbH

67 CHAPTER 3 API functions

3.4.1 OS_TASK_ AddContextExtension()

Description

Adds the specified task context extension. The task context can be extended with
OS_TASK_ Set Cont ext Ext ensi on() only once. Additional task context extensions can be
added with OS_TASK AddCont ext Ext ensi on() . OS_TASK_AddCont ext Ext ensi on() can al-
so be called for the first task context extension.

The function OS_TASK AddCont ext Ext ensi on() requires an additional parameter of type
OS_EXTEND_TASK_ CONTEXT_LI NK which is used to create a task specific linked list of task
context extensions.

Prototype

voi d OS_TASK_AddCont ext Ext ensi on
(OS_EXTEND_TASK_CONTEXT_LI NK* pExt endCont ext Li nk,

OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExt endCont ext) ;
Parameters
Parameter Description
pExt endCont ext Li nk Pointer to the OS_EXTEND TASK CONTEXT LI NK structure.

Pointer to the OS_EXTEND TASK CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

pExt endCont ext

Additional information

The object of type OS_EXTEND_TASK_CONTEXT_LI NK is task specific and must only be used
for one task. It can be located e.g. on the task stack. pExt endCont ext , pExt endCont ext -
>pf Save and pExt endCont ext ->pf Rest or e must not be NULL.

Note

embOS interrupts must not be enabled in the save and restore functions.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

116: OS_ERR_EXTEND_CONTEXT
128: OS_ERR | NV_TASK

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_| N_MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

static void HPTask(void) {
0S_EXTEND_TASK_CONTEXT_LI NK p;
;; Extend task context by VFP registers
%_TASK_Set Cont ext Ext ensi on(& SaveRest or eVFP) ;
;; Extend task context by gl obal variable
11

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

68 CHAPTER 3

API functions

OS_TASK_AddCont ext Ext ensi on(&p, & SaveRestored obal Var);

a=12;
while (1) {
b =3*%* g
d obal Var = 1;
OS_TASK Del ay(10);
}

}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

69 CHAPTER 3 API functions

3.4.2 OS TASK_AddTerminateHook()

Description

Adds the specified hook (callback) routine to the list of routines which are called when a
task is terminated.

Prototype

voi d OS_TASK_AddTer nmi nat eHook(OS_ON_TERM NATE_HOOK* pHook,
OS_ROUTI NE_TASK_PTR* pf Routi ne);

Parameters
Parameter Description
Pointer to a variable of type OS_ON _TERM NATE_HOOK which
pHook will be inserted into the linked list of routines to be called
during GS_TASK Terni nate().
f Rout i ne Pointer to the routine of type OS_ROUTI NE_TASK PTR which
P shall be called when a task is terminated.

Additional information

For some applications, it may be useful to allocate memory or objects specific to tasks. For
other applications, it may be useful to have task-specific information on the stack. When a
task is terminated, the task-specific objects may become invalid. A callback routine may be
hooked into OS_TASK Ter m nat e() by calling OS_TASK AddTer m nat eHook() to allow the
application to invalidate all task-specific objects before the task is terminated.

The callback routine pf Routi ne of type OS _ROUTI NE_TASK PTR receives the address of
the terminated task as its parameter (see description in chapter Callback / Hook routines
on page 44).

Note

The variable of type OS_ON TERM NATE_HOOK must reside in memory as a global or
static variable. It may be located on a task stack, as local variable, but it must not be
located on any stack of any task that might be terminated.

If a task terminates itself, its task control block and task stack are still used until the
scheduler switches to another task or OS | dl e() . You must not use the task control
block or task stack for anything else before the scheduler was executed. For example
you must not free the task control block or task stack in the hook routine when using
heap memory for the task control block or task stack.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

OS_ON_TERM NATE_HOOK _Ter ni nat eHook;

voi d Term nat eHookFunc(OS_CONST_PTR OS_TASK* pTask) ({
/1 This function is executed upon calling OS TASK Term nate().
if (pTask == &WTask) {

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

70 CHAPTER 3 API functions

free(MtaskBuffer);

}
}

int main(void) {
OS_TASK_AddTer m nat eHook(& Ter mi nat eHook, Ter m nat eHookFunc);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

71

CHAPTER 3 API functions

3.4.3 0OS TASK Create()

Description

Creates a new task.

Prototype
voi d OS_TASK Creat ¢(OS_TASK* pTask,
const char* sNane,
CS_TASK_PRI O Priority,
OS_ROUTI NE_VA D* pf Routi ne,
voi d 0S_STACKPTR *pSt ack,
CS_UI NT St ackSi ze,
CS_UI NT Ti meSlice);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.
Pointer to the name of the task. Can be NULL if not used.
SName embOS does not copy the task name, but uses the pointer
exclusively. When using an embOS build without task name
support, this parameter is ignored.
Priority of the task. Must be within the following range:
1 <Priority <28-1 = 0xFF for 8/16-bit CPUs.
Priority 1 <Priority <232 -1 = OxFFFFFFFF for 32-bit CPUs.
Higher values indicate higher priorities. The type
OS_TASK PRI Ois defined as a 32-bit value for 32-bit CPUs
and as an 8-bit value for 8 or 16-bit CPUs by default.
. Pointer to the routine of type OS ROUTI NE_ VO D that shall
pf Rout i ne

run as the task body.

Pointer to an area of memory in RAM that will serve as stack
pSt ack area for the task. The size of this block of memory deter-
mines the size of the stack area.

St ackSi ze Size of stack in bytes.

Time slice value for round-robin scheduling. Has an effect
only if other tasks are running at the same priority. It de-
notes the time (in embOS system ticks) that the task will
run before it suspends, and must be in the following range:
O <TineSlice < 255. ATineSlice value of zero is allowed
and disables round-robin task switches (see sample in chap-
ter Disabling preemptive task switches for tasks of equal pri-

TimeSlice

ority on page 62).

Additional information

OS TASK Create() creates a task and makes it ready for execution. The newly created
task will be activated by the scheduler as soon as there is no other task with higher priority
ready for execution.

OS _TASK Create() can be called either from main() during initialization or from any other
task. The recommended strategy is to create all tasks during initialization in main() to keep
the structure of your application easy to maintain.

The absolute value of Priority is of no importance, only the value in comparison to the
priorities of other tasks matters. If there is another task with the same priority, the new
task will be scheduled prior to the existing one.

In embOS builds that do not support round-robin, unique priorities must be assigned to
each individual task.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

72

The

CHAPTER 3 API functions

stack indicated by pSt ack must reside in an area that the CPU can address as stack.

Most CPUs cannot use the entire memory area as stack and require the stack to be aligned
to a multiple of the processor word size.

Note

With embOS-MPU OS_MPU_Confi gMen() must be called before creating any task.

Note

Up until embOS V5.8.2, OS TASK Create() expected the task name and time-
slice parameters to be omitted in GS LI BMODE XR. From embQS V5.10.0 onward,
OS5 _TASK Creat e() expects all parameters to be present independent of the library
mode. This means existing applications which call OS_TASK Creat e() in OS_LI BMOD-
E_XR need to be updated accordingly.

Note

embOS offers a macro that calls 05 TASK Cr eat e() with two pre-defined parameters,
OS_TASK CREATE(), allowing to more easily create tasks. OS TASK CREATE() deter-
mines the value of St ackSi ze automatically using si zeof () . This is possible only if
the memory area has been defined at compile time. Furthermore, OS_TASK_CREATE()
uses a default Ti neSl i ce of 2. If the macro shall be used, its definition is as follows:

#define OS_TASK_CREATE(pTask, pName, Priority, pRoutine, pStack) \
OS_TASK Create((pTask), \

(pName), \

(CS_PRIOQ (Priority), \

(pRoutine), \

(voi d OS_STACKPTR*) (pSt ack), \

si zeof (pStack), \

2u \

)

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

120:
160:
161:
165:
167:
170:
202:

0S_ERR TASK_STACK
0S_ERR | LLEGAL_I N_I SR
0S_ERR | LLEGAL_I N_TI MER
OS_ERR | NI T_NOT_CALLED
0S_ERR CPU STATE_ | LLEGAL
0S_ERR 2USE_TASK

0S_ERR TASK_PRI ORI TY

For details, refer to the chapter Runtime application errors on page 458.

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control bl ocks

static void HPTask(void) {
while (1) {

}

0S_TASK_Del ay(50) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

73 CHAPTER 3 API functions

}
static void LPTask(void) {
while (1) {
OS_TASK Del ay(200);
}
}
int main(void) {
CS Init(); /[l Initialize enbCS
OS I nitHW); /1 Initialize required hardware

OS_TASK Creat e(&TCBHP, "HP Task",
OS_TASK_CREATE(&TCBLP, "LP Task",
CS Start(); /1 Start enbOS
return O;

UMO01001 User Guide & Reference Manual for embOS

100, HPTask, StackHP, sizeof (StackHP), 2);
50, LPTask, StackLP);

© 1995-2025 SEGGER Microcontroller GmbH

74

CHAPTER 3 API functions

3.4.4 OS_TASK_ CreateEx()

Description

Creates a new task and passes a parameter to the task.

Prototype
voi d OS_TASK_Cr eat eEx(OS_TASK* pTask,
const char* sNane,
CS_TASK_PRI O Priority,
OS_ROUTI NE_VO D_PTR* pf Routi ne,
voi d OS_STACKPTR *pSt ack,
CS_UI NT St ackSi ze,
CS_UI NT Ti meSli ce,
voi d* pCont ext) ;
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.
Pointer to the name of the task. Can be NULL if not used.
SName embOS does not copy the task name, but uses the pointer
exclusively. When using an embOS build without task name
support, this parameter is ignored.
Priority of the task. Must be within the following range:
1 <Priority <28-1 = 0xFF for 8/16-bit CPUs.
Priority 1 <Priority <232 -1 = OxFFFFFFFF for 32-bit CPUs.
Higher values indicate higher priorities. The type
OS_TASK_PRI Ois defined as a 32-bit value for 32-bit CPUs
and as an 8-bit value for 8 or 16-bit CPUs by default.
f Rout i ne Pointer to the routine of type OS _ROUTI NE_ VO D PTR that
P shall run as the task body.
Pointer to an area of memory in RAM that will serve as stack
pSt ack area for the task. The size of this block of memory deter-
mines the size of the stack area.
St ackSi ze Size of stack in bytes.
Time slice value for round-robin scheduling. Has an effect
only if other tasks are running at the same priority. It de-
notes the time (in embOS system ticks) that the task will
Ti mesl i ce run before it suspends, and must be in the following range:
0 <TineSlice < 255. ATinmeSlice value of zero is allowed
and disables round-robin task switches (see sample in chap-
ter Disabling preemptive task switches for tasks of equal pri-
ority on page 62).
pCont ext Parameter passed to the created task.

Additional information

This function works the same way as OS_TASK Creat e(), but allows passing a parameter,
pCont ext , to the task. Using a voi d pointer as additional parameter gives the flexibility to
pass any kind of data to the task function.

OS_TASK Creat eEx() creates a task and makes it ready for execution. The newly created
task will be activated by the scheduler as soon as there is no other task with higher priority
ready for execution.

0OS_TASK Creat eEx() can be called either from main() during initialization or from any
other task. The recommended strategy is to create all tasks during initialization in main()
to keep the structure of your application easy to maintain.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

75

CHAPTER 3 API functions

The absolute value of Priority is of no importance, only the value in comparison to the
priorities of other tasks matters. If there is another task with the same priority, the new
task will be scheduled prior to the existing one.

In embQOS builds that do not support round-robin, unique priorities must be assigned to
each individual task.

The stack indicated by pSt ack must reside in an area that the CPU can address as stack.
Most CPUs cannot use the entire memory area as stack and require the stack to be aligned
to a multiple of the processor word size.

Note

With embOS-MPU OS MPU _Confi gMen() must be called before creating any task.

Note

Up until embOS V5.8.2, OS _TASK Creat eEx() expected the task name and time-
slice parameters to be omitted in GS LI BMODE XR. From embQOS V5.10.0 onward,
OS5 _TASK Creat eEx() expects all parameters to be present independent of the library
mode. This means existing applications which call OS_TASK Creat eEx() in OS_LI B-
MODE_XR need to be updated accordingly.

Note

embOS offers a macro that calls OS TASK Creat eEx() with two pre-defined para-
meters, OS TASK CREATEEX(), allowing to more easily create tasks. OS TASK CRE-
ATEEX() determines the value of St ackSi ze automatically using si zeof (). This is
possible only if the memory area has been defined at compile time. Furthermore,
OS5 _TASK CREATEEX() uses a default Ti neSli ce of 2. If the macro shall be used, its
definition is as follows:

#define OS_TASK_CREATEEX(pTask, pName, Priority, pRoutine, pStack, pContext)
OS_TASK Creat eEx((pTask),

(pNane),

(CS_PRIOQ (Priority),

(pRouti ne),

(voi d OS_STACKPTR*) (pSt ack),

si zeof (pSt ack),

2u,

(pCont ext)

)

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

120: OS_ERR TASK_STACK

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
165: OS_ERR | NI T_NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL
170: OS_ERR 2USE_TASK

202: OS_ERR TASK PRI ORI TY

For details, refer to the chapter Runtime application errors on page 458.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

76 CHAPTER 3

Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]
stati c OS_TASK TCBHP, TCBLP;

static void Task(void* pContext) ({

while (1) {
OS_TASK Del ay((i nt) pContext);
}
}
int main(void) {
CS Init(); /'l Initialize enbOS
Cs InitHW); /1 Initialize required hardware

OS_TASK Creat eEx(&TCBHP, "HP Task", 100, Task,

API functions

/] Task stacks

/1 Task control bl ocks

St ackHP, sizeof (StackHP), 2, (void*) 50);

OS_TASK_CREATEEX(&TCBLP, "LP Task", 50, Task,
St ackLP, (void*)200);

CS Start(); /1 Start enmbOS

return O;

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

77 CHAPTER 3 API functions

3.45 OS_TASK_Delay()

Description

Suspends the calling task for a specified amount of system ticks, or waits actively when
called from main().

Prototype

voi d OS_TASK Del ay(OS _TIME t);

Parameters

Parameter Description

Number of system ticks to delay. Must be within the follow-
ing range:

t 0 <t < 215-1 = 0x7FFF for 8/16-bit CPUs.
0 <t < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.
Please note that these are signed values.

Additional information

The parameter t specifies the time interval in system ticks during which the task is sus-
pended. The actual delay will be in the following range: t - 1 < delay < t, depending on
when the interrupt for the scheduler occurs. After the expiration of the delay, the task is
made ready and activated according to the rules of the scheduler. A delay can be ended
prematurely by another task or by an interrupt handler calling 05 TASK Wake() .

If OS_TASK Del ay() is called from main(), it will actively wait for the timeout to expire.
Therefore, interrupts must be enabled.

Note

Up until embOS V4.40 and when called within a critical region, OS_TASK Del ay()
actively waits for the timeout to expire.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

154: OS_ERR_| NTERRUPT DI SABLED
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Hel | o(void) {
printf("Hello");
printf("No output will occur for the next 5000 systemticks.\n");
0S_TASK_Del ay(5000) ;
printf("Delay is over.\n");

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

78 CHAPTER 3 API functions

3.4.6 OS_TASK_DelayUntil()

Description

Suspends the calling task until a specified time, or waits actively when called from main().

Prototype
voi d OS_TASK Del ayUntil (OS_TIME t);
Parameters
Parameter Description
Specified time. Must be within the following range:
(t - OS_d obal . Tine) < 215 - 1 = 0x7FFF for 8/16-bit CPUs.
t (t - OS_dobal . Tine) < 231 - 1 = Ox7FFFFFFF for 32-bit
CPUs.
Please note that these are signed values.

Additional information

OS_TASK Del ayUntil () suspends the calling task until the global time-variable OS_Q ob-
al . Ti ne (see OS_d obal . Ti ne on page 591) reaches the specified value. If the specified
value is already in the past, OS_TASK Del ayUnti | () returns immediately. The main advan-
tage of this function is that it avoids potentially accumulating delays. The additional condi-
tion towards parameter t ensures proper behavior even when an overflow of the embOS
system tick timer occurs.

If 08 TASK Del ayuUntil () is called from main(), it will actively wait for the timeout to
expire. Therefore, interrupts must be enabled.

Note

Up until embOS V4.40 and when called within a critical region, OS_TASK Del ayUnti | ()
actively waits for the timeout to expire.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

154: OS_ERR_| NTERRUPT DI SABLED
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

int sec, mn;

voi d TaskShowTi me(voi d) {

OS_TIME tO:

t0 = OS_TI ME_Get Ticks();

while (1) {
ShowTi me(); // Routine to display tinme
t0 += 1000u;

OS_TASK Del ayUntil (t0);
if (sec < 59) {

sec++;
} else {

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

79 CHAPTER 3 API functions

sec = 0;
m n++;
}
}
}

If the example above used OS_TASK Del ay() instead of OS_TASK Del ayUnti | (), this could
lead to accumulating overhead between delays if OS_TASK Del ay() is not called exactly
each second (which may e.g. happen if interrupts or higher priority tasks are executed
instead). This would cause the simple “clock” to be slow. Using OS TASK Del ayUnti |l ()
avoids this accumulating overhead.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

80 CHAPTER 3 API functions

3.47 OS TASK Delay us()

Description

Actively waits for the given time (in microseconds) to expire.

Prototype
voi d OS_TASK Del ay_us(0S_Ul6 us);
Parameters
Parameter Description
Minimum number of microseconds to wait. Must be within
Us the following range:
1 <us < 215-1 = Ox7FFF.
Please note that these are sighed values.

Additional information

This function can be used for short delays. OS_ TASK Del ay_us() must only be called with
interrupts enabled and after OS_I ni t () and GS_TI ME_Conf i gSysTi ner () have been called.
Furthermore, the embQOS system tick timer must be running.

OS _TASK Del ay_us() does not suspend the calling task, thus all tasks with lower priority
cannot be scheduled while the calling tasks executes OS_TASK_Del ay_us() .

OS _TASK Del ay_us() does not block preemptive task switches and does not disable inter-
rupts, which may extend the configured delay period for potentially unlimited periods of
time. Furthermore, returning from OS_TASK Del ay_us() adds some overhead to the con-
figured delay period. For these reasons, the actual delay period may not necessarily be
exact and the function guarantees a minimum delay only.

Note

For embOS V5.06 and later OS_TI ME_Conf i gSysTi ner () must be called before calling
OS_TASK Del ay_us() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

158: OS_ERR DELAYUS_| NTERRUPT DI SABLED
160: OS_ERR | LLEGAL_ I N_I SR

161: OS_ERR | LLEGAL_I N_TI MER

167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

void Hel lo(void) {
printf("Hello");
printf("The next output will occur in 500 m croseconds.\n");
OS_TASK Del ay_us(500);
printf("Delay is over.\n");
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

81

CHAPTER 3 API functions

3.4.8 OS_TASK_GetID()

Description

Returns a pointer to the task control block structure of the currently scheduled task. This
pointer is unique for the task and is used as a task Id.

Prototype

0S_TASK *0S_TASK_Get | D(voi d) ;
Return value

= NULL No task is executing.
NULL Pointer to the task control block of the currently running task.

Additional information

When called from a task, this function may be used for determining which task is currently
executing. This can be helpful if the action(s) of a function depend(s) on which task is
executing it.

If called from an interrupt service routine, this function may be used to determine the
interrupted task (if any).

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

voi d PrintCurrent Taskl D(voi d) {
OS_TASK* pTask;
pTask = OS_TASK Getl D();
printf("Task ID Ox%\n", pTask);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

82

CHAPTER 3 API functions

3.49 O0OS TASK GetName()

Description

Returns a pointer to the name of the specified task.

Prototype
char *OS_TASK_Get Nane(OS_CONST_PTR OS_TASK *pTask);
Parameters
Parameter Description
Task Pointer to a task control block of type GS_TASK or NULL for
P the current task.

Return value

A pointer to the name of the task. NULL indicates that the task has no name. If NULL is
passed for pTask, the function returns the name of the running task. If there is no currently
running task, the return value is "OS_I| dl e() ”. If pTask is not NULL it must specify a valid
task.

When using an embOS build without task name support, OS_ TASK Get Nane() returns “n/
a” in any case. The embOS GS LI BMODE_XR library mode does not support task names.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

voi d Print TaskName(void) ({
char* s;
s = OS_TASK_Get Narme(NULL) ;
printf("Task name: %\n", s);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

83 CHAPTER 3 API functions

3.4.10 OS_TASK GetNumTasks()

Description

Returns the number of tasks.

Prototype

i nt OS_TASK_ Get NunTasks(voi d);

Return value

Number of tasks.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

voi d Print Nunber O Tasks(void) ({
i nt NunTasks;
NunmTasks = OS_TASK_ Get NunTasks();
printf("Nunber of tasks %\ n", NunTasks);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

84

CHAPTER 3 API functions

3.4.11 OS _TASK_ GetPriority()

Description
Returns the task priority of the specified task.

Prototype
OS_TASK_PRI O OS_TASK Get Priority(OS_CONST_PTR OS_TASK *pTask);
Parameters
Parameter Description
Pointer to a task control block of type GS_TASK or NULL for
pTask
the current task.

Return value

Priority of the specified task (range 1 to 255 for 8/16-bit CPUs and up to 4294967295 for
32-bit CPUs).

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR_| NV_TASK
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

void PrintPriority(const OS TASK* pTask) {

CS PRIO Prio;

Prio = OS TASK GetPriority(pTask);

printf("Priority of task Ox% = %\ n", pTask, Prio);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

85

CHAPTER 3 API functions

3.4.12 OS_TASK_ GetStatus()

Description

Returns the current task status of the the specified task.

Prototype
0S_TASK_STATUS OS_TASK_Get St at us(OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
Pointer to a task control block of type GS_TASK or NULL for
pTask
the current task.

Return value
Task status.

Possible return values are:
READY_FOR_EXECUTI ON

DELAYED

WAI TS_FOR_TASKEVENT

WAl TS_FOR_TASKEVENT W TH_TI MEOUT

WAI TS_FOR_MUTEX

WAI TS_FOR_MUTEX_W TH_TI MEQUT

WAI TS_FOR_COVMUNI CATI ON

WAl TS_FOR_SEMAPHORE

WAl TS_FOR_SEMAPHORE_W TH_TI MEOUT

WAl TS_FOR_MEMPOOL

WAI TS_FOR_MEMPOOL_W TH_TI MEOUT

WAI TS_FOR_MESSAGE_| N QUEUE

WAI TS_FOR_MESSAGE | N QUEUE_W TH_TI MEQUT
WAI TS_FOR_SPACE_| N_NAI LBOX

WAI TS_FOR_SPACE_| N_MAI LBOX_W TH_TI MEQUT
WAI TS_FOR_MESSAGE_| N_MAI LBOX

WAI TS_FOR_MESSAGE_| N_MAI LBOX_W TH_TI MEOUT
WAl TS_FOR_EVENTOBJECT

WAl TS_FOR_EVENTOBJECT W TH_TI MEOUT

WAI TS_FOR_SPACE_| N_QUEUE

WAI TS_FOR_SPACE_| N QUEUE_W TH_TI MEQUT
WAI TS_FOR_MULI TPLE_OBJECTS

WAI TS_FOR_MULI TPLE_OBJECTS W TH_TI MEOUT
RUNNI NG

SUSPENDED

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR_| NV_TASK
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

86 CHAPTER 3 API functions

Example

void PrintTaskStatus(void) {
OS_TASK STATUS st at us;

status = OS_TASK Cet St at us(&TCB) ;
printf("Task status: %\ n", status);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

87

CHAPTER 3 API functions

3.4.13 OS_TASK GetSuspendCnt()

Description

Returns the suspension count and thus suspension state of the specified task. This function
may be used to examine whether a task is suspended by previous calls of OS_TASK_ Sus-
pend() .

Prototype
0S_U8 OS_TASK_Get SuspendCnt (OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
Pointer to a task control block of type GS_TASK or NULL for
pTask
the current task.

Return value
Suspension count of the specified task.

=0 Task is not suspended.
>0 Task is suspended by at least one call of GS_TASK_Suspend() .

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR | NV_TASK
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d ResunmeTask(OS_TASK* pTask) {
OS_U8 SuspendCnt;
SuspendCnt = OS_TASK_Get SuspendCnt (pTask) ;
whil e (SuspendCnt > 0u) {
OS_TASK Resune(pTask); // May cause a task switch
SuspendCnt - - ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

88

CHAPTER 3 API functions

3.4.14 OS_TASK_ GetTimeSliceRem()

Description

Returns the remaining time slice value of the specified task in system ticks.

Prototype
0S_U8 OS_TASK Get Ti neSl i ceRem(OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
Pointer to a task control block of type GS_TASK or NULL for
pTask
the current task.

Return value

Remaining time slice value of the task in system ticks.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

The return value is valid only when using an embQOS build with round-robin support. In all
other builds it will be 0. The embOS GS_LI BMODE_XR library mode does not support round-
robin.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR_| NV_TASK
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Print Remai ni ngTi neSlices(void) {
CS_U8 slices;

slices = OS _TASK Get Ti neSli ceRen(NULL) ;
printf("Remaining Tine Slices: %\ n", slices);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

89

CHAPTER 3 API functions

3.4.15 OS_TASK_IsTask()

Description

Determines whether the specified task control block belongs to a valid task.

Prototype
OS_BOOL OS_TASK | sTask(OS_CONST_PTR OS_TASK *pTask);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Return value

=0 TCB is not used by any task.
=0 TCB is used by a task.

Additional information

This function checks if the specified task is present in the internal task list. When a task is
terminated it is removed from the internal task list. In applications that create and terminate
tasks dynamically, this function may be useful to determine whether the task control block
and stack for one task may be reused for another task.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR | NV_TASK
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

voi d Print TCBSt at us(OS_TASK* pTask) ({
Cs_BOOL b;

b = OS_TASK | sTask(pTask);
if (b == 0u) {
printf("TCB can be reused for another task.\n");
} else {
printf("TCB refers to a valid task.\n");
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

90 CHAPTER 3 API functions

3.4.16 OS_TASK_Index2Ptr()

Description

Returns the task control block of the task with the specified Index.

Prototype
OS_TASK *OS_TASK_I ndex2Ptr (i nt Taskl ndex);

Parameters

Parameter Description

Index of a task control block in the task list.
Taskl ndex This is a zero based index. Taskl ndex O identifies the first
task control block.

Return value

= NULL No task control block with this index found.
NULL Pointer to the task control block with the index Taskl ndex.

Additional information

The order of the tasks in the task list is not defined by the order of task creation and
changes at runtime. Tasks are ordered in the task list by their task priority. Therefore
OS_TASK | ndex2Ptr () is usually used only to iterate through the complete task list (e.g.
to print all task names).

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR | NV_TASK
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

voi d PrintAll TaskNanes(void) {
OS_TASK* pTask;
i nt Taskl ndex;

Taskl ndex = O;
OS_TASK_Ent er Regi on() ;
do {
pTask = OS_TASK | ndex2Ptr (Taskl ndex) ;
if (pTask != NULL) {
printf("%\n", pTask->sNane);
}
Taskl ndex++;
} while (pTask !'= NULL);
OS_TASK LeaveRegi on();

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

91

CHAPTER 3 API functions

3.4.17 OS_TASK_RemoveAllTerminateHooks()

Description

Removes all hook functions from the 0§ _ON_TERM NATE_HOX list which contains the list of
functions that are called when a task is terminated.

Prototype

voi d OS_TASK_RenoveAl | Ter m nat eHooks(voi d);

Additional information

OS_TASK _RenoveAl | Ter mi nat eHooks() removes all hook functions which were previously
added by OS_TASK_AddTer mi nat eHook() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR_CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

OS_ON_TERM NATE_HOOK _Ter mi nat eHook;

voi d Term nat eHookFunc(OS_CONST_PTR OS_TASK* pTask) ({
/'l This function is called when OS_TASK Terminate() is called.
if (pTask == &WTask) {
free(MtaskBuffer);
}

}

int mai n(void) {
OS_TASK_AddTer m nat eHook(& Ter mi nat eHook, Ter m nat eHookFunc) ;
OS_TASK _RenoveAl | Ter m nat eHooks() ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

92

CHAPTER 3 API functions

3.4.18 OS_TASK_ RemoveTerminateHook()

Description

OS_TASK RenpveTer m nat eHook() removes the specified hook function from the
OS_ON TERM NATE_HOXK list which contains the list of functions that are called when a task
is terminated.

Prototype
voi d OS_TASK_RenoveTer n nat eHook(OS_CONST_PTR OS_ON_TERM NATE_HOCK * pHook) ;
Parameters
Parameter Description
pHook Pointer to a variable of type OS_ON _TERM NATE_HOCK.

Additional information

OS_TASK RenpveTer m nat eHook() removes the specified hook routine which was previous-
ly added by OS_TASK AddTer mi nat eHook() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

OS_ON _TERM NATE_HOOK _Ter mi nat eHook;

voi d Terni nat eHookFunc(OS_CONST_PTR OS_TASK* pTask) {
/1 This function is called when OS_TASK Term nate() is called.
if (pTask == &WTask) {
free(MtaskBuffer);
}
}

int main(void) {
OS_TASK_AddTer m nat eHook(& Ter mi nat eHook, Ter m nat eHookFunc) ;
OS_TASK _RenpveTer ni nat eHook(& Ter mi nat eHook) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

93 CHAPTER 3 API functions

3.4.19 OS_TASK Resume()

Description

Resumes the specified suspended task.

Prototype
voi d OS_TASK Resune(OS_TASK* pTask);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Additional information

OS_TASK Resune() decrements the specified task’s suspend count. When the resulting val-
ue is zero, the execution of the specified task is resumed.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR | NV_TASK

161: OS_ERR | LLEGAL_I N_TI MER

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

201: OS_ERR RESUME_BEFORE_SUSPEND

For details, refer to the chapter Runtime application errors on page 458.

Example
Please refer to the example of OS_TASK_Suspend() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

94

CHAPTER 3 API functions

3.4.20 OS_TASK_ResumeAll()

Description

Decrements the suspend count of all tasks that have a nonzero suspend count and resumes
these tasks when their respective suspend count reaches zero.

Prototype

voi d OS_TASK ResuneAl | (voi d);

Additional information

This function may be helpful to synchronize or start multiple tasks at the same time. The
function resumes all tasks, no specific task must be addressed. The function may be used
together with the functions 08 _TASK SuspendAl | () and OS_TASK Set | niti al SuspendCn-
t().

The function may cause a task switch when a task with higher priority than the calling task
is resumed. The task switch will be executed after all suspended tasks are resumed.

The function may be called even when no task is suspended.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

161: OS_ERR | LLEGAL_I N_TI MER
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example
Please refer to the example of GS_TASK Set | ni ti al SuspendCnt ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

95

CHAPTER 3 API functions

3.4.21 OS _TASK_ SetContextExtension()

Description

Makes global variables or processor registers task-specific. The function may be used for
a variety of purposes. Typical applications are:

e Global variables such as “errno” in the C library, making the C-lib functions thread-safe.

e Additional, optional CPU / registers such as MAC / EMAC registers (multiply and
accumulate unit) if they are not saved in the task context per default.

e Coprocessor registers such as registers of a VFP (floating-point co-processor).

e Data registers of an additional hardware unit such as a CRC calculation unit.

This allows the user to extend the task context as required. A major advantage is that
the task extension is task-specific. This means that the additional information (such as
floating-point registers) needs to be saved only by tasks that actually use these registers.
The advantage is that the task switching time of other tasks is not affected. The same is
true for the required stack space: Additional stack space is required only for the tasks which
actually save the additional registers.

Prototype

voi d OS_TASK Set Cont ext Ext ensi on
(OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExt endCont ext);

Parameters

Parameter Description

Pointer to the OS_EXTEND TASK CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

pExt endCont ext

Additional information
The O5_EXTEND _TASK CONTEXT structure is defined as follows:

typedef struct OS_EXTEND_TASK_CONTEXT {
voi d* (*pfSave) (void* pStack);

voi d* (*pfRestore)(const voi d* pStack);
} OS_EXTEND_TASK_CONTEXT;

Note

In embOS V4.16 and earlier the 05 EXTEND TASK CONTEXT structure was defined as
follows:

typedef struct OS_EXTEND_TASK_CONTEXT_STRUCT {
void (*pfSave) (void OS_STACKPTR * pStack);

voi d (*pfRestore)(const void OS_STACKPTR * pStack);
} OS_EXTEND_TASK_CONTEXT;

The Save/Restore functions did not return the stack pointer. When updating from
embOS V4.16 and earlier to embOS V4.20 and later please update your Save/Restore
functions accordingly.

pExt endCont ext , pExt endCont ext ->pf Save and pExt endCont ext ->pf Rest ore must not
be NULL. The save and restore functions must be declared according the function type used
in the structure. The sample below shows how the task stack must be addressed to save
and restore the extended task context.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

96

CHAPTER 3 API functions

The embOS kernel pushes during the context switch the task context on the task stack.
The stack pointer value after the push operation is stored in the task control block and
passed to the Save routine. The Save routine pushes the extended task context data onto
the task stack. To do so it must reserve the necessary bytes on the task stack and return
the adjusted stack pointer. The adjusted stack pointer is used for the next task context
extension Save routine (if any).

The Restore routines are executed in the same order. For example task context extensions
A, B and C are used. When the kernel saves the task context the Save routines of task
context extensions A, B and C are called. When the kernel restores the task context the
Restore routines of the task context extensions A, B and C are called in the same order.

The embOS OS_LI BMODE_XR library mode does not support task context extension.

Note

The task context can be extended only once per task with OS TASK Set Cont ext Ex-
t ensi on(). The function must not be called multiple times for one task. Additional
task context extensions can be set with OS_TASK AddCont ext Ext ensi on() .

Note

embOS interrupts must not be enabled in the save and restore functions.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

116: OS_ERR_EXTEND_ CONTEXT
128: OS_ERR | NV_TASK

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL | N_MAI N

For details, refer to the chapter Runtime application errors on page 458.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

97

CHAPTER 3

Example

#i ncl ude "RTCS. h"

I

// Custom structure with task context extension.

API functions

/1 In this case, the extended task context consists of just

/1l a single menber, which is a global variable.

I
typedef struct {
int d obal Var;
} CONTEXT_EXTENSI ON;

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

static OS_TASK TCBHP, TCBLP;
static int d obal Var;

/'l Task control bl ocks

static void OS_STACKPTR* _Save(void OS_STACKPTR* pStack) {

CONTEXT_EXTENSI ON* p;

p = (CONTEXT_EXTENSI ON*) pSt ack;
#i f (OS_STACK _GROAN5_TOWARD HI GHER _ADDR ==
p++;
#el se
p--3
#endi f
p- >d obal Var = @ obal Var;
return (void OS_STACKPTR*) p;

}

1)

static void OS_STACKPTR* _Restore(const void OS_STACKPTR* pStack) ({

const CONTEXT_EXTENSI ON* p;

p = (CONTEXT_EXTENSI ON*) pSt ack;
#i f (OS_STACK _GROAN5_TOWARD HI GHER _ADDR ==
p++;
#el se
p--;
#endi f
d obal Var = p->d obal Var;
return (void OS_STACKPTR*) p;

}

const OS_EXTEND TASK CONTEXT _SaveRestore

1)

_Save, /1 Function pointer to save the task context
_Restore // Function pointer to restore the task context

¥

static void HPTask(void) {

OS_TASK_Set Cont ext Ext ensi on(& _SaveRestore);

d obal Var = 1;
while (1) {
OS_TASK Del ay(10);
}
}

static void LPTask(void) {

OS_TASK_ Set Cont ext Ext ensi on(& SaveRestore);

d obal Var = 2;

while (1) {
OS_TASK_Del ay(50);
}
}
int main(void) {
CS Init(); /'l Initialize enbOS
Cs InitHW); /1 Initialize required hardware

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

98 CHAPTER 3 API functions

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

99

CHAPTER 3 API functions

3.4.22 OS_TASK_ SetDefaultContextExtension()

Description

Sets the specified context extension as the default task context extension.

Prototype

voi d OS_TASK_Set Def aul t Cont ext Ext ensi on
(OS_CONST_PTR OS_EXTEND_TASK_CONTEXT *pExt endCont ext);

Parameters

Parameter Description

Pointer to the OS_EXTEND TASK CONTEXT structure which
contains the addresses of the specific save and restore func-
tions that save and restore the extended task context during
task switches.

pExt endCont ext

Additional information

After calling this function all newly started tasks will automatically use this context exten-
sion. The same task context extension is used for all tasks.

pExt endCont ext , pExt endCont ext ->pf Save and pExt endCont ext ->pf Rest ore must not
be NULL. An embOS debug build calls GS_Err or (OS_ERR _EXTEND CONTEXT) when one of the
function pointers is NULL).

Note

embOS interrupts must not be enabled in the save and restore functions.

Error codes

With embOQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

116: OS_ERR_EXTEND_CONTEXT
160: OS_ERR | LLEGAL_I N_I SR

161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

extern const OS_EXTEND _TASK_CONTEXT _SaveRest ore;

int main(void) {
OS_Init(); Il Initialize embOS
CS InitHW); I/ Initialize required hardware
OS_TASK_Set Def aul t Cont ext Ext ensi on(& _SaveRestore);
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbOS
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

100 CHAPTER 3 API functions

3.4.23 OS_TASK_SetDefaultStartHook()

Description

Sets a default hook routine which is executed before a task starts. May be used to perform
additional initialization for newly created tasks.

Prototype
voi d OS_TASK_Set Def aul t St art Hook(OS_ROUTI NE_VO D* pf Routi ne) ;
Parameters
Parameter Description
f Rout i ne Pointer to the routine of type OGS _ROUTI NE_VO D which shall
P be called when a task is started.

Additional information

After calling OS_TASK Set Def aul t St art Hook() all newly created tasks will automatically
call this hook routine when the tasks are started for the first time. The same hook routine
is used for all tasks. If NULL is passed no hook routine gets executed.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

void _HookRoutine(void) { // This routine is automatically executed before

DoSonet hi ng() ; /1 HPTask() gets executed
}
voi d HPTask(void) ({

while (1) {

OS_TASK_Del ay(10);

}
}
int main(void) {

CS Init(); /1 Initialize enbOS

CS InitHW); /'l Initialize required hardware

OS_TASK_ Set Def aul t St art Hook(_HookRoutine); // Set task start hook routine
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);

CS Start(); /1 Start enbCS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

101

CHAPTER 3 API functions

3.4.24 OS_TASK_ SetlnitialSuspendCnt()

Description

Sets the initial suspend count for newly created tasks to 1 or 0. May be used to create
tasks which are initially suspended.

Prototype
voi d OS_TASK Setlnitial SuspendCnt (0OS_U8 SuspendCnt);
Parameters
Parameter Description
SuspendCnt 1: Tasks will be created in suspended state.
P 0: Tasks will be created normally, unsuspended.

Additional information

Can be called at any time from main(), any task, ISR or software timer. After calling this
function with nonzero SuspendCnt, all newly created tasks will be automatically suspended
with a suspend count of one. This function may be used to inhibit further task switches,
which may be useful during system initialization.

Note

When this function is called from main() to initialize all tasks in suspended state, at
least one task must be resumed before the system is started by a call of 05 Start ().
The initial suspend count should be reset to allow normal creation of tasks before the
system is started.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

I
/'l Hgh priority task started first after OS_Start().
I
voi d I nitTask(void) {
OS_TASK_SuspendAl | ();
/'l Prevent execution of all other existing tasks.
OS_TASK Setlnitial SuspendCnt (1);
/'l Prevent execution of subsequently created tasks.
/1 New tasks may be created, but will not execute.
. /1l Even when |nitTask() blocks itself, no other task nay execute.
OS_TASK Setlnitial SuspendCnt (0); // Reset initial suspend count for new tasks.
OS_TASK _ResuneAl | ();
/'l Resunme all tasks that were bl ocked before or

/'l were created in suspended state. May cause a
/1 task switch.
while (1) {
/1 Do the normal work.
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

102

CHAPTER 3 API functions

3.4.25 OS_TASK SetName()

Description

Set the specified task name for the specified task. Allows modification of a task name at
runtime.

Prototype
voi d OS_TASK_Set Nane(OS_TASK* pTask,
const char* sNane) ;
Parameters
Parameter Description
pTask Pointer to a task control block of type GS_TASK or NULL for

the current task.

Pointer to a null-terminated string which is used as task
sNane name. embOS does not copy the task name, but uses the

pointer exclusively.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

When using an embOS build without task name support, OS_TASK Set Nane() performs no
modifications at all. The embOS OS_LI BMODE_XR library mode does not support task names.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR | NV_TASK
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Task(void) {
OS_TASK_Set Nane(NULL, "Initializer Task");
while (1) {
OS_TASK Del ay(100);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

103 CHAPTER 3 API functions

3.4.26 OS_TASK_ SetPriority()

Description
Assigns the specified task priority to the specified task.

Prototype
voi d OS_TASK SetPriority(OS_TASK* pTask,
OS_TASK _PRIO Priority);
Parameters
Parameter Description
Task Pointer to a task control block of type GS_TASK or NULL for

P the current task.
Priority of the task. Must be within the following range:
1 <Priority <28 -1 = OxFF for 8/16-bit CPUs.

Priority 1 <Priority <232 -1 = 0xFFFFFFFF for 32-bit CPUs.
Higher values indicate higher priorities. The type
OS_TASK PRI Ois defined as 32-bit value for 32-bit CPUs and
8-bit value for 8 or 16-bit CPUs per default.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call S Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Calling this function might lead to an immediate task switch.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Task(void) {
OS_TASK_Set Priority(NULL, 20); /'l Change priority of this task to 20.
while (1) {
OS_TASK_Del ay(100);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

104

CHAPTER 3 API functions

3.4.27 OS_TASK_ SetTimeSlice()

Description

Assigns the specified time-slice period to a specified task.

Prototype

O5_U8 Os_TASK Set Ti neSli ce(O5_TASK* pTask,
os_us TineSlice);

Parameters

Parameter Description

Pointer to a task control block of type GS_TASK or NULL for
the current task.

pTask

New time slice period for the task in system ticks. Must be
TineSlice within the following range:
0 <TineSlice < 255.

Return value

Previous time slice period of the task in system ticks.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call GS_Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Setting the time slice period only affects tasks running in round-robin mode. The new time
slice period is interpreted as a reload value: It is used with the next activation of the task,
but does does not affect the remaining time slice of a running task.

A time slice value of zero is allowed, but disables round-robin task switches (see Disabling
preemptive task switches for tasks of equal priority on page 62).

OS_TASK Set Ti neSl i ce() assigns a time-slice only when using an embOS build with round-
robin support. The return value is valid only when using an embOS build without round-
robin support. The embOS OS_LI BMODE_XR library mode does not support round-robin. In
all other builds it will be 0.

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

128: OS_ERR_| NV_TASK
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example
voi d Task(void) {
OS_TASK Set Ti neSli ce(NULL, 4); I/l Gve this task a higher tine slice
while (1) {
OS_TASK Del ay(100);
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

105

CHAPTER 3 API functions

3.4.28 OS_TASK Suspend()

Description

Suspends the specified task and increments the task’s suspend count.

Prototype
voi d OS_TASK_ Suspend(OS_TASK* pTask);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Execution of the specified task is suspended immediately and the task’s suspend count is
incremented. The task can only be restarted by a call of 0S_ TASK Resune() or OS_TASK Re-
sunmeAl | ().

Every task has a suspend count with a maximum value of 3, thus you must not call
OS_TASK Suspend() more often than the maximum value without calling OS TASK Re-
sunme() . OS_TASK Suspend() must not be called from an interrupt handler or software timer
as this function may cause an immediate task switch.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR | NV_TASK

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL
200: OS_ERR SUSPEND TOO OFTEN

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Hi ghPrioTask(void) {
OS_TASK_Suspend(NULL) ;
/'l Suspends itself, lowpriority task will be executed

}

voi d LowPri oTask(void) {
OS_TASK _Resune(&Hi ghPri oTCB); // Resunes the high priority task

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

106

CHAPTER 3 API functions

3.4.29 OS_TASK_SuspendAll()

Description

Suspends all tasks except the running task.

Prototype

voi d OS_TASK SuspendAl | (void);

Additional information

This function may be used to inhibit task switches. It may be useful during application
initialization or supervising.

The calling task will not be suspended.

After calling OS_TASK_SuspendAl | (), the calling task may block or suspend itself. No other
task will be activated unless one or more tasks are resumed again. The tasks may be re-
sumed individually by a call of OS_TASK Resune() or all at once by a call of CS_TASK Re-
suneAl | ().

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example
Please refer to the example of GS_TASK Set | ni ti al SuspendCnt ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

107

CHAPTER 3 API functions

3.4.30 OS_TASK Terminate()

Description

Ends (terminates) the specified task.

Prototype
voi d OS_TASK_ Ter ni nat e(OS_TASK* pTask);
Parameters
Parameter Description
Task Pointer to a task control block of type GS_TASK. A value of
P NULL terminates the current task.

Additional information

The specified task will terminate immediately. The memory used for the stack and the task
control block can be reassigned.

A task can terminate itself but cannot release the memory used for the stack and the task
control block because OS TASK Ter nmi nat e() will cause a task switch. Any code behind
OS_TASK Terni nat e() will not be executed.

All resources which are held by a task are released upon its termination. Any task may be
terminated regardless of its state.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR | NV_TASK

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Task(void) {
OS_TASK Termi nate(&TCBHP); // Term nate HPTask()
DoSonet hi ng() ;
OS_TASK Ter mi nat e(NULL) ; /1 Term nate itself

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

108 CHAPTER 3

3.4.31 OS_TASK_Wake()

Description

Ends delay of the specified task immediately.

API functions

Prototype
voi d OS_TASK Wake(OS_TASK* pTask);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.

Additional information

Places the specified task, which is already suspended for a certain amount of time by a call

of OS_TASK Del ay() or OS_TASK Del ayuntil (), back into the READY state.

The specified task will be activated immediately if it has a higher priority than the task that
had the highest priority before. If the specified task is not in the WAITING state (e.g. when
it has already been activated, or the delay has already expired, or for some other reason),

calling this function has no effect.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OGS _Error ()

being called with one of the following application error IDs:

128: OS_ERR | NV_TASK
161: OS_ERR | LLEGAL_I N_TI MER
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS _TASK TCBHP, TCBLP; /'l Task control

static void HPTask(void) {
while (1) {
OS_TASK_Del ay(50);
}
}

static void LPTask(void) {
while (1) {
OS_TASK_Del ay(10);
OS_TASK Wake(&TCBHP); // Wake HPTask() which is in delay state
}
}

/***

*

* mai n()
*/
int main(void) {
CS Init(); /1 Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);

bl ocks

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

109 CHAPTER 3 API functions

CS Start(); /1 Start enbOS
return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

110

CHAPTER 3 API functions

3.4.32 OS_TASK_Yield()

Description

Calls the scheduler to force a task switch.

Prototype

void OS_TASK Yiel d(void);

Additional information

If the task is running on round-robin, it will be suspended if there is another task with equal
priority ready for execution.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR_| NV_TASK
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR_CPU_STATE_ | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

#i ncl ude "RTGCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

static OS_TASK TCBHP, TCBLP; /'l Task control bl ocks
static void HPTask(void) {
while (1) {
DoSonet hi ng() ;
}
}
static void LPTask(void) {
while (1) {
DoSonet hi ngEl se();
11
/1 This task doesn't need the conplete tine slice.
/'l Gve another task with the sane priority the chance to run
11
OS_TASK Yield();
}
}

/***

*

* mai n()
*/
int mai n(void) {
CS Init(); /[l Initialize enbQCS
OS_Ini t HW() ; /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 100, LPTask, StackLP);
CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 4

Software Timer

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

CHAPTER 4 Introduction

Introduction

A software timer is an object that calls a user-specified routine after a specified delay. An
unlimited number of software timers can be created.

embOS software timers can be stopped, started and re-triggered much like hardware
timers. When defining a timer, you specify a routine to be called after the expiration of the
delay. Timer routines are similar to interrupt routines: they have a priority higher than the
priority of any task. For that reason they should be kept short just like interrupt routines.

Software timers are called by embQOS with interrupts enabled, so they can be interrupted
by any hardware interrupt. But software timers run to completion and cannot interrupt
each other or be interrupted by a preemptive task switch. Generally, software timer run
in single-shot mode, which means they expire exactly once and call their callback routine
exactly once. By calling OS_TI MER _Rest art () from within the callback routine, the timer is
restarted with its initial delay time and therefore functions as a periodic timer.

The state of timers can be checked by the functions OS_TI MER _Get St at us(), OS_TI MER _Ge-
t Remai ni ngPeri od() and OS_TI MER Get Peri od() .

Example

#i ncl ude "RTGCS. h"
#i ncl ude "BSP. h"

static OS_TIMER Tiner0, Tinerl,

static void Call backO(void) {
BSP_Toggl eLED 0) ;
OS_TI MER_Rest art (&Ti ner 0) ;
}

static void Call backl(void) {
BSP_Toggl eLED(1) ;
OS_TI MER _Restart (&Ti nerl);

}

int mai n(void) {
CS Init(); /[l Initialize enbCS
S InitHW); I/ Initialize required hardware
BSP_Init(); /1 Initialize LED ports

CS_TI MER _Creat e(&Ti ner 0, Cal | backO, 50u);
CS_TI MER St art (&Ti ner0) ;

CS_TI MER Create(&Tinerl, Callbackl, 200u);
CS_TIMER Start (&Tinerl);

CS start(); /1 Start enbOS

return O;

Extended software timers

Sometimes it may be useful to pass a parameter to the timer callback function. This allows
the callback function to be shared between different software timers. Since version 3.32m
of embOS, the extended timer structure and related extended timer functions were imple-
mented to allow parameter passing to the callback function. Except for the different call-
back function with parameter passing, extended timers behave exactly the same as regular
embQOS software timers and may be used in parallel with these.

Example

#i ncl ude "RTCS. h"
#i ncl ude "BSP. h"

static OS Tl MER EX Ti ner ExO, Ti ner Ex1;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

113 CHAPTER 4 Introduction

static void Call back(void* Led) {
BSP_Toggl eLED((i nt) Led);
CS_TI MER _Restart Ex(OS_TI MER_Get Current Ex());

}

int main(void) {
CS Init(); /[l Initialize enbQCS
OS_ I nitHW); /1 Initialize required hardware
BSP_Init(); /1 Initialize LED ports

CS_TI MER_Cr eat eEx_ns(&Ti ner Ex0, Cal | back, 50u, (void*)O0);
CS_TI MER_St ar t Ex(&Ti ner ExO0) ;

CS_TI MER_Cr eat eEx_ns(&Ti ner Ex1, Cal | back, 200u, (void*)1);
CS_TI MER_St ar t Ex(&Ti ner Ex1) ;

CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

114

CHAPTER 4 Introduction

Minimum timeout / period

Software timer periods elapse with the appropriate embOS system tick. This means that the
actual timeout period can actually be slightly shorter than the configured timeout period.
For example, if the system tick is configured to occur once every millisecond, and the timer
is configured for a timeout of 1, the actual timeout duration is somewhere between 0 and
1 millisecond.

The following diagram illustrates how software timer timeouts work. We can see that the
timer configuration is performed prior to the first system tick, that is: at system time 0.
The timeout period is configured to 5 system ticks, therefore the callback is called upon the
5th system tick. For example, if the the system ticks occurs at 1 millisecond, 2 millisecond,
(...), 5 millisecond, and the timer was started at 0.8 millisecond, the actual timer period
would equal 4.2 millisecond.

OS_TIMER_Create() Execution of timer routine

Sytem ticks

0 1 2 3 4 5 6

Maximum timeout / period

The timeout value is stored as an integer, thus a 16-bit value on 8/16-bit CPUs, a 32-bit
value on 32-bit CPUs. The comparisons are done as signed comparisons because expired
time-outs are permitted. This means that only 15 bits can be used on 8/16-bit CPUs, 31
bits on 32-bit CPUs. Another factor to take into account is the maximum time spent in
critical regions. Timers may expire during critical regions, but because the timer routine
cannot be called from a critical region (timers are “put on hold”), the maximum time that
the system continuously spends in a critical region needs to be deducted. In most systems,
this is no more than a single tick. However, to be safe, we have assumed that your system
spends no more than a maximum of 255 consecutive system ticks in a critical region and
defined a macro for the maximum timeout value. This macro, OS_TI MER_MAX_TI Mg, defaults
to Ox7F00 on 8/16-bit systems and to Ox7FFFFF0O0 on 32-bit Systems as defined in RTCS. h.
If your system spends more than 255 consecutive ticks in a critical section, effectively
disabling the scheduler during this time (which is not recommended), you must ensure
your application uses shorter timeouts.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

CHAPTER 4 API functions
4.2 APl functions

v|S 7))
312252
Routine Description 4 (< |2 4
S|e 4|03
28| |2

~

OS_TI MER Create()

Creates a software timer without starting
it.

OS_TI MER Creat eEx()

Creates an extended software timer with-
out starting it.

OS_TI MER Del et e()

Stops and deletes the specified software
timer.

OS_TI MER Del et eEx()

Stops and deletes an extended software
timer.

OS_TI MER Get Current ()

Returns a pointer to the software timer
object whose callback is currently execut-

ing.

OS_TI MER_Get Current Ex()

Returns a pointer to the data structure of
the extended software timer that just ex-
pired.

OS_TI MER_Get Peri od()

Returns the reload value of the specified
software timer.

OS_TI MER Get Per i odEx()

Returns the current reload value of an ex-
tended software timer.

OS_TI MER _Get Renai ni ng-
Peri od()

Returns the remaining timer value of the
specified software timer.

OS_TI MER Get Renai ni ng-
Per i odEx()

Returns the remaining timer value of an
extended software timer.

OS_TI MER_Cet St at us()

Returns the current timer status of the
specified software timer.

OS_TI MER Get St at usEx()

Returns the current timer status of an ex-
tended software timer.

OS TI MER Restart ()

Restarts the specified software timer with
its initial time value.

OS_TI MER _Rest art Ex()

Restarts an extended software timer with
its initial time value.

OS_TI MER_Set Peri od()

Sets a new timer reload value for the
specified software timer.

OS_TI MER _Set Peri odEx()

Sets a new timer reload value for an ex-
tended software timer.

OS_TIMER Start ()

Starts the specified software timer.

OS TI MER Start Ex()

Starts an extended software timer.

OS_TI MER_St op()

Stops the specified software timer.

OS_TI MER_St opEx()

Stops an extended software timer.

OS_TI MER Trigger ()

Ends the specified software timer at once
and calls the timer callback function.

OS_TI MER Tri gger Ex()

Ends an extended software timer at once
and calls the timer callback function.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

116 CHAPTER 4 API functions

4.2.1 OS_TIMER_ Create()

Description

Creates a software timer without starting it.

Prototype
void OS_TI MER Creat e(OS_TI MER* pTi ner,
OS_ROUTI NE_VA D* pf Ti ner Rout i ne,
oS _TI ME Peri od);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Pointer to the routine of type OS_ROUTI NE_VQO D which shall

pf Ti mer Rout i ne be called by the kernel after the timer period has expired.

Initial period in embOS system ticks.

The data type OS_TI ME is defined as an integer, therefore
Peri od valid values are:

1 < Period < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Period < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

Additional information

Once the period has expired, the callback routine will be called immediately (unless
the current task is in a critical region or has interrupts disabled). The timer is not
automatically started. This must be done explicitly by a call of OS TIMER Start() or
OS TIMER Restart().

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR OS_| NT_ENTER NOT_CALLED
165: OS_ERR | NI T_NOT_CALLED

167: OS_ERR CPU_STATE | LLEGAL

171: OS_ERR 2USE_TI MER

205: OS_ERR TI MER PERI OD | NVALI D

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_TI MER Ti mer;

static void Call back(void) {

BSP_Toggl eLED(0) ;

OS_TI MER Restart(&Tiner); // Make timer periodic
}
voi d | nitTask(void) {

OS_TI MER_Cr eat e(&Ti mer, Cal | back, 100u);

OS_TI MER_St art (&Ti mer) ;
}

Note

embOS offers a macro that calls the functions OS_TI MER Create() and CS_TI MER_S-
tart () sequentially, allowing to more easily create software timers. As the macro

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

117 CHAPTER 4 API functions

does “hide” the called functions, however, we typically suggest to call these functions
directly. If the macro shall still be used, its definition is as follows:

#defi ne OS_TI MER_CREATE(pTi mer, cb, Period) \
OS TI MER Create(pTinmer, ch, Period); \
OS TIMER Start (pTimer)

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

118

CHAPTER 4 API functions

4.2.2 OS_TIMER_CreateEx()

Description

Creates an extended software timer without starting it.

Prototype
void OS_TI MER Cr eat eEx(OS_TI MER_EX* pTi mer Ex,
OS_ROUTI NE_VA D_PTR* pf Ti mer Rout i ne,
S _TI ME Peri od,
voi d* pDat a) ;
Parameters
Parameter Description
. Pointer to an extended software timer object of type
pTI mer Ex oS TI MER_EX.
Pointer to the routine of type OS_ROUTI NE_VO D _PTR which
pf Ti mer Rout i ne shall be called by the kernel after the timer period has ex-
pired.

Initial period in embQOS system ticks.

The data type OS_TI ME is defined as an integer, therefore
Peri od valid values are:

1 < Period < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Period < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

A void pointer which is used as parameter for the extended
timer callback function.

pDat a

Additional information

Once the period is expired, the callback routine will be called immediately (unless the cur-
rent task is in a critical region or has interrupts disabled). The timer is not automatically
started. This must be done explicitly by a call of OS_TI MER_St art Ex() or OS_TI MER_Rest ar -
t BEx().

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
165: OS_ERR | NI T_NOT_CALLED

167: OS_ERR_CPU_STATE | LLEGAL

171: OS_ERR 2USE_TI MER

205: OS_ERR_TI MER_PERI OD_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_TI MER_EX Ti ner ExQ, Ti mer Ex1;

static void Call back(void* pData) {

BSP_Toggl eLED((i nt) pDat a) ;

OS TI MER Restart Ex(NULL); // Make tiner periodic
}

voi d I nitTask(void) {
CS_TI MER_Cr eat eEx(&Ti mer Ex0, Cal | back, 50u, (void*)O0);
CS_TI MER_Cr eat eEx(&Ti mer Ex1, Cal | back, 200u, (void*)1);
CS_TI MER_St ar t Ex(&Ti ner ExO0) ;

CS_TI MER_St art Ex(&Ti ner Ex1) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

119 CHAPTER 4 API functions

Note

embOS offers a macro that calls the functions OGS TIMER CreateEx() and
OS TI MER Start Ex() sequentially, allowing to more easily create extended software
timers. As the macro does “hide” the called functions, however, we typically suggest to
call these functions directly. If the macro shall still be used, its definition is as follows:

#defi ne OS_TI MER_CREATEEX(pTi ner, chb, Period, pData) \
OS_TI MER _Cr eat eEx(pTiner, cb, Period, pData); \
OS_TI MER St art Ex(pTi ner)

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

120 CHAPTER 4 API functions

4.2.3 OS_TIMER Delete()

Description

Stops and deletes the specified software timer.

Prototype
voi d OS_TI MER Del et e(OS_TI MER* pTi ner);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Additional information

The timer is stopped and therefore removed from the linked list of running timers.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_TI MER Ti ner;

voi d Task(void) {
Il
/'l Create and inplicitly start tiner
Il
OS_TI MER_Cr eat e(&Ti mer, Cal | back, 100u);
OS_TI MER_St art (&Ti nmer) ;
Il
/'l Delete tiner
Il
CS_TI MER_Del et e(&Ti ner) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

121 CHAPTER 4 API functions

4.2.4 OS_TIMER DeleteEx()

Description

Stops and deletes an extended software timer.

Prototype
voi d OS_TI MER Del et eEx(OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Additional information

The extended software timer is stopped and removed from the linked list of running timers.
In debug builds of embQS, the timer is also marked invalid.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS Tl MER EX Ti mer Ex;

voi d Task(void) {
/1
/l Create and start tiner
/1
OS_TI MER_Cr eat eEx(&Ti mer Ex, Cal | back, 100u, (void*)&TCB);
OS_TI MER_St ar t Ex(&Ti ner Ex) ;
/1
/1 Delete tiner
/1
OS_TI MER_Del et eEx(&Ti mer Ex) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

122 CHAPTER 4 API functions

4.2.5 OS_TIMER_ GetCurrent()

Description

Returns a pointer to the software timer object whose callback is currently executing.
Prototype

OS_TI MER *OS_TI MER_Get Current (voi d) ;

Return value

= NULL No software timer callback is currently being executed.
NULL Pointer to the software timer object of type OS_TI MER.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

167: OS_ERR CPU_STATE | LLEGAL
For details, refer to the chapter Runtime application errors on page 458.

Example

#i ncl ude "RTCS. h"
static OS TIMER Tinmer0, Tinerl;
static void Call back(void) {

OS_TI MER* pTinmer = OS_TIMER GetCurrent();
OS_TI MER Restart(pTiner); // Make tinmer periodic

}
int main(void) {
CS Init(); /1 Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TI MER_Creat e(&Ti mer 0, Cal | back, 50u);
CS_TI MER_St art (&Ti nmer 0) ;

OS_TI MER _Create(&Ti mer1, Call back, 200u);
CS_TIMER St art (&Ti mer1);

CS Start(); /1 Start enmbCS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

123 CHAPTER 4 API functions

4.2.6 OS_TIMER_GetCurrentEx()

Description

Returns a pointer to the extended software timer object whose callback is currently exe-
cuting.

Prototype
OS_TI MER_EX* OS_TI MER Get Cur r ent Ex(voi d) ;
Return value

= NULL No software timer callback is currently being executed.
NULL Pointer to the software timer object of type OS_TI MER_EX.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

#i ncl ude "RTCS. h"
static OS Tl MER EX Ti nmer ExO, Ti nmer Ex1;
static void Call back(void* pData) ({

OS_TI MER* pTimerEx = OS_TI MER_Get Current Ex() ;
OS_TI MER_Restart Ex(pTi merEx); // Make tiner periodic

}
int main(void) {
CS Init(); /1 Initialize enbOS
CS InitHW); /1 Initialize required hardware

OS_TI MER_Cr eat eEx(&Ti mer Ex0, Cal | back, 50u, (void*)O0);
OS_TI MER_St ar t Ex(&Ti ner ExO0) ;

OS_TI MER_Cr eat eEx(&Ti mer Ex1, Cal | back, 200u, (void*)1);
OS_TI MER_St ar t Ex(&Ti ner Ex1) ;

CS Start(); /1 Start enmbCS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

124

CHAPTER 4 API functions

4.2.7 OS_TIMER_ GetPeriod()

Description

Returns the reload value of the specified software timer.

Prototype
OS_TI ME OS_TI MER_Get Per i od(OS_CONST_PTR OS_TI MER *pTi ner);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Return value

The returned value is the reload value of a software timer.

Additional information

The period returned is the reload value of the timer which was set as initial value when the
timer was created or which was modified by a call of OS_TI MER_Set Peri od() . This reload
value will be used as time period when the timer is retriggered by OS_TI MER Restart ().

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static void PrintPeriod((OS_TIMER* pTiner) {
int period;

period = OS_TI MER Get Peri od(pTi ner);
printf("Period %\n", period);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

125

CHAPTER 4 API functions

4.2.8 OS_TIMER GetPeriodEx()

Description

Returns the reload value of an extended software timer.

Prototype
OS_TI ME OS_TI MER_Get Per i odEx(OS_CONST_PTR OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Return value

The returned value is the current reload value of an extended software timer.

Additional information

The period returned is the reload value of the timer which was set as initial value when the
timer was created or which was modified by a call of OS_TI MER_Set Peri odEx() . This reload
value will be used as time period when the timer is re-triggered by OS_TI MER Rest art Ex() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static void PrintPeriod(CS_TI MER_ EX* pTinerEx) {
int period;

period = OS_TI MER_Get Peri odEx(pTi nmer Ex) ;
printf("Period %\n", period);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

126

CHAPTER 4 API functions

4.2.9 OS_TIMER_ GetRemainingPeriod()

Description

Returns the remaining timer value of the specified software timer.

Prototype
CS_TI ME OS_TI MER_Get Rerrai ni ngPer i od(OS_CONST_PTR OS_TI MER *pTi ner) ;
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Return value

The returned timer value is the remaining timer time in embOS system ticks until expiration
of the timer.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static void PrintRenmaini ngPeriod((CS_TI MER* pTimer) ({
int period;

period = OS_TI MER_Get Rerrai ni ngPer i od(pTi ner);
printf("Renmaining %\n", period);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

127

CHAPTER 4 API functions

4.2.10 OS_TIMER_GetRemainingPeriodEXx()

Description

Returns the remaining timer value of an extended software timer.

Prototype
OCS_TI ME OS_TI MER_Get Rerrai ni ngPer i odEx(OS_CONST_PTR OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Return value

The returned time value is the remaining timer value in embOS system ticks until expiration
of the extended software timer.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static void PrintRenmaini ngPeriod((CS_TI MER EX* pTiner) ({
int period;

period = OS_TI MER_Get Rerrai ni ngPer i odEx(pTi ner) ;
printf("Renmaining %\n", period);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

128 CHAPTER 4 API functions

4.2.11 OS_TIMER_GetStatus()

Description

Returns the current timer status of the specified software timer.

Prototype
0S_BOOL OS_TI MER Get St at us(OS_CONST_PTR OS_TI MER *pTi ner) ;
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Return value
Denotes whether the specified timer is running or not:

=0 Timer has stopped.
+0 Timer is running.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static void PrintStatus(OS_TIMER* pTinmer) {
if (OS_TIMER GetStatus(pTinmer) == 0u) {
printf("Tiner has stopped");
} else {
printf("Timer is running");
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

129 CHAPTER 4 API functions

4.2.12 OS_TIMER_GetStatusEx()

Description

Returns the current timer status of an extended software timer.

Prototype
0S_BOOL OS_TI MER_Get St at usEx(OS_CONST_PTR OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Return value
Denotes whether the specified timer is running or not:

=0 Timer has stopped.
+0 Timer is running.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static void PrintStatus(OS_TI MER_EX* pTinerEx) {
if (OS_TIMER Get StatusEx(pTinerEx) == 0u) {
printf("Tiner has stopped");
} else {
printf("Timer is running");
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

130

CHAPTER 4 API functions

4.2.13 OS_TIMER_Restart()

Description

Restarts the specified software timer with its initial time value.

Prototype
void OS_TIMER Restart(OS_TI MER* pTi mer);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Additional information

OS TI MER Restart () restarts the software timer using the initial time value programmed
at creation of the timer or which was set using the function OS_TI MER_Set Peri od() .
OS TIMER Restart () can be called regardless the state of the timer. A running timer will
restart using the full initial time. A timer that was stopped before or had expired will be
restarted.

If NULL is passed for pTi ner, the currently running timer is restarted. This can be used
from the software timer callback function only.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

171: OS_ERR 2USE_TI MER

For details, refer to the chapter Runtime application errors on page 458.

Example
Please refer to the example for OS_TI MER Creat e() on page 116.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

131 CHAPTER 4 API functions

4.2.14 OS_TIMER_RestartEx()

Description

Restarts an extended software timer with its initial time value.

Prototype
void OS_TI MER Restart Ex(OS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Additional information

OS_TI MER Restart Ex() restarts the extended software timer using the initial time val-
ue which was programmed at creation of the timer or which was set using the function
OS_TI MER Set Peri odEx(). OS_TI MER Restart Ex() can be called regardless the state of
the timer. A running timer will continue using the full initial time. A timer that was stopped
before or had expired will be restarted.

If NULL is passed for pTi ner , the currently running timer is restarted. This can be used from
the software timer callback function only. If no timer is currently running, GS Error () is
called with the error code OS_ERR | NV_TI MER.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example
Please refer to the example for OS_TI MER Cr eat eEx() on page 118.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

132

CHAPTER 4 API functions

4.2.15 OS_TIMER_SetPeriod()

Description

Sets a new timer reload value for the specified software timer.

Prototype

void OS_TI MER_Set Peri od(OS_TI MER* pTi mer,
CS_TIME Period);

Parameters

Parameter Description

pTi mer Pointer to a software timer object of type OS_TI MER.

Timer period in embQOS system ticks.

The data type OS_TI ME is defined as an integer, therefore
Peri od valid values are:

1 < Period < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Period < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

Additional information

OS_TI MER Set Peri od() sets the initial time value of the specified software timer. Peri od
is the reload value of the timer to be used as initial value when the timer is retriggered
by G5 TI MER Restart ().

A call of OS_TI MER Set Peri od() does not affect the remaining time period of a software
timer.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL

205: OS_ERR TI MER_PERI OD_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_TI MER Ti ner;

static void TinmerPul se(void) {
Toggl ePul seQut put () ; /'l Toggl e out put
OS_TI MER Restart (&Tiner); // Make tinmer periodic

}

voi d I nitTask(void) {
;; Create and inplicitly start timer with first pulse in 500 systemticks
/(%_TI MER_Cr eat e(&Ti ner, Ti ner Pul se, 500u);
OS_TI MER_St art (&Ti ner) ;
;; Set tiner period to 200 systemticks for further pulses
/(%_TI MER_Set Peri od(&Ti mer, 200u);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

133 CHAPTER 4 API functions

4.2.16 OS_TIMER_SetPeriodEx()

Description

Sets a new timer reload value for an extended software timer.

Prototype
voi d OS_TI MER_Set Per i odEx(OS_TI MER_EX* pTi mer Ex,
CS_TI ME Peri od) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.
Initial period in embQOS system ticks.
The data type OS_TI ME is defined as an integer, therefore valid values
Peri od are:
1 < Period < 215 -1 = Ox7FFF for 8/16-bit CPUs
1 < Period < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs

Additional information

OS_TI MER Set Peri odEx() sets the initial time value of the specified extended software
timer. Peri od is the reload value of the timer to be used as initial value when the timer is
re-triggered the next time by OS_TI MER Rest art Ex() .

A call of OS_TI MER_Set Per i odEx() does not affect the remaining time period of an extended
software timer.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL

205: OS_ERR TI MER_PERI OD_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_TI MER_EX Ti ner;
static OS_TASK TCB;

static void TinerPul se(voi d* pTask) {
if (pTask !'= NULL) {
OS_TASKEVENT_Set (0x01, (OS_TASK*)pTask);

OS_TI MER _RestartEx(&Timer); // Make tinmer periodic
}

voi d I nitTask(void) {
;; Create and inmplicitly start Pulse Timer with first pulse in 500 systemticks
/(%_TI MER_Cr eat e(&Ti ner, Ti nerPul se, 500, (void*)&TCB);
OS_TI MER_St art (&Ti ner) ;
;; Set tiner period to 200 systemticks for further pulses
/(%_TI MER_Set Peri odEx(&Ti mer, 200);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

134 CHAPTER 4 API functions

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

135 CHAPTER 4 API functions

4217 OS_TIMER_Start()

Description

Starts the specified software timer.

Prototype
void OS_TIMER Start(OS_TI MER* pTiner);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Additional information

OS TIMER Start () is used for the following reasons:

e Start a timer which was created by OGS TI MER Creat e() . The timer will start with its
initial timer value.

e Restart a timer which was stopped by calling OS_TI MER_St op() . In this case, the timer
will continue with the remaining time value which was preserved upon stopping the
timer.

Note

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired: use OS_TI MER Rest art () to restart those timers.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ I LLEGAL

171: OS_ERR 2USE_TI MER

For details, refer to the chapter Runtime application errors on page 458.

Example
Please refer to the example for OS_TI MER Creat e() on page 116.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

136 CHAPTER 4 API functions

4.2.18 OS_TIMER_StartEx()

Description

Starts an extended software timer.

Prototype
void OS_TIMER StartEx(CS_TI MER_EX* pTi ner Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Additional information

OS TI MER Start Ex() is used for the following reasons:

e Start an extended software timer which was created by OS_TI MER Creat eEx(). The
timer will start with its initial timer value.

e Restart a timer which was stopped by calling OGS _TI MER St opEx() . In this case, the
timer will continue with the remaining time value which was preserved upon stopping
the timer.

Note

This function has no effect on running timers. It also has no effect on timers that are
not running, but have expired. Use OS_TI MER _Rest art Ex() to restart those timers.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example
Please refer to the example for OS_TI MER Cr eat eEx() on page 118.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

137 CHAPTER 4 API functions

4.2.19 OS_TIMER_Stop()

Description

Stops the specified software timer.

Prototype
void OS_TI MER St op(COS_TI MER* pTiner);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Additional information

The actual value of the software timer (the time until expiration) is maintained until
OS TIMER Start () lets the timer continue. The function has no effect on timers that are
not running, but have expired.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_TI MER TI MER10O;

static void Task(void) {
OS_TI MER_Restart (&TI MERLOO); // Start the tiner

OS_TI MER_St op(&TI MER100) ; /1 Stop the timer
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

138 CHAPTER 4 API functions

4.2.20 OS_TIMER_StopEXx()

Description

Stops an extended software timer.

Prototype
voi d OS_TI MER St opEx(OS_TI MER_EX* pTi mer Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Additional information

The actual value of the extended software timer (the time until expiration) is maintained
until OS_TI MER St art Ex() lets the timer continue. The function has no effect on timers
that are not running, but have expired.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_TIMER_EX TI MERLOO;

static void Task(void) {
OS_TI MER_Rest art Ex(&TI MER100); // Start the timer

OS_TI MER_St opEXx(&Tl MER100) ; /1 Stop the tinmer
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

139

CHAPTER 4 API functions

4.2.21 OS_TIMER_ Trigger()

Description

Ends the specified software timer at once and calls the timer callback function.

Prototype
void OS_TI MER Tri gger (OS_TI MER* pTi mer);
Parameters
Parameter Description
pTi mer Pointer to a software timer object of type OS_TI MER.

Additional information

OS_TI MER Trigger () can be called regardless of the state of the timer. A running timer will
be stopped and the callback function is called. For a timer that was stopped before or had
expired the callback function will not be executed.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER

161: OS_ERR | LLEGAL_I N_TI MER

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

226: OS_ERR | LLEGAL_| N_MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS Tl MER TI MERUart Rx;

void TinerUart(void) {
Handl eUar t Rx() ;

}

voi d Uart Rxl nt Handl er (voi d) {
OS_TI MER _Trigger (&TI MERUart Rx); // Character received, stop the software timer

}

voi d Uart SendNext Charachter (voi d) {
OS_TI MER _Start (&TI MERUar t Rx) ;
/1 Send next UART character and wait for Rx character

}

int main(void) {
OS_TI MER_Creat e(&TI MERUart Rx, Ti merUart, 20);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

140

CHAPTER 4 API functions

4.2.22 OS_TIMER_TriggerEx()

Description

Ends an extended software timer at once and calls the timer callback function.

Prototype
void OS_TI MER Trigger Ex (OS_TI MER_EX* pTi nmer Ex) ;
Parameters
Parameter Description
pTi mer Ex Pointer to an extended software timer object of type OS_TI MER_EX.

Additional information

OS_TI MER Tri gger Ex() can be called regardless of the state of the timer. A running timer
will be stopped and the callback function is called. For a timer that was stopped before or
had expired the callback function will not be executed.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

129: OS_ERR | NV_TI MER

161: OS_ERR | LLEGAL_I N_TI MER

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

226: OS_ERR | LLEGAL_| N_MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS Tl MER EX Tl MERUart Rx;
static OS_U32 Uar t Num

void TinerUart(void* pNum {
Handl eUar t Rx((GS_U32) pNunj ;
}

voi d Uart Rxl nt Handl er (voi d) {
OS_TI MER_Tri gger Ex(&Tl MERUar t Rx) ;
/'l Character received, stop the software timer

}

voi d Uart SendNext Charachter (voi d) {
OS_TI MER_St art Ex(&TI MERUar t Rx) ;
/1 Send next UART character and wait for Rx character

}

int main(void) {
Uart Num = O;
OS_TI MER_Cr eat eEx(&TI MERUart Rx, TinerUart, 20, (void*)&UartNum;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 5

Task Event

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

CHAPTER 5 Introduction

Introduction

Task events are a way of communicating between a task and another task, software timer
or embOS interrupt handler. In contrast to event objects, task events are messages to a
single, specified task. In other words, a task event is sent to a specified task.

The purpose of a task event is to enable a task to wait for a particular event (or for one of
several events) to occur. This task can be kept inactive until the event is signaled by another
task, a software timer or an embQOS interrupt handler. An event can be, for example, the
change of an input signal, the expiration of a hardware timer, a key press or the reception
of a character.

Every task has an individual event bit mask. The width of the bit mask depends on the CPU.
The bit mask width with 8/16-bit CPUs is 8 bit. The bit mask width with 32-bit CPUs is 32 bit.
This means that 8 or 32 different events can be signaled to and distinguished by every task.

The width of the event bit mask can be modified with the macro OS_TASKEVENT. Changing
the definition of OS_TASKEVENT can only be done when using the embOS sources in a project,
or when the libraries are rebuilt from sources with the modified definition. Please have a
look in the chapter Source Code on page 599 for more details.

Example

#i ncl ude "RTGCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /'l Task control bl ocks

static void HPTask(void) {
OS_TASKEVENT MyEvents;

while (1) {
MyEvents = OS_TASKEVENT_Get Bl ocked(3) ; /[l Wait for event bits 0 or 1
if (MEvents & 1) {
_Handl eEvent 0() ;
} else
_Handl eEvent 1() ;

}
}
}
static void LPTask(void) {
while (1) {
OS_TASK Del ay(200);
OS_TASKEVENT_Set (&TCBHP, 1);
}
}
int mai n(void) {
CS Init(); /[l Initialize enbGS
OS_Ini t HW() ; /1 Initialize required hardware

OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS Start(); /1 Start enbOS

return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

143 CHAPTER 5 API functions

5.2 API functions

Routine Description

urew
Jsel Alld
ysel Audun
Sl
Jawll MS

Returns the actual state of events and

OS_TASKEVENT _d ear () then clears all events of the specified ° oo |0
task.
Returns the actual state of events and

OS_TASKEVENT_C ear Ex() then clears the specified events for the oo 0|00

specified task.

Returns a list of events that have oc-
OS_TASKEVENT_Get () curred for the specified task. bl I I e g

Waits for one of the events specified in
OS_TASKEVENT_Get Bl ocked() | the bit mask and clears the event mem- oo
ory when the function returns.

Waits for one of the specified events and

O5_TASKEVENT_Get Si ngl e- clears only those events that were speci- oo

Bl ocked() fied in the event mask.
Waits for one of the specified events
OS_TASKEVENT_Get Si ngl e- for a given time and clears only those ol e
Ti med() events that were specified in the event
mask.
Waits for the specified events for a giv-
OS_TASKEVENT_Get Ti ned() en time, and clears all task events when oo
the function returns.
OS_TASKEVENT_Set () Signals event(s) to the specified task. o o o 0|0

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

144

CHAPTER 5 API functions

5.21 OS_TASKEVENT_Clear()

Description

Returns the actual state of events and then clears all events of the specified task.

Prototype
OS_TASKEVENT OS_TASKEVENT_C ear (OS_TASK* pTask);
Parameters
Parameter Description
Pointer to a task control block of type GS_TASK or NULL for
pTask
the current task.

Return value

All events that have been signaled before clearing. If pTask is NULL, the function clears all
events of the currently running task.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR_| NV_TASK
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Task(void) {
OS_TASKEVENT MyEvent s;

MyEvents = OS_TASKEVENT_d ear (NULL) ;

while (1) {
I
/1 Wait for event O or 1 to be signal ed
I
M/Events = OS_TASKEVENT Get Bl ocked(3) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

145

CHAPTER 5 API functions

5.2.2 OS_TASKEVENT_ClearEx()

Description

Returns the actual state of events and then clears the specified events for the specified task.

Prototype
OS_TASKEVENT OS_TASKEVENT_C ear Ex(OS_TASK* pTask,
OS_TASKEVENT Event Mask) ;
Parameters
Parameter Description
Pointer to a task control block of type GS_TASK or NULL for
pTask
the current task.
Event Mask The bit mask containing the event bits which shall be
cleared.

Return value

All events that have been signaled before clearing. If pTask is NULL, the function clears the
events of the currently running task.

Additional information

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call GS_Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

128: OS_ERR_| NV_TASK

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

MyEvents = OS_TASKEVENT_C ear Ex(NULL, 1);

while (1) {
Il
/'l Wait for event 0 or 1 to be signal ed
11
MyEvents = OS_TASKEVENT_Get Bl ocked(3);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

146

CHAPTER 5 API functions

5.2.3 OS_TASKEVENT_Get()

Description

Returns a list of events that have occurred for the specified task.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get (OS_CONST_PTR OS_TASK *pTask) ;
Parameters
Parameter Description
Pointer to a task control block of type GS_TASK or NULL for
pTask
the current task.

Return value

All events that have been signaled.

Additional information

By calling this function, all events remain signaled: event memory is not cleared. This is
one way for a task to query which events are signaled. The task is not suspended if no
events are signaled.

If NULL is passed for pTask, the currently running task is used. If this function is not called
from a task context, no task might currently be running and there is no valid task. A debug
build of embOS will call OS Error () in this case. We suggest to call this function from a
context other than the task context with a pointer to a valid task control block only.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR_| NV_TASK
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

void PrintEvents(void) {
OS_TASKEVENT MyEvent s;

M/Events = OS_TASKEVENT Get (NULL);
printf("Events %\n", M/Events);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

147

CHAPTER 5 API functions

5.2.4 OS TASKEVENT GetBlocked()

Description

Waits for one of the events specified in the bit mask and clears the event memory when
the function returns.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get Bl ocked(OS_TASKEVENT Event Mask) ;
Parameters
Parameter Description
The event bit mask containing the event bits, which shall be
Event Mask ;
waited for.

Return value

All events that have been signaled.

Additional information

If none of the specified events are signaled, the task is suspended. The first of the specified
events will wake the task. These events are signaled by another task, a software timer or
an interrupt handler. Any bit that is set in the event mask enables the corresponding event.

When a task waits on multiple events, all of the specified events shall be requested by a
single call of OS_TASKEVENT_Cet Bl ocked() and all events must be be handled when the
function returns.

Note that all events of the task are cleared when the function returns, even those events
that were not set in the parameters in the Event Mask. The calling function must handle the
returned value, otherwise events may get lost. Consecutive calls of OS_TASKEVENT_Get -
Bl ocked() with different event masks will not work, as all events are cleared when the
function returns. If this is not desired, OS_TASKEVENT Get Si ngl eBl ocked() may be used
instead.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Task(void) {
OS_TASKEVENT MyEvent s;

while(1) {
/1
/1 Wait for event O or 1 to be signal ed
/1
M/Events = OS_TASKEVENT Get Bl ocked(3) ;
/1
/1 Handle all events
/1
if (M/Events & 1) {
_Handl eEvent 0() ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

148 CHAPTER 5 API functions

}
if (M/Events & 2) {

_Handl eEvent 1();
}
}
}

For another example, see OS_TASKEVENT_Set () .

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

149 CHAPTER 5 API functions

5.2.5 OS_TASKEVENT GetSingleBlocked()

Description

Waits for one of the specified events and clears only those events that were specified in
the event mask.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get Si ngl eBl ocked(OS_TASKEVENT Event Mask) ;
Parameters
Parameter Description
The event bit mask containing the event bits, which shall be
Event Mask ;
waited for and reset.

Return value

All requested events that have been signaled and were specified in the Event Mask.

Additional information

If none of the specified events are signaled, the task is suspended. The first of the requested
events will wake the task. These events are signaled by another task, a software timer, or an
interrupt handler. Any bit in the event mask may enable the corresponding event. When the
function returns, it delivers all of the requested events. The requested events are cleared
in the event state of the task. All other events remain unchanged and will not be returned.

OS_TASKEVENT _Cet Si ngl eBl ocked() may be used in consecutive calls with individual re-
quests. Only requested events will be handled, no other events can get lost. When the
function waits on multiple events, the returned value must be evaluated because the func-
tion returns when at least one of the requested events was signaled. When the function
requests a single event, the returned value does not need to be evaluated.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Task(void) {
OS_TASKEVENT MyEvent s;

while(1) {
/1
/1 Wait for event O or 1 to be signal ed
/1
MyEvents = OS_TASKEVENT_GCet Si ngl eBl ocked(3);
/1
/1l Handl e all events
/1
if (M/Events & 1) {
_Handl eEvent 0() ;
}
if (MEvents & 2) {
_Handl eEvent 1();

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

150 CHAPTER 5 API functions

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

151 CHAPTER 5 API functions

5.2.6 OS TASKEVENT_ GetSingleTimed()

Description

Waits for one of the specified events for a given time and clears only those events that
were specified in the event mask.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get Si ngl eTi med(OS_TASKEVENT Event Mask,
S _TI ME Ti meout) ;
Parameters
Parameter Description
The event bit mask containing the event bits, which shall be
Event Mask

waited for and reset.

Maximum time in system ticks until the event must be sig-
naled. The data type OS_TI ME is defined as an integer, there-
Ti meout fore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 No event available within the specified timeout.
*#0 All events that have been signaled.

Additional information

If none of the specified events in the event mask are available, the task is suspended for
the given time. The first of the specified events will wake the task if the event is signaled by
another task, a software timer or an interrupt handler within the specified Ti meout time.

If no event is signaled within the specified timeout, the calling task gets activated and
return zero.

Any bit in the event mask may enable the corresponding event. All unmasked events remain
unchanged.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

while(1) {
Il
/1 Wait for event 0 and 1 to be signaled within 10 systemticks
Il
MyEvents = OS_TASKEVENT_Get Si ngl eTi ned(3, 10);
if (MEvents == 0) {
_Handl eTi meout () ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

152 CHAPTER 5

} else {
if (M/Events & 1) {
_Handl eEvent 0() ;
}
if (MEvents & 2) {
_Handl eEvent 1();
}
}
}
}

UMO01001 User Guide & Reference Manual for embOS

API functions

© 1995-2025 SEGGER Microcontroller GmbH

153

CHAPTER 5 API functions

5.2.7 OS_TASKEVENT_ GetTimed()

Description

Waits for the specified events for a given time, and clears all task events when the function
returns.

Prototype
OS_TASKEVENT OS_TASKEVENT_Get Ti med(OS_TASKEVENT Event Mask,
oS _TI ME Ti meout) ;
Parameters
Parameter Description
The event bit mask containing the event bits, which shall be
Event Mask

waited for.

Maximum time in system ticks until the events must be sig-
naled. The data type OS_TI ME is defined as an integer, there-
Ti meout fore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Timeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 No event available within the specified timeout.
*#0 All events that have been signaled.

Additional information

If none of the specified events in the event mask are available, the task is suspended for
the given time. The first of the specified events will wake the task if the event is signaled by
another task, a software timer or an interrupt handler within the specified Ti meout time.

If no event is signaled within the specified timeout, the calling task gets activated and
return zero.

Note that the function returns all events that were signaled until the task continues execu-
tion, even those which were not requested. The calling function must handle the returned
value, otherwise events may get lost. Consecutive calls of 0OS_ TASKEVENT _Get Ti ned() with
different event masks will not work, as all events are cleared when the function returns. If
this is not desired, OS_TASKEVENT_GCet Si ngl eTi ned() may be used instead.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Task(void) {
OS_TASKEVENT MyEvents;

while(1) {
Il
/1 Wait for event 0 and 1 to be signaled within 10 systemticks
Il

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

154 CHAPTER 5 API functions

M/Events = OS_TASKEVENT _Get Ti med(3, 10);
if ((MfEvents & 3) == 0) {
_Handl eTi neout () ;
} else {
if (M/Events & 1) {
_Handl eEvent 0() ;
}
if (MEvents & 2) {
_Handl eEvent 1() ;
}
}
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

155 CHAPTER 5 API functions

5.2.8 OS TASKEVENT_Set()

Description

Signals event(s) to the specified task.

Prototype
voi d OS_TASKEVENT_Set (OS_TASK* pTask,
OS_TASKEVENT Event);
Parameters
Parameter Description
pTask Pointer to a task control block of type OS_TASK.
Event The event bit mask containing the event bits, which shall be
signaled.

Additional information

If the specified task is waiting for one of these events, it will be put in the READY state and
activated according to the rules of the scheduler.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

128: OS_ERR | NV_TASK
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

The task that handles the serial input and the keyboard waits for a character to be received
either via the keyboard (EVENT_KEYPRESSED) or serial interface (EVENT_SERI N):

#def i ne EVENT_KEYPRESSED (1lu << 0)
#defi ne EVENT_SERI N (lu << 1)

static OS_STACKPTR int Stack0[96]; // Task stacks
static OS_TASK TCBO; /'l Data area for tasks (task control bl ocks)

voi d TaskO(void) {

OS_TASKEVENT MyEvent;

whi | e(1)
MyEvent = OS_TASKEVENT_Get Bl ocked(EVENT_KEYPRESSED | EVENT_SERI N)
if (MyEvent & EVENT_KEYPRESSED) {

/'l Handl e key press

}
i

f (MyEvent & EVENT_SERIN) {
/1l Handl e serial reception

}
}
}
voi d Key_I SR(void) { /'l 1SR for external interrupt
OS_TASKEVENT_Set (&TCB0, EVENT_KEYPRESSED); // Notify task that key was pressed
}
voi d UART_I SR(voi d) { /1 1SR for UART interrupt

OS_TASKEVENT_Set (&TCB0, EVENT_SERIN);
/1 Notify task that a character was received

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

156 CHAPTER 5 API functions

}

voi d I nitTask(void) {
OS_TASK_CREATE(&TCBO, "HPTask", 100, TaskO0, StackO);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 6

Event Object

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

158 CHAPTER 6 Introduction

6.1 Introduction

Event objects are another type of communication and synchronization object. In contrast
to task-events, event objects are standalone objects which are not owned by any task.

The purpose of an event object is to enable one or multiple tasks to wait for a particular
event to occur. The tasks can be kept suspended until the event is set by another task,
a software timer, or an interrupt handler. An event can be, for example, the change of
an input signal, the expiration of a timer, a key press, the reception of a character, or a
complete command.

Compared to a task event, the signaling function does not need to know which task is
waiting for the event to occur.

Using event object API

There are two groups of event object API functions. The first group does not have “mask”
as part of their name and operates on the complete event object. These functions are
OS EVENT _Get (), OS _EVENT Get Bl ocked(), OS EVENT Get Ti ned(), OS_EVENT_Pul se(),
and OS_EVENT_Set (). The second group does have “mask” as part of the API name and
operates on a event object bit mask. These functions are OS_EVENT_Get Mask(), OS_EVEN-
T CGet MaskBl ocked(), OS_EVENT_Get MaskMode(), OS EVENT_ Get MaskTi ned(), OS_EVEN
T _Set Mask(), and OS_EVENT_Set MaskMbde() . Any event object is in non-signaled state
when the event object value is zero, and in signaled state when the event object value is
unequal to zero. We do not recommend to use both API groups on the same event object.
For example, you must not wait for an event object with OS_EVENT_Get Bl ocked() and sig-
nal that event object with OS_EVENT_Set Mask(), but with OS_EVENT _Set ().

Reset mode

Since version 3.88a of embOS, the reset behavior of the event can be controlled by different
reset modes which may be passed as parameter to the new function OS_EVENT_Cr eat eEx()
or may be modified by a call of OS_EVENT_Set Reset Mode() .

e (OS_EVENT_RESET_MODE_SEM AUTO:
This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embQOS
versions (prior version 3.88a). Calling OS_EVENT _Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEM AUTO to be compatible with older embQOS versions.

e (OS_EVENT_RESET MODE_AUTO:

This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_Get Ti ned() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

e (OS_EVENT_RESET_ MODE_MANUAL:

This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

Mask mode

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS_EVENT Cr eat eEx()
or may be modified by a call of OS_EVENT_Set MaskMbode() .
e (OS_EVENT_MASK MODE OR LOG C:
This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.
e (S _EVENT_MASK_MODE_AND LOG C:
With this mode all specified event object mask bits must be signaled.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

CHAPTER 6 Introduction

6.1.1 Examples

Activate a task from interrupt by an event object

The following code example shows usage of an event object which is signaled from an ISR
handler to activate a task. The waiting task should reset the event after waiting for it.

static OS_EVENT _Event;

static void _I SRHandl er (void) {
OS INT_Enter();
11
/1l \Wake up task to do the rest of the work
11
OS_EVENT_Set (& Event);
OS_I NT_Leave();
}

static void Task(void) {
while (1) {
OS_EVENT_Get Bl ocked(& Event);
Il
/'l Do the rest of the work (which has not been done in the |ISR)
Il

Activating multiple tasks using a single event object

The following sample program shows how to synchronize multiple tasks with one event
object.

#i ncl ude "RTCS. h"

static OS_STACKPTR int StackHP[128], StackLP[128], StackHW 128];
static OS_TASK TCBHP, TCBLP, TCBHW
static OS_EVENT HW Event ;

static void HPTask(void) {
Il
/1 Wait until HWnodule is set up
Il
OS_EVENT_Get Bl ocked(&HW Event) ;
while (1) {
OS_TASK Del ay(50);
}
}

static void LPTask(void) {
Il
/1 Wait until HWnodule is set up
Il
OS_EVENT_GCet Bl ocked(&HW Event) ;
while (1) {
OS_TASK Del ay(200);
}
}

static void HWrask(void) {
;; Wait until HWnodule is set up
é)/S_TASK_DeI ay(100);
% Init done, send broadcast to waiting tasks

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

160

/1
OS_EVENT_Set (&HW Event) ;
while (1) {

OS_TASK Del ay(40);

}

}

int main(void) {
s Init(); /1
S InitHW); /1
OS_TASK_CREATE(&TCBHP, "HP Task",
OS_TASK_CREATE(&TCBLP, "LP Task",

OS_TASK_CREATE(&TCBHW " HWrask",
OS_EVENT_Cr eat e(&HW Event) ;
CS Start();

return O;

Using event object mask bits

CHAPTER 6

/1 Start

Introduction

Initialize enbOS
Initialize required hardware

100, HPTask, StackHP);
50, LPTask, StackLP);
25, HWrask, StackHW;

nmul titasking

The following sample program shows how to use event object mask bits.

#i ncl ude "RTGCS. h"

#define EVENT1_BI TMASK (1lu << 0)
#define EVENT2_BI TMASK (1lu << 1)

static OS_STACKPTR int StackTaskl[128],
TCBTask1l, TCBTask2, TCBLP;

static OS_TASK
static OS_EVENT _Event;
static void Taskl(void) {
OS_EVENT_Cet MaskBl ocked(& Event,
while (1) {
OS_TASK Del ay(50);
}
}

static void Task2(void) {
OS_EVENT_Cet MaskBl ocked(& Event,
while (1) {
OS_TASK Del ay(50);
}
}

static void LPTask(void) {
OS_EVENT_Set Mask(& Event,
OS_EVENT_Set Mask(& Event,
while (1) {
OS_TASK Del ay(200);

}

}

int main(void) {
CS Init(); /1
CS I nitHW); /1

St ackTask2[128], StackLP[128];

EVENT1_BI TMASK) ;

EVENT2_BI TMASK) ;

EVENT1_BI TMASK) ;
EVENT2_BI TMASK) ;

Initialize enbOS
Initialize required hardware

OS_TASK_CREATE(&TCBTaskl, "Task 1", 100, Taskl, StackTaskl);
OS_TASK_CREATE(&TCBTask2, "Task 2", 100, Task2, StackTask2);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS_EVENT_Creat e(& Event);

CS Start(); /1 Start multitasking

return O;

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

161 CHAPTER 6 API functions

6.2 API functions

c
=] (02}
3123112
Routine Description D4 |< (;/03 =
> g — 3
28| |a
~
OS_EVENT Create() Creates an event object. oo ol e
Creates an extended event object and
OS_EVENT_Creat eEx() sets its reset behavior as well as mask oo oo
bits behavior.
OS_EVENT_Del et e() Deletes the specified event object. oo
0S_EVENT Get () Retrieves the current state of the speci- ol olelele

fied event object.

Waits for the specified event object and
OS_EVENT_Get Bl ocked() suspends the task until the event has oo
been signaled.

Returns the bits of the specified event
O5_EVENT_Get Mask() object that match the given Event Mask. *1*

Waits for the specified event bits in

OS_EVENT_Get MaskBIl ocked() | Event Mask, depending on the current oo
mask mode.
Retrieves the current mask mode (mask

OS_EVENT_Get MaskMode() bits behavior) of the specified eventob- |[e | e | e | e | e
ject.

Waits for the specified event bits Event -
OS_EVENT_Get MaskTi med() Mask with timeout, depending on the oo
current mask mode.

Returns the reset mode (reset behavior)

O5_EVENT_Get Reset Mode() of the specified event object.

Waits for an event and suspends the
OS_EVENT_Get Ti ned() task for a specified time or until the oo
specified event has been signaled.

Signals the specified event object and
OS_EVENT_Pul se() resumes waiting tasks, then resets the oo 0|00
event object to non-signaled state.

OS_EVENT Reset () R_esets the specified event object to non- o lolelele
- - signaled state.

Resets the specified mask bits in the
OS_EVENT_Reset Mask() specified event object to non-signaled o o o |00
state.

Sets the specified event object to sig-
OS_EVENT_Set () naled state, or resumes tasks whichare |[e|e | e | o | e
waiting at the event object.

OS_EVENT_Set Mask() g\itaittgijz\gnt mask bits of the specified ol olelele

Sets the mask mode of the specified
O5_EVENT_Set MaskMode() event object to OR/AND logic. o I il I i

Sets the reset behavior of the specified
OS_EVENT_Set Reset Mbde() event object to automatic, manualorse-|e | e (e | e | @
mi-auto.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

162

CHAPTER 6 API functions

6.2.1 OS_EVENT Create()

Description

Creates an event object.

Prototype
voi d OS_EVENT_Creat e(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information
On creation, the event is set to non-signaled state.

The event is created with the default reset behavior which is semi-auto. Since version
3.88a of embOS, the reset behavior of the event can be modified by a call of the function
OS_EVENT_Set Reset Mode() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR OS_| NT_ENTER NOT_CALLED
165: OS_ERR | NI T_NOT_CALLED

167: OS_ERR CPU_STATE_ | LLEGAL

178: OS_ERR 2USE_EVENT

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS EVENT _Event;

voi d HPTask(void) ({
OS_EVENT_Get MaskBl ocked(& Event, 3); // Wait for bit 0O AND 1 to be set

}

voi d LPTask(void) ({
OS_EVENT_Set Mask(& Event, 1); /'l Resumes HPTask due to OR logic

}

int main(void) {
.(ﬁl_EVENT_Cr eate(& Event);
ret urn 0;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

163

CHAPTER 6 API functions

6.2.2 OS_EVENT_CreateEx()

Description

Creates an extended event object and sets its reset behavior as well as mask bits behavior.

Prototype

voi d OS_EVENT_Cr eat eEx(OS_EVENT* pEvent,
unsi gned int Mde);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Specifies the reset and mask bits behavior of the event ob-
ject. You can use one of the predefined reset modes:
OS_EVENT_RESET_MODE_SEM AUTO
OS_EVENT_RESET_MODE_NMANUAL

Mode OS_EVENT_RESET_MODE_AUTO

and one of the mask modes:
OS_EVENT_MASK_MODE_OR LOG C
OS_EVENT_MASK_MODE_AND LOG C

which are described under additional information.

Additional information
On creation, the event is set to non-signaled state.

Since version 3.88a of embOS, the reset behavior of the event can be controlled by different
reset modes which may be passed as parameter to the new function OS_EVENT_Cr eat eEx()
or may be modified by a call of OS_EVENT_Set Reset Mode() .

e OS_EVENT_RESET_MODE_SEM AUTO:
This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embQOS
versions (prior version 3.88a). Calling OS_EVENT _Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEM AUTO to be compatible with older embQOS versions.

e OS_EVENT_RESET_MODE_AUTO:
This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_Get Ti ned() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

e OS_EVENT_RESET_MODE_MANUAL:
This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS5 _EVENT_Cr eat eEx()
or may be modified by a call of 05_EVENT_Set MaskMbde() .
e (OS_EVENT_MASK_MODE_OR LOd C:
This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.
e (OS_EVENT_MASK_MODE_AND LOG C:
With this mode all specified event object mask bits must be signaled.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

164 CHAPTER 6 API functions

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
165: OS_ERR | NI T_NOT_CALLED

167: OS_ERR_CPU_STATE | LLEGAL

178: OS_ERR 2USE_EVENT

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_EVENT _Event;

voi d HPTask(void) {
OS_EVENT_Get MaskBl ocked(& Event, 3); // Wait for bit 0 AND 1 to be set
}

voi d LPTask(void) {
OS_EVENT_Set Mask(& Event, 1); /| Does not resune HPTask
OS_EVENT_Set Mask(& Event, 2);
/'l Resunme HPTask since both bits are now set

}
int mai n(void) {

OS_EVENT_Cr eat eEx(& Event, OS_EVENT_RESET MODE_AUTO |
0S_EVENT_MASK_MODE_AND LOGI C) ;

return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

165 CHAPTER 6 API functions

6.2.3 OS_EVENT Delete()

Description

Deletes the specified event object.

Prototype
voi d OS_EVENT_Del et e(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information

Before deleting an event object, make sure that no task is waiting for the event object.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL
212: OS_ERR EVENT_DELETE

220: OS_ERR EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS EVENT _Event;
voi d Task(void) {

OS_EVENT_Del et e(& Event);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

166 CHAPTER 6 API functions

6.2.4 OS_EVENT Get()

Description

Retrieves the current state of the specified event object.

Prototype
0S_BOOL OS_EVENT_Get (OS_CONST_PTR OS_EVENT *pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Return value

=0 Event object is not set to signaled state.
+#0 Event object is set to signaled state.

Additional information

By calling this function, the actual state of the event object remains unchanged.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL
220: OS_ERR EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS EVENT _Event;

voi d Task(void) {
OS BOOL St at us;

Status = OS_EVENT_Get (& Event);

printf("Event Object Status: %\ n", Status);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

167 CHAPTER 6 API functions

6.2.5 OS EVENT_GetBlocked()

Description

Waits for the specified event object and suspends the task until the event has been signaled.

Prototype
voi d OS_EVENT_GCet Bl ocked(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information

The state of the event object after calling OS_EVENT_Get Bl ocked() depends on the reset
mode of the event object which was set by creating the event object by a call of OS_EVEN-
T Creat eEx() or OS_EVENT_Set Reset Mode() .

The event is consumed when OS _EVENT_RESET MODE AUTO is selected. The event is not
consumed when OS_EVENT_RESET MODE MANUAL is selected. With OS_EVENT_RESET MOD-
E_SEM AUTO the event is consumed only when it was already set before.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL
220: OS_ERR EVENT_| NVALI D
226: OS_ERR | LLEGAL_| N_MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS EVENT _Event;

voi d HPTask(void) ({
OS_EVENT_GCet Bl ocked(& Event); // Suspends the task

}

voi d LPTask(void) ({
OS_EVENT_Pul se(& Event); /1 Signals the HPTask

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

168

CHAPTER 6 API functions

6.2.6 OS_EVENT GetMask()

Description

Returns the bits of the specified event object that match the given Event Mask.

Prototype

OS_TASKEVENT OS_EVENT_Get Mask(OS_EVENT* pEvent ,
OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
Event Mask tTr?:vzg mask containing the event bits which shall be re-

Return value

All events that have been signaled and were specified in the Event Mask.

Additional information

The returned event mask bits are consumed unless OS_EVENT_RESET_MODE_MANUAL is se-
lected. The state of the event object after calling OS_EVENT_Get Mask() depends on the
reset mode of the event object which was set by creating the event object by a call of
OS_EVENT_Creat eEx() or OS_EVENT_Set Reset Mode() .

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS _Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL
220: OS_ERR_EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_EVENT _Event;

voi d Task(void) {
OS_TASKEVENT Event Mask;

Event Mask ~0; // Request all event bits
Event Mask OS_EVENT_Get Mask(& Event, Event Mask);
printf("Signaled Event Bits: O0x%X\n", EventMask);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

169

CHAPTER 6 API functions

6.2.7 OS _EVENT_GetMaskBlocked()

Description

Waits for the specified event bits in Event Mask, depending on the current mask mode. The
task is suspended until the event(s) have been signaled.

Prototype

OS_TASKEVENT OS_EVENT_Get MaskBl ocked(OS_EVENT* pEvent,
OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
The event bit mask containing the event bits, which shall be
Event Mask .
waited for.

Return value

All requested events that have been signaled and were specified in the Event Mask.

Additional information

It returns the bits of the event object that match the given Event Mask. The returned event
mask bits are consumed unless OS_EVENT _RESET MODE MANUAL is selected. The state of the
event object after calling OS_EVENT_Get MaskBl ocked() depends on the reset mode of the
event object which was set by creating the event object by a call of OS_EVENT_Cr eat eEx()
or OS_EVENT_Set Reset Mode() .

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
220: OS_ERR_EVENT_| NVALI D
226: OS_ERR | LLEGAL_I N_MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_EVENT _Event;

voi d Task(void) {
Il
/1 Waits either for the first or second, or for
/'l both event bits to be signal ed, depending on
/'l the specified nmask node.

Il
OS_EVENT_Get MaskBIl ocked(& Event, 0x3);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

170

CHAPTER 6 API functions

6.2.8 OS _EVENT_GetMaskMode()

Description

Retrieves the current mask mode (mask bits behavior) of the specified event object.

Prototype
OS_EVENT_MASK_MODE OS_EVENT_Get MaskMode(OS_CONST_PTR OS_EVENT *pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Return value

The mask mode which is currently set.

Modes are defined in enum OS_EVENT _NMASK MODE.

OS_EVENT_MASK_MODE_OR LOG C (0x00u): Mask bits are used with OR logic (default).
OS_EVENT_MASK _MODE_AND LOd C (0x04u): Mask bits are used with AND logic.

Additional information

Since version 4.34 of embQOS, the mask mode of an event object can be controlled by
the OS_EVENT_Cr eat eEx() function or set after creation using the new function CS_EVEN-
T_Set MaskMode() . If needed, the current setting of the mask mode can be retrieved with
OS_EVENT_Get MaskMode() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR OS_| NT_ENTER NOT_CALLED

167: OS_ERR CPU STATE | LLEGAL

220: OS_ERR EVENT | NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_EVENT _Event;

voi d Task(void) {
CS_EVENT_MASK_MODE MaskMode;

MaskMode = OS_EVENT_Get MaskMbde(& Event);

if (MaskMode == OS_EVENT _MASK _MODE_OR LOG ©) {
printf("Logic: ORN");

} else {
printf("Logic: AND\n");

}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

171

CHAPTER 6 API functions

6.2.9 OS_EVENT GetMaskTimed()

Description

Waits for the specified event bits Event Mask with timeout, depending on the current mask
mode.

Prototype

OS_TASKEVENT OS_EVENT_Get MaskTi ned(OS_EVENT* pEvent ,
OS_TASKEVENT Event Mask,

oS _TI ME Ti meout) ;
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
Event Mask The event bit mask containing the event bits, which shall be

waited for.

Maximum time in embOQOS system ticks until events must be
signaled. The data type OS_TI ME is defined as an integer,
Ti meout therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 No event available within the specified timeout.
*#0 All events that have been signaled and were specified in the Event Mask.

Additional information

The task is suspended for the specified time or until the event(s) have been signaled. It
returns the bits of the event object that match the given Event Mask. The returned event
mask bits are consumed unless OS_EVENT_RESET_ MODE_MANUAL is selected. The state of the
event object after calling OS_EVENT_Get MaskTi med() depends on the reset mode of the
event object which was set by creating the event object by a call of 0S_EVENT_Cr eat eEx()
or OS_EVENT_Set Reset Mode() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
220: OS_ERR EVENT_| NVALI D
226: OS_ERR | LLEGAL I N_MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS EVENT _Event;

voi d Task(void) {
I
I/ Waits either for the first or second, or for
/1 both event bits to be signal ed, depending on

/1 the specified mask node. The task resunes after
/1 1000 systemticks, if the needed event bits were not

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

172 CHAPTER 6 API functions

/'l signal ed.
Il
OS_EVENT_Get MaskTi ned(& Event, 0x3, 1000);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

173

CHAPTER 6 API functions

6.2.10 OS_EVENT_ GetResetMode()

Description

Returns the reset mode (reset behavior) of the specified event object.

Prototype
OS_EVENT_RESET_MODE OS_EVENT_Get Reset Mode(OS_CONST_PTR OS_EVENT *pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Return value

The reset mode which is currently set.

Modes are defined in enum OS_EVENT_RESET MODE.

OS_EVENT_RESET_MODE_SEM AUTO (0x00u): As previous mode (default).
OS_EVENT_RESET_MODE_MANUAL (0x01u): Event remains set, has to be reset by task.
OS_EVENT_RESET_MODE_AUTO (0x02u): Event is reset automatically.

Additional information

Since version 3.88a of embOS, the reset mode of an event object can be controlled by the
new OS_EVENT Creat eEx() function or set after creation using the new function OS_EVEN-
T_Set Reset Mode() . If needed, the current setting of the reset mode can be retrieved with
OS_EVENT_Cet Reset Mode() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL
220: OS_ERR_EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_EVENT _Event;

voi d Task(void) {
OS_EVENT_RESET_MODE Reset Mode;

Reset Mode = OS_EVENT_Get Reset Mbde(& Event);

if (ResetMbde == OS_EVENT_RESET_ MODE_SEM AUTO) {
printf("Reset Mbde: SEM AUTOn");

} else if (Reset Mbde == OS_EVENT_RESET_MODE MANUAL) ({
printf("Reset Mbde: NMANUAL\n");

} else {
printf("Reset Mde: AUTON");

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

174 CHAPTER 6 API functions

6.2.11 OS_EVENT GetTimed()

Description

Waits for an event and suspends the task for a specified time or until the specified event
has been signaled.

Prototype

char OS_EVENT_Get Ti ned(OS_EVENT* pEvent,
OS_TIME Tineout);

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.

Maximum time in embOS system ticks until the event must
be signaled. The data type OS_TI ME is defined as an integer,
Ti meout therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tinmeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Success, the event was signaled within the specified time.

*#0 If the event was not signaled within the specified time.
Additional information

The event is consumed unless OS_EVENT_RESET MODE MANUAL is selected.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
220: OS_ERR EVENT_| NVALI D
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_EVENT _Event;
voi d Task(void) {

if (OS_EVENT_GetTimed(& Event, 1000) == 0) {
/1 event was signaled within tinmeout tinme, handl e event
} else {
/1 event was not signaled within timeout tinme, handl e tineout

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

175 CHAPTER 6 API functions

6.2.12 OS_EVENT_Pulse()

Description

Signals the specified event object and resumes waiting tasks, then resets the event object
to non-signaled state.

Prototype
voi d OS_EVENT_Pul se(OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information

If any tasks are waiting at the event object, the tasks are resumed. The event object
remains in non-signaled state, regardless the reset mode.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL
220: OS_ERR EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS EVENT _Event;

voi d HPTask(void) ({
OS_EVENT_GCet Bl ocked(& Event); // Suspends the task

}
voi d LPTask(void) ({

OS_EVENT_Pul se(& Event); /1 Signals the HPTask
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

176 CHAPTER 6 API functions

6.2.13 OS_EVENT_Reset()

Description

Resets the specified event object to non-signaled state.

Prototype
voi d OS_EVENT_Reset (OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information

OS_EVENT_Reset () may also be used with event mask and resets all mask bits.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL
220: OS_ERR EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS EVENT _Event;
voi d Task(void) {

OS_EVENT_Reset (& Event);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

177

CHAPTER 6 API functions

6.2.14 OS_EVENT_ResetMask()

Description

Resets the specified mask bits in the specified event object to non-signaled state.

Prototype

voi d OS_EVENT_Reset Mask(OS_EVENT* pEvent,
OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
The event bit mask containing the event bits which shall be
Event Mask cleared

Additional information
OS_EVENT_Reset Mask() resets only the event mask bits specified in EventMask.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL
220: OS_ERR EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.
Example
static OS_EVENT _Event;

voi d Task(void) {

OS_EVENT_Reset Mask(& Event, 1);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

178

CHAPTER 6 API functions

6.2.15 OS_EVENT_Set()

Description

Sets the specified event object to signaled state, or resumes tasks which are waiting at
the event object.

Prototype
voi d OS_EVENT_Set (OS_EVENT* pEvent);
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

Additional information

If no tasks are waiting at the event object, the event object is set to signaled state. Any
task that is already waiting for the event object will be resumed. The state of the event
object after calling OS_EVENT_Set () then depends on the reset mode of the event object.

e With reset mode OS_EVENT_RESET MODE SEM AUTOC:
This is the default mode when the event object was created with OS_EVENT Create() .
This was the only mode available in embOS versions prior version 3.88a. If tasks were
waiting, the event is reset when the waiting tasks are resumed.

e With reset mode OS_EVENT_RESET MODE AUTC:
The event object is automatically reset when waiting tasks are resumed and continue
operation.

e With reset mode OS_EVENT_RESET_ MODE_MANUAL :
The event object remains signaled when waiting tasks are resumed and continue
operation. The event object must be reset by the calling task.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL
220: OS_ERR_EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

Examples on how to use the OS_EVENT_Set () function are shown in Examples on page 159.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

179 CHAPTER 6 API functions

6.2.16 OS_EVENT_SetMask()

Description

Sets the event mask bits of the specified event object.

Prototype

voi d OS_EVENT_Set Mask(OS_EVENT* pEvent,
OS_TASKEVENT Event Mask) ;

Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
The event bit mask containing the event bits, which shall be
Event Mask .
signaled.

Additional information

Any task that is already waiting for matching event mask bits on this event object will be
resumed. OS_EVENT_Set Mask() does not clear any event mask bits.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL
220: OS_ERR EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_EVENT _Event;

voi d Task(void) {
OS_TASKEVENT Event Mask;

Event Mask = 1 << ((sizeof (OS_TASKEVENT) * 8) - 1); // Set MSB event bit
OS_EVENT_Set Mask(& Event, Event Mask); /'l Signal MSB event bit

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

180

CHAPTER 6 API functions

6.2.17 OS_EVENT_SetMaskMode()

Description
Sets the mask mode of the specified event object to OR/AND logic.

Prototype

voi d OS_EVENT_Set MaskMbde(OS_EVENT* pEvent,
OS_EVENT_MASK_MODE MaskMbde) ;

Parameters

Parameter Description

pEvent Pointer to an event object of type OS_EVENT.
Event Mask mode.
Modes are defined in enum OS_EVENT_MASK_MCDE.

MaskMode OS_EVENT_MASK_MODE OR LOG C (0x00u): Mask bits are used
with OR logic (default).
OS_EVENT_MASK_MODE_AND LOd C (0x04u): Mask bits are
used with AND logic.

Additional information

Since version 4.34 of embOS, the mask bits behavior of the event object can be controlled
by different mask modes which may be passed to the new function OS_EVENT Cr eat eEx()
or may be modified by a call of OS_EVENT_Set MaskMbde() . The following mask modes are
defined and can be used as parameter:
e OS_EVENT_MASK MODE_OR LOG C:
This mask mode is the default mode. Only one of the bits specified in the event object
bit mask must be signaled.
e OS_EVENT_MASK MODE_AND LOG C:
With this mode all specified event mask bits must be signaled.

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL
220: OS_ERR EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.
Example
static OS_EVENT _Event;

voi d Task(void) {

/'l Set the mask node for the event object to AND | ogic
OS_EVENT_Set MaskMode(& Event, OS_EVENT_MASK _MODE_AND LOd C);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

181

CHAPTER 6 API functions

6.2.18 OS_EVENT_ SetResetMode()

Description

Sets the reset behavior of the specified event object to automatic, manual or semi-auto.

Prototype
voi d OS_EVENT_Set Reset Mbde(OS_EVENT* pEvent,
OS_EVENT_RESET_MODE Reset Mode) ;
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.
Controls the reset mode of the event object.
OS_EVENT_RESET_MODE_SEM AUTO (0x00u): As previous mode
(default).
Reset Mbde OS_EVENT_RESET_MODE_MANUAL (0x01u): Event remains set,
has to be reset by task.
OS_EVENT_RESET_MODE_AUTO (0x02u): Event is reset auto-
matically.

Additional information

Implementation of event objects in embOS versions before 3.88a unfortunately was not
consistent with respect to the state of the event after calling OS_EVENT_Set () or OS_EVEN-
T_Get Bl ocked() functions. The state of the event was different when tasks were waiting
or not.

Since embOS version 3.88a, the state of the event (reset behavior) can be controlled after
creation by the new function OS_EVENT_Set Reset Mbde(), or during creation by the new
OS_EVENT_Cr eat eEx() function. The following reset modes are defined and can be used
as parameter:

OS_EVENT_RESET_MODE_SEM AUTO:

This reset mode is the default mode used with all previous versions of embOS. The
reset behavior unfortunately is not consistent and depends on the function called to
set or wait for an event. This reset mode is defined for compatibility with older embQOS
versions (prior version 3.88a). Calling OS_EVENT _Create() sets the reset mode to
OS_EVENT_RESET_MODE_SEM AUTO to be compatible with older embQOS versions.
OS_EVENT_RESET_MODE_AUTO:

This mode sets the reset behavior of an event object to automatic clear. When an event
is set, all waiting tasks are resumed and the event is cleared automatically. An exception
to this is when a task called OS_EVENT_Get Ti ned() and the timeout expired before the
event was signaled, in which case the function returns with timeout and the event is
not cleared automatically.

OS_EVENT_RESET_ MODE MANUAL :

This mode sets the event to manual reset mode. When an event is set, all waiting tasks
are resumed and the event object remains signaled. The event must be reset by one
task which was waiting for the event.

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

164: OS_ERR _OS_| NT_ENTER _NOT_CALLED

167: OS_ERR CPU_STATE | LLEGAL

220: OS_ERR_EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

182 CHAPTER 6 API functions

Example

static OS EVENT _Event;

voi d Task(void) {
/1 Set the reset node for the event object to nanual

OS_EVENT_Set Reset Mbde(& Event, OS_EVENT RESET_MANUAL) ;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 7

Mutex

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

184 CHAPTER 7 Introduction

7.1 Introduction

Mutexes are used for managing resources by avoiding conflicts caused by simultaneous use
of a resource. The resource managed can be of any kind: a part of the program that is not
reentrant, a piece of hardware like the display, a flash memory that can only be written
to by a single task at a time, a motor in a CNC control that can only be controlled by one
task at a time, and a lot more.

The basic procedure is as follows:

Any task that uses a resource first claims it calling the OS_MJTEX_ LockBI ocked() or CS_MJ}
TEX Lock() routines of embOS. If the mutex is available, the program execution of the
task continues, but the mutex is blocked for other tasks. If a second task now tries to
acquire the same mutex while it is in use by the first task, this second task is suspended
until the first task releases the mutex. However, if the first task that uses the mutex calls
OS_MUTEX_ LockBI ocked() again for that mutex, it is not suspended because the mutex is
blocked only for other tasks.

The following diagram illustrates the process of using a mutex:

OS_MUTEX_LockBlocked()

Access resource

0S_MUTEX_Unlock()

A mutex contains a counter that keeps track of how many times the mutex has been
claimed by calling OS_MJTEX Lock() or OS_MJTEX LockBl ocked() by a particular task. It
is released when that counter reaches zero, which means the CS_MJTEX_Unl ock() routine
must be called exactly the same number of times as OS_MJTEX LockBIl ocked() or OS_MJ
TEX Lock() . If it is not, the mutex remains blocked for other tasks.

On the other hand, a task cannot release a mutex that it does not own by calling 05_MJ
TEX_Unl ock() . In debug builds of embOS, a call of OS_MJTEX_Unl ock() for a mutex that
is not owned by this task will result in a call to the error handler OS_Error ().

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

185

CHAPTER 7 Introduction

Example of using a mutex

Here, two tasks access a (debug) terminal completely independently from each other. The
terminal is a resource that needs to be protected with a mutex. One task may not interrupt
another task which is writing to the terminal, as otherwise the following might occur:

e Task A begins writing to the terminal
e Task B interrupts Task A and writes to the terminal
e Task A is resumed and its output is written at a wrong position

To avoid this type of situation, every time the terminal is to be accessed by a task it is
first claimed by a call to S_MJTEX LockBl ocked() (and is automatically waited for if the
mutex is blocked). After the terminal has been written to, it is released by a call to OS_MJ+
TEX _Unl ock().

The sample application file OS_Mut exes. ¢ delivered in the application samples folder of
embOS demonstrates how mutex can be used in the above scenario:

#i ncl ude "RTGCS. h"
#i ncl ude <stdi o. h>

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks
static OS_TASK TCBHP, TCBLP; /'l Task-control -bl ocks
static OS_MJTEX Mt ex;

static void Wite(char const* s) {
OS_MJTEX_ LockBIl ocked(&Vt ex) ;
printf(s);
OS_MJTEX_Unl ock(&Vt ex) ;

}

static void HPTask(void) {
while (1) {
_Wite("HPTask\n");
OS_TASK Del ay(50);
}
}

static void LPTask(void) {
while (1) {
_Wite("LPTask\n");
OS_TASK Del ay(200);
}
}

int mai n(void) {
CS Init(); /1 Initialize enhCS
CS I nitHW); /1 Initialize hardware for enbCs
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);

OS_MJTEX_Cr eat e(&Vt ex) ; /1 Creates nutex
Os _Start(); /1 Start nultitasking
return O;

Priority inversion / priority inheritance

embQOS supports priority inheritance as a solution for the priority inversion problem when
a mutex is used by multiple tasks. Please have a look in the chapter Priority inversion /
priority inheritance on page 28 for more details.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

186

CHAPTER 7 Introduction

Deadlock

Occasionally, you might want to access two resources at once. Perhaps you are using one
of the resources, and then discover that the other resource is needed as well. A problem
exists if two tasks attempt to claim both resources but lock the associated mutexes in
different orders.

HPTask runs first, claims Mut ex_A and then calls OS_TASK_Del ay() which executes a task
switch to LPTask. LPTask claims Miut ex_B and tries to claim Mit ex_A. Since Mutex_A is
already acquired by HPTask it cannot be acquired by LPTask and LPTask is blocked. When
the delay has expired HPTask tries to claim Mut ex_B which is already acquired by LPTask.
Both tasks are blocked now.

static void HPTask(void) {
while (1) {
OS_MJTEX_LockBIl ocked(&vut ex_A) ;
OS_TASK Del ay(1);
OS_MJTEX_LockBIl ocked(&Wut ex_B) ;
OS_MJTEX_Unl ock(&Vut ex_B) ;
OS_MJTEX_Unl ock(&Vut ex_A) ;

}

}

static void LPTask(void) {
while (1) {

OS_MJTEX_LockBl ocked(&t ex_B) ;
OS_MJTEX_LockBIl ocked(&Wut ex_A) ;
OS_MJTEX_Unl ock(&Vut ex_A) ;
OS_MJTEX_Unl ock(&Vut ex_B) ;
}
}

The best way to avoid this problem is to make sure that when tasks lock multiple mutexes,
the tasks do so in the same order. When locks are always taken in a prescribed order,
deadlock should not occur.

However, this technique cannot always be used. Sometimes, you must take the mutex-
es in an order other than prescribed. To prevent deadlock in such a situation, use GS_MJ
TEX Lock() instead of the blocking API. One task must release its mutexes when the task
discovers that deadlock would otherwise be inevitable.

static void HPTask(void) {
while (1) {
OS_MJTEX_LockBIl ocked(&Vt ex_A) ;
OS_TASK Del ay(1);
OS_MJTEX_LockBIl ocked(&Wut ex_B) ;
OS_MJTEX_Unl ock(&Vut ex_B) ;
OS_MUJTEX_Unl ock(&Vut ex_A) ;
}
}

static void LPTask(void) {
while (1) {
OS_MJTEX_LockBIl ocked(&Vt ex_B) ;
if (OS_MJUTEX Lock(&Mutex_A) == 0) {
OS_MUJTEX_Unl ock(&Vut ex_B) ;
} else {
OS_MUTEX_Unl ock(&Vut ex_A) ;
OS_MJTEX_Unl ock(&Vut ex_B) ;
}
OS_TASK Del ay(1);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

187 CHAPTER 7 API functions

7.2 API functions

c
T (S (0))
31282
Routine Description 24|92
> g — 3
22 |2
x~
OS_MUTEX Create() Creates a mutex. oo
0Ss_MJTEX Del et e() Deletes a specified mutex. oo
0S_MJTEX_ Get Oaner () Returns the mutex owner if any. o oo

Returns the value of the usage counter

OS_MUTEX_Get Val ue() of a specified mutex.

0S_MUTEX_| sMut ex() Egg:}rzfe\;v:e%ther a mutex has already olele

Requests a specified mutex and blocks it

O5_MJTEX_Lock() for other tasks if it is available.

0S_MJUTEX_LockBl ocked() tC&:gll(r:s a mutex and blocks it for other olele

Tries to claim a mutex and blocks it for
OS_MJTEX_LockTi ned() other tasks if it is available within a o oo
specified time.

Releases a mutex currently in use by a

OS_MUTEX _Unl ock() task

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

188 CHAPTER 7 API functions

7.2.1 OS MUTEX Create()

Description

Creates a mutex.

Prototype
voi d OS_MJUTEX Create(OS_MJTEX* pMit ex);
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Additional information

After creation, the mutex is not locked. The mutex counter value is zero.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
165: OS_ERR | NI T_NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL
165: OS_ERR | NI T_NOT_CALLED
175: OS_ERR 2USE_MJTEX

For details, refer to the chapter Runtime application errors on page 458.
Example
static OS MJUTEX _Mit ex;
int main(void) {
.(ﬁl_I\/UTEX_Cr eat e(& Mut ex);

return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

189

CHAPTER 7 API functions

7.2.2 OS_MUTEX_ Delete()

Description

Deletes a specified mutex.

Prototype
voi d OS_MUTEX Del et e(OS_MJTEX* pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Additional information

The memory of that mutex may be reused for other purposes or may be used for creating
another mutex using the same memory. Before deleting a mutex, make sure that no task
is claiming the mutex.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

133:
138:
160:
161:
167:

0S_ERR | NV_MJTEX
0S_ERR_MUTEX_DELETE
0S_ERR | LLEGAL_I N_I SR
0OS_ERR | LLEGAL_I N_TI MER
0S_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS MJUTEX _Mit ex;

int Task(void) {

OS_MJTEX_ Del et e(& Mut ex) ;

return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

190

CHAPTER 7 API functions

7.2.3 0OS_MUTEX_GetOwner()

Description

Returns the mutex owner if any. When a task is currently using (blocking) the mutex the
task Id (address of task according task control block) is returned.

Prototype
0S_TASK *0S_MUTEX_Get Oaner (OS_CONST_PTR OS_MJUTEX * pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Return value

= NULL The mutex is not used by any task.
NULL Task Id (address of the task control block).
Additional information

If a mutex was used in main() the return value of S MJUTEX Get Oaner () is ambiguous.
The return value NULL can mean it is currently used in main() or it is currently unused.
Therefore, OS_MUTEX_ Get Omner () must not be used to check if a mutex is available. Please
use OS_MUTEX Get Val ue() instead.

It is also good practice to free all used mutexes in main() before calling GS_Start ().

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

133: OS_ERR | NV_MJTEX

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example
Please find an example at OS_MJUTEX_ Get Val ue() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

191 CHAPTER 7

7.24 0OS_MUTEX_ GetValue()

Description

API functions

Returns the value of the usage counter of a specified mutex.

Prototype
int OS_MJTEX Get Val ue(OS_CONST_PTR OS_MJTEX *pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Return value

The counter value of the mutex.
A value of zero means the mutex is available.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

133: OS_ERR | NV_MJTEX

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS MJUTEX _Mit ex;

voi d CheckMit ex(void) ({
i nt Val ue;
OS_TASK* Omner;

Val ue = OS_MJTEX_Get Val ue(& Mut ex) ;
if (Value == 0) {
printf("Mitex is currently unused");
} else {
Onner = OS_MJTEX_Get Omner (& Mt ex) ;
if (Oaner == NULL) {
printf("Mitex was used in main()");
} else {

printf("Mitex is currently used in task Ox%", Owner);

}
}
}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

192

CHAPTER 7 API functions

7.25 OS_MUTEX_IsMutex()

Description

Returns whether a mutex has already been created.

Prototype
0S_BOOL OS_MUTEX_| sMut ex(OS_CONST_PTR OS_MJTEX *pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Return value

=0 Mutex has not been created or was deleted.
=0 Mutex has already been created.
Additional information

OS_MUTEX | sMut ex() returns 1 if a mutex was created with OS_MJUTEX Creat e() and not
yet deleted with OS_MUTEX Del et e(). OS_MJTEX | sMut ex() returns 0 if a mutex was not
yet created with OS_MUTEX Cr eat e() or it was deleted with OS_MJTEX Del et e() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS MJUTEX _Mit ex;
int main(void) {

if (OS_MUTEX_ | sMutex(& Miutex) !'= (OS_BOOL)O0) {
printf("Mitex has already been created");

} else {
printf("Mitex has not yet been created");

}
return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

193 CHAPTER 7 API functions

7.2.6 OS_MUTEX_Lock()

Description

Requests a specified mutex and blocks it for other tasks if it is available. Continues execution
in any case.

Prototype

char OS_MJTEX_ Lock(OS_MJTEX* pMit ex);

Parameters

Parameter Description

pMut ex Pointer to a mutex object of type OS_MJTEX.

Return value

=0 Mutex was not available.
*#0 Mutex was available, now in use by calling task.
Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

133: OS_ERR_| NV_MJTEX

159: OS_ERR_MJTEX_OVERFLOW

160: OS_ERR | LLEGAL_I N | SR

161: OS_ERR | LLEGAL_I N _TI MER

167: OS_ERR _CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Additional information
The following diagram illustrates how OS_MJUTEX Lock() works:

OS_MUTEX_Lock()

Resource in use
by other task?

Mark current

hi ?
In use by this task task as owner

Inc Usage Counter Usage Counter =1

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

194 CHAPTER 7 API functions

Example
if (OS_MJTEX Lock(&Wutex_LCD)) {
Di spTime(); /'l Access the resource LCD
OS_MJTEX _Unl ock(&WVutex_LCD); // Resource LCD is no |onger needed
} else {

/1 Do sonething el se

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

195

CHAPTER 7 API functions

7.2.7 OS_MUTEX_ LockBlocked()

Description

Claims a mutex and blocks it for other tasks.

Prototype
int OS_MJTEX LockBl ocked(OS_MJTEX* pMit ex);
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Return value

The counter value of the mutex.
A value greater than one denotes the mutex was already locked by the calling task.

Additional information

The following situations are possible:

e Case A: The mutex is not in use.
If the mutex is not used by a task, which means the counter of the mutex is zero, the
mutex will be blocked for other tasks by incrementing the counter and writing a unique
code for the task that uses it into the mutex.

e Case B: The mutex is used by this task.
The counter of the mutex is incremented. The program continues without a break.

e (Case C: The mutex is being used by another task.
The execution of this task is suspended until the mutex is released. In the meantime if
the task blocked by the mutex has a higher priority than the task blocking the mutex,
the blocking task is assigned the priority of the task requesting the mutex. This is called
priority inheritance. Priority inheritance can only temporarily increase the priority of a
task, never reduce it.

An unlimited number of tasks can wait for a mutex. According to the rules of the scheduler,
of all the tasks waiting for the mutex the task with the highest priority will acquire the
mutex and continue program execution.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

133: OS_ERR_| NV_MJTEX
159: OS_ERR_MJTEX_OVERFLOW
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example
static OS_MJTEX _Mit ex;
voi d Task(void) {
.O.S._MJTEX_LockBI ocked(& Mt ex) ;

OS_MJTEX_Unl ock(& Mut ex) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

196 CHAPTER 7 API functions

The following diagram illustrates how OS_MJTEX_LockBl ocked() works:

OS_MUTEX_LockBlocked()

Yes, by this task Yes, by other task Wait for resource

Resource in use?
to be released

Mark current
task as owner

Increase usage
counter

Usage counter=1

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

197

CHAPTER 7 API functions

7.2.8 OS_MUTEX_ LockTimed()

Description

Tries to claim a mutex and blocks it for other tasks if it is available within a specified time.

Prototype

int OS_MJTEX LockTi med(OS_MJTEX* pMit ex,

OS_TIME Tineout);

Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.
Maximum time in system ticks until the mutex must be
available. The data type GS_TI ME is defined as an integer,
Ti meout therefore valid values are:
1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.
1 < Tinmeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0
+0

Failed, mutex not available before timeout.
Success, mutex available, current usage count of mutex.

A value greater than one denotes the mutex was already locked by the calling task.

Additional information

The following situations are possible:

Case A: The mutex is not in use.

If the mutex is not used by a task, which means the counter of the mutex is zero, the
mutex will be blocked for other tasks by incrementing the counter and writing a unique
code for the task that uses it into the mutex.

Case B: The mutex is used by this task.

The counter of the mutex is incremented. The program continues without a break.
Case C: The mutex is being used by another task.

The execution of this task is suspended until the mutex is released or the timeout time
expired. In the meantime if the task blocked by the mutex mutex has a higher priority
than the task blocking the mutex, the blocking task is assigned the priority of the task
requesting the mutex. This is called priority inheritance. Priority inheritance can only
temporarily increase the priority of a task, never reduce it.

If the mutex becomes available during the timeout, the calling task claims the mutex
and the function returns a value greater than zero, otherwise, if the mutex does not
become available, the function returns zero.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the mutex becomes available before the calling task is resumed.
Anyhow, the function will not claim the mutex because it was not available within the
requested time.

An unlimited number of tasks can wait for a mutex. According to the rules of the scheduler,
of all the tasks waiting for the mutex the task with the highest priority will acquire the
mutex and continue program execution.

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

133: OS_ERR_| NV_MJTEX
159: OS_ERR_MJTEX_OVERFLOW

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

198 CHAPTER 7 API functions

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

199 CHAPTER 7

Example

static OS_ MJUTEX _Mit ex;
voi d Task(void) {

if (OS_MJUTEX LockTi med(& Miutex, 100)) {
/1l Miutex acquired

} else {
/' Ti meout

}

UMO01001 User Guide & Reference Manual for embOS

API functions

© 1995-2025 SEGGER Microcontroller GmbH

200

CHAPTER 7 API functions

7.2.9 OS_MUTEX_Unlock()

Description

Releases a mutex currently in use by a task.

Prototype
voi d OS_MUTEX Unl ock(OS_MJUTEX* pMit ex) ;
Parameters
Parameter Description
pMut ex Pointer to a mutex object of type OS_MJTEX.

Additional information

OS_MUTEX Unl ock() may be used on a mutex only after that mutex has been locked by
calling GS_MUTEX Lock(), G5 MJTEX LockBl ocked(), or OS_ MJTEX LockTi ned(). CS_MJF
TEX _Unl ock() decrements the usage counter of the mutex, which must never become
negative.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

133:
150:
156:
159:
160:
161:
167:

0S_ERR | NV_MJTEX
0S_ERR_UNUSE_BEFORE_USE
0S_ERR_MUTEX_OWNER
0S_ERR_MUTEX_OVERFLOW
0S_ERR | LLEGAL_I N_I SR
0S_ERR | LLEGAL_I N_TI MER
0S_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example
Please find an example at CS_MJTEX_ Lock() .

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 8

Semaphore

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

202 CHAPTER 8 Introduction

8.1 Introduction

A semaphore is a mechanism that can be used to provide synchronization of tasks.
Semaphores which allow an arbitrary resource count are called counting semaphores, while
semaphores which are restricted to the values 0 and 1 are called binary semaphores.

One way to use semaphores is for signaling from one task (or ISR/software timer) to another
task. For example, if two tasks need to execute the same total number of times over the
long run: A counting semaphore can be created with an initial count of zero (no "tokens’ in
it). Every time the first task runs, it puts a token into the semaphore, thus incrementing
the semaphore’s count. The second task of the pair waits at the semaphore for tokens to
appear, and runs once for each new token, thus consuming the token and decrementing
the semaphore’s count. If the first task runs with moderate bursts, the second task will
eventually ‘catch up’ to the same total number of executions.

Binary semaphores can be used for signaling from task to task, too, in situations where
signals (counts, tokens) will not accumulate or need not be counted.

Counting semaphores are also used for regulating the access of tasks to multiple equivalent
serially-shareable resources. For instance, 10 tasks may wish to share 4 identical printers.
In this case, a counting semaphore can be created and initialized with 4 tokens. Tasks are
then programmed to take a token before printing, and return the token after printing is
done.

Example of using counter semaphore for signaling

Here, an interrupt is issued every time data is received from a peripheral source. The in-
terrupt service routine then signals the arrival of data to a worker task, which subsequently
processes that data. When the worker task is blocked from execution, e.g. by a higher-pri-
ority task, the semaphore’s counter effectively tracks the number of data packets to be
processed by the worker task, which will be executed for that exact number of times when
resumed.

The following sample application shows how semaphores can be used in the above scenario:

#i ncl ude "RTGCS. h"
#i ncl ude <stdi o. h>

static OS_STACKPTR int Stack[128]; /'l Task stack

static OS_TASK TCB; /1l Task control bl ock

static OS_SEMAPHORE Senm; /'l Semaphore

static OS_TI MER Ti mer; [/ Timer to emulate interrupt

static void Task(void) {

while(l) {
OS_SEMAPHORE_TakeBl ocked(&Senm) ; /1 Wait for signaling of received data
printf("Task is processing data\n"); // Act on received data

}

}

static void TinmerCallback(void) {
/1 Software timer function to enulate an interrupt

OS_SEMAPHORE_G ve(&Sem) ; /1 Signal data reception
CS_TI MER_Rest art (&Ti ner) ;
}
int mai n(void) {
CS Init(); /[l Initialize enbQCS
CS I nitHW); /1 Initialize required hardware

CS_TI MER _Creat e(&Ti mer, Ti mer Cal | back, 10);
CS_TI MER _Start (&Ti nmer);
OS_TASK_CREATE(&TCB, "Task", 100, Task, Stack);

OS_SEMAPHORE_Cr eat e(&Semm, 0); /|l Creates semaphore
CS start(); /1 Start enbOS
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

203 CHAPTER 8 Introduction

Example of using semaphore for regulating the access to shareable resources:

Ten tasks need to print messages on four available printers. The access to the printer must
not be interrupted by another task. It is not essential for a task which actual printer is
used and the Printer() function does not care about this aspect (this is a limitation of the
example but not relevant). The example creates the semaphore with 4 tokens. Each token
represents one printer. If a task wants to use one of the printers it takes one token and
give it back after the print job is done. When no token (printer) is available the task is
suspended until a token is again available.

#i ncl ude "RTCS. h"
#i ncl ude <stdio. h>

#define NUM PRI NTERS 4

#def i ne NUM_TASKS 10

static OS_STACKPTR int Stack[NUM TASKS][128]; // Task stack

static OS_TASK TCB[NUM_TASKS] ; /1 Task control bl ock
static OS_SEMAPHORE Senn; /'l Semaphor e

static void Print(const char* s) {
OS_SEMAPHORE_TakeBl ocked(&Semm) ;
/1l Print message on one of the available printers
OS_SEMAPHORE_G ve(&Sem) ;

}

static void Task(void) {
while(1l) {
Print("Hello World");
}
}

int main(void) {
Cs_U32 i;

CS Init(); /1 Initialize enbCS
CS InitHW); /1 Initialize required hardware
for (i = O0u; i < NUMTASKS; i++) {

OS_TASK_CREATE(&TCB[i], "Task", 100, Task, Stack[i]);

}

OS_SEMAPHORE_Cr eat e(&Senma, NUM PRI NTERS); // Creates senmaphore
CS Start(); /1 Start enbOS
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

204 CHAPTER 8 API functions

8.2 API functions

Routine Description

urew
Jsel Alld
ysel Audun
Sl
Jawll MS

0S_SEMAPHORE Cr eat e() Creates a semaphore with a specified R
- - initial token count value.

OS_SEMAPHORE Del et e() Deletes the specified semaphore. oo

Returns the semaphore token counter
value of the specified semaphore.

OS_SEMAPHORE_Get Val ue()

0S_SEMAPHORE_Gi ve() Increments the senja]phore token olelelele
- — counter of the specified semaphore.

Increments the semaphore token
OS_SEMAPHORE G veMax() count of the specified semaphoreupto (e |e | e | e | e
the specified maximum value.

Sets the semaphore token counter val-

OS_SEMAPHORE_Set Val ue() ue of the specified semaphore.

Decrements the semaphore token
OS_SEMAPHORE Take() counter value of the specified sema- oo 0|00
phore, if it was not zero.

Decrements the semaphore token
OS_SEMAPHORE _TakeBl ocked() | counter value of the specified sema- oo
phore.

Decrements the semaphore token
0S_SEMAPHORE. TakeTi med() counte_r value of the speC|f|eq sema- ol e
phore if a semaphore token is avail-

able within the specified time.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

205

CHAPTER 8 API functions

8.2.1 0OS_SEMAPHORE_Create()

Description

Creates a semaphore with a specified initial token count value.

Prototype
voi d OS_SEMAPHORE_Cr eat e(OS_SEMAPHORE* pSenm,
OS_UI NT I nitVal ue);
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.
Initial semaphore token count value:
I ni tVal ue 0 < InitValue <216 - 1 = OxFFFF for 8/16-bit CPUs.
0 < InitValue < 232 -1 = OxFFFFFFFF for 32-bit CPUs.

Additional information

Note

embOS offers a macro that calls OS SEMAPHORE Cr eat e() with an initial count value of
0, allowing to more easily create semaphores. If the macro shall be used, its definition
is as follows:

#defi ne OS_SEMAPHORE CREATE(ps) OS SEMAPHORE Create((ps), 0)

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
165: OS_ERR | NI T_NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL
174: OS_ERR 2USE_SEMAPHORE

For details, refer to the chapter Runtime application errors on page 458.
Example
static OS_SEMA _Senms;
int main(void) {
.(ﬁ._SEMAPHO?E_Cr eate(& Semm, 8);

return O;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

206 CHAPTER 8 API functions

8.2.2 OS_SEMAPHORE_Delete()

Description

Deletes the specified semaphore.

Prototype
voi d OS_SEMAPHORE_Del et e(0OS_SEMAPHORE* pSema) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Additional information

Before deleting a semaphore, make sure that no task is waiting for it.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

132: OS_ERR | NV_SEMAPHORE
137: OS_ERR_SEMAPHORE DELETE
160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS SEMA _Senm;
voi d Task(void) {

0S_SEMAPHORE_Del et e(& Sema) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

207

CHAPTER 8 API functions

8.2.3 0OS_SEMAPHORE GetValue()

Description

Returns the semaphore token counter value of the specified semaphore.

Prototype
int OS_SEMAPHORE_Get Val ue(0S_CONST_PTR OS_SEMAPHORE *pSens) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Return value

The current semaphore token counter value.

Additional information

OS_SEMAPHORE Get Val ue() can be used to get the current semaphore token value before
calling e.g. OS_SEMAPHORE_TakeBIl ocked() .
Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

132: OS_ERR_| NV_SEMAPHORE
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_SEMA _Senms,;

voi d Print SemaVal ue(void) {
i nt Val ue;

Val ue = OS_SEMAPHORE_Cet Val ue(& Senmm) ;
printf("Sema Val ue: %\ n", Val ue)

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

208 CHAPTER 8 API functions

8.2.4 OS _SEMAPHORE_SetValue()

Description

Sets the semaphore token counter value of the specified semaphore.

Prototype
0S_U8 OS_SEMAPHORE_Set Val ue(OS_SEMAPHORE* pSenm,
CS_UI NT Val ue) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Count value of the semaphore:
Val ue 0 < Val ue < 216 - 1 = OxFFFF for 8/16-bit CPUs.
0 < Val ue < 232 - 1 = OxFFFFFFFF for 32-bit CPUs.

Return value

= 0: In any case. The return value can safely be ignored.

Additional information

If one ore more tasks are waiting for this semaphore, they will be put in the READY state
and activated according to the rules of the scheduler.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

132: OS_ERR | NV_SEMAPHORE
160: OS_ERR | LLEGAL_I N_I SR

161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS SEMA _Senm;
voi d Task(void) {

OS_SEMAPHORE_Set Val ue(& Sema, 0);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

209

CHAPTER 8 API functions

8.25 OS_SEMAPHORE_Give()

Description

Increments the semaphore token counter of the specified semaphore.

Prototype
voi d OS_SEMAPHORE G ve(OS_SEMAPHORE* pSenm) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Additional information

OS_SEMAPHORE G ve() increments the semaphore token count. If one ore more tasks are
waiting for this semaphore, they will be put in the READY state and activated according
to the rules of the scheduler.

The semaphore token counter can have a maximum value of OxFFFF for 8/16-bit CPUs or
OxFFFFFFFF for 32-bit CPUs. It is the responsibility of the application to make sure that
this limit is not exceeded.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

121: OS_ERR SEMAPHORE OVERFLOW

132: OS_ERR | NV_SEMAPHORE

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

Please refer to the example in the introduction of chapter Semaphore on page 201.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

210 CHAPTER 8 API functions

8.2.6 0OS _SEMAPHORE_GiveMax()

Description

Increments the semaphore token count of the specified semaphore up to the specified
maximum value.

Prototype

voi d OS_SEMAPHORE_G veMax(OS_SEMAPHORE* pSenm,
CS_UI NT MaxVal ue) ;

Parameters

Parameter Description

pSema Pointer to a semaphore object of type OS_SEMAPHORE.
Count value of the semaphore:

MaxVal ue 1 < MaxVal ue < 216 - 1 = OxFFFF for 8/16-bit CPUs.
1 < MaxVal ue < 232 - 1 = OxFFFFFFFF for 32-bit CPUs.

Additional information

As long as current value of the semaphore token counter is below the specified maximum
value, OS_SEMAPHORE G veMax() increments its token counter. If one ore more tasks are
waiting for this semaphore, they will be put in the READY state and activated according
to the rules of the scheduler.

Calling OS_SEMAPHORE G veMax() with a MaxVal ue of 1 makes a counting semaphore be-
have like a binary semaphore.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

132: OS_ERR | NV_SEMAPHORE
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_SEMA _Senms;

voi d Task(void) {

OS_SEMAPHORE_G veMax(& Sema, 8);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

211

CHAPTER 8 API functions

8.2.7 OS_SEMAPHORE_Take()

Description

Decrements the semaphore token counter value of the specified semaphore, if it was not
zero.

Prototype
0S_BOOL OS_SEMAPHORE Take(OS_SEMAPHORE* pSens) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Return value

=0 Failed, no semaphore token available (semaphore token counter is zero).
=0 Success, semaphore token was available and semaphore token counter was
decremented once.

Additional information

This function never suspends the calling task. It may therefore also be called from an em-
bOS interrupt routine. If the semaphore token counter is not zero, the counter is decre-
mented. If the semaphore token counter is zero, OS_SEMAPHORE Take() does not modify
the semaphore token counter.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

132: OS_ERR | NV_SEMAPHORE
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS SEMA _Senm;
voi d Task(void) {

i f (OS_SEMAPHORE Take(& Semm) != 0) {
printf("Semaphore decrenented successfully.\n");
} else {
printf("Semaphore not signaled.\n");

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

212

CHAPTER 8 API functions

8.2.8 0OS_SEMAPHORE_TakeBlocked()

Description

Decrements the semaphore token counter value of the specified semaphore.

Prototype
voi d OS_SEMAPHORE TakeBl ocked(OS_SEMAPHORE* pSenm) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Additional information

If the counter of the semaphore is not zero, the counter is decremented and program
execution continues.

If the counter is zero, OS_SEMAPHORE TakeBl ocked() waits until the counter is incremented
by another task, a timer or an interrupt handler by a call to 08 SEMAPHORE G ve(). The
counter is then decremented and program execution continues. An unlimited number of
tasks can wait for a semaphore. According to the rules of the scheduler, of all the tasks
waiting for the semaphore, the task with the highest priority will continue program exe-
cution.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

132: OS_ERR | NV_SEMAPHORE
160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL
226: OS_ERR | LLEGAL_| N_MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

Please refer to the example in the introduction of chapter Semaphore on page 201.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

213

CHAPTER 8 API functions

8.2.9 OS SEMAPHORE_TakeTimed()

Description

Decrements the semaphore token counter value of the specified semaphore if a semaphore
token is available within the specified time.

Prototype
0S_BOOL OS_SEMAPHORE TakeTi med(OS_SEMAPHORE* pSem,
OS_TI ME Ti meout) ;
Parameters
Parameter Description
pSema Pointer to a semaphore object of type OS_SEMAPHORE.

Maximum time in system ticks until the semaphore token
must be available. The data type OGS _TI ME is defined as an
Ti meout integer, therefore valid values are:

1 < Tinmeout < 215 -1 = Ox7FFF for 8/16-bit CPUs.

1 < Tinmeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Failed, semaphore not available before timeout.
+#0 Success, semaphore was available and counter decremented.

Additional information

If the semaphore token counter is not zero, the counter is decremented and program ex-
ecution continues.

If the counter is zero, OS_SEMAPHORE TakeTi ned() waits until the semaphore token
counter is incremented by another task, a timer, or an interrupt handler by a call to
OS_SEMAPHORE G ve() . The counter is then decremented and program execution contin-
ues. If the semaphore token counter was incremented within the specified time the program
execution continues, but returns a value of zero.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the semaphore becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because
the semaphore was not available within the requested time. In this case, the state of the
semaphore is not modified by OS_ SEMAPHORE TakeTi ned() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

132: OS_ERR | NV_SEMAPHORE
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example
static OS_SEMA _Senms;

voi d Task(void) {

i f (OS_SEMAPHORE TakeTi med(& Sema, 100)) {

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

214 CHAPTER 8 API functions

/'l Semaphore acquired
} else {
... Il Tineout
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 9

Readers-Writer Lock

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

216 CHAPTER 9 Introduction

9.1 Introduction

A readers-writer lock is a synchronization primitive that solves the readers-writer problem.
A readers-writer lock allows concurrent access for read-only operations, while write opera-
tions require exclusive access. This means that multiple tasks can read the data in parallel
but an exclusive lock is needed for writing or modifying data. When a writer is writing the
data, all other writers or readers will be blocked until the writer has finished writing. A
common use might be to control access to a data structure in memory that cannot be up-
dated atomically and is invalid (and should not be read by another task) until the update is
complete. An embOS readers-writer lock is implemented using semaphores and mutexes.

#i ncl ude "RTCS. h"
#i ncl ude "stdio. h"

#defi ne NUM _READERS 2

static OS_STACKPTR int StackRd1[128], StackRd2[128], StackW][128];

static OS_TASK TCBRd1, TCBRd2, TCBW;
static OS_ RW.OCK Lock;
static OS_U32 d obal Var;

static void RdTask(void) {
while (1) {
OS_RW.OCK_RdLockBIl ocked(&L.ock) ;
printf("%\n", G obal Var);
OS_RW.OCK_RdUnl ock(&Lock) ;

}
}

static void WTask(void) {
while (1) {
OS_RW.OCK_W LockBIl ocked(&L.ock) ;
d obal Var ++;
OS_RW.OCK_W Unl ock(&Lock) ;
OS_TASK_Del ay(10);
}
}

int main(void) {
oS Init(); Il Initialize enbGS
CS InitHW); // Initialize required hardware
OS_TASK _CREATE(&TCBRd1, "Reader Task 1", 100, RdTask, StackRd1l);
OS_TASK _CREATE(&TCBRd2, "Reader Task 2", 100, RdTask, StackRd2);
OS_TASK CREATE(&TCBW, "Witer Task" , 101, WTask, StackW);
OS_RWL.OCK_Cr eat e(& ock, NUM READERS);
OS Start(); Il Start enbGCs
return O;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

217 CHAPTER 9 API functions

9.2 APIfunctions

v l|S %)

312252

Routine Description |4 (< |24

Sle = |P|3

28| |a

~
OS RW.OCK Create() Creates a readers-writer lock. oo
Deletes the specified readers-writer

OS RALOCK Del et e() lock

Claims the specified readers-writer

O5_RWLOCK_RdLock() lock and blocks it for writer tasks.

Claims the specified readers-writer

O5_RALOCK_RdLockBl ocked() lock and blocks it for writer tasks.

Claims the specified readers-writer
. lock if the lock is available within the
O5_RWL.OCK_RdLockTi med() specified timeout and blocks it for *°

writer tasks.

Releases the specified readers-writer

O5_RWLOCK_RdUnl ock() lock currently used by the reader task.

Claims the specified readers-writer

0S5 RW.OCK_W Lock() lock and blocks it for writer and reader e | o | @
tasks.
Claims the specified readers-writer
OS_RW.OCK_W LockBI ocked() lock and blocks it for writer and reader oo
tasks.

Claims the specified readers-writer
. lock if the lock is available within the
O5_RWL.OCK_W LockTi med() specified timeout and blocks it for *°

writer and reader tasks.

Releases the specified readers-writer

O5_RWLOCK_W Unl ock() lock currently used by the writer task.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

218 CHAPTER 9

9.2.1 OS RWLOCK_ Create()

Description

Creates a readers-writer lock.

Prototype

voi d OS_RW.OCK_Creat e(OS_RW.OCK* pLock,
CS_UI NT NurrReader s) ;

API functions

Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.
Number of reader tasks. Maximum number is:
NunReader s 0 < InitValue < 216 - 1 = OxFFFF for 8/16-bit CPUs.
0 < InitValue < 232 -1 = OxFFFFFFFF for 32-bit CPUs.

Additional information

If you use readers-writer lock from an unprivileged task you need not only access to the
lock object itself but also to the semaphore and the mutex member. Please see embOS-MPU

example below.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
165: OS_ERR | NI T_NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL
258: OS_ERR 2USE_RW.OCK

For details, refer to the chapter Runtime application errors on page 458.

Example

#def i ne NUM_READERS 2

static OS_RW.OCK Lock;

int main(void) {
.(ﬁl_RV\LOCK_Cr eat e(&Lock, NUM READERS) ;
ret urn O;

}

Example using embOS-MPU

static OS RW.OCK Lock;

static const OS_MPU OBJ _alList[] = {{&Lock,

0S_MPU_OBJTYPE_RW.OCK} ,

{&Lock. Semaphore, OS_MPU OBJTYPE_SENA},

{&Lock. Mut ex,
{ NULL,

static void Task(void) {
OS_MPU_Set Al | owedObj ect s(&TCB, _ali st);
OS_MPU_Swi t chToUnpri vState();
while (1) {

UMO01001 User Guide & Reference Manual for embOS

0S_MPU_OBJTYPE_MUTEX},
0S_MPU_OBJTYPE_| NVALI D} } ;

© 1995-2025 SEGGER Microcontroller GmbH

219 CHAPTER 9 API functions

OS_RW.OCK_RdLockBIl ocked(& ock) ;
ReadDat a() ;
OS_RW.OCK_RdUnl ock(&Lock) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

220 CHAPTER 9 API functions

9.2.2 0S_RWLOCK_Delete()

Description

Deletes the specified readers-writer lock.

Prototype
voi d OS_RW.OCK Del et e(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Additional information

Before deleting a readers-writer lock, make sure that no task is waiting for it.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL
257: OS_ERR _RW.OCK_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS RW.OCK Lock;
voi d Task(void) {

OS_RWL.OCK_Del et e(&Lock) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

221

CHAPTER 9 API functions

9.2.3 0OS_RWLOCK_RdLock()

Description

Claims the specified readers-writer lock and blocks it for writer tasks.

Prototype
OS_BOOL OS_RW.OCK_RdLock(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Return value

=0 Failed, lock could not be claimed.
=0 Success, lock was available.

Additional information

Reader tasks can still access the guarded object. OS RW.OCK_RdLock() returns at once in
any case.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

167: OS_ERR CPU_STATE_ | LLEGAL
257: OS_ERR _RW.OCK_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS RW.OCK Lock;

voi d Task(void) {
OS BOOL r;

r = OS_RW.OCK_RdLock(&Lock);
if (r 1=0) {
ReadSoneDat a() ;
OS_RW.OCK_RdUnl ock(&Lock) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

222

CHAPTER 9 API functions

9.24 0OS RWLOCK RdLockBlocked()

Description

Claims the specified readers-writer lock and blocks it for writer tasks.

Prototype
voi d OS_RW.OCK_RdLockBl ocked(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Additional information

Reader tasks can still access the guarded object. S RW.OCK_RdLockBl ocked() suspends
the current task and returns once a read lock is available.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL
226: OS_ERR | LLEGAL_| N_MAI N
257: OS_ERR _RW.OCK_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS RW.OCK Lock;

voi d Task(void) {
OS_RW.OCK_RdLockBIl ocked(&L.ock) ;
ReadSoneDat a() ;
OS_RW.OCK_RdUnl ock(&Lock) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

223

CHAPTER 9 API functions

9.25 0OS_RWLOCK_RdLockTimed()

Description

Claims the specified readers-writer lock if the lock is available within the specified timeout
and blocks it for writer tasks.

Prototype

0S_BOOL OS_RW.OCK_RdLockTi ned(OS_RW.OCK* pLock,
CS_TI ME Ti meout) ;

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Maximum time in system ticks until the lock must be avail-
able. The data type OS_TI ME is defined as an integer, there-
Ti meout fore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tinmeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Failed, lock could not be claimed within the timeout.
=0 Success, lock was available.

Additional information

Reader tasks can still access the guarded object. S RW.OCK_RdLockTi nmed() suspends the
current task and returns once a reader lock is available or the timeout has expired.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N
257: OS_ERR RW.OCK_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_RW.OCK Lock;

voi d Task(void) {
OS_BOCL r;

r = OS_RW.OCK_RdLockTi ned(&.ock, 100);
if (r '=0) {
ReadSoneDat a() ;
OS_RW.OCK_RdUnl ock(&Lock) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

224

CHAPTER 9 API functions

9.2.6 0OS_RWLOCK_RdUnlock()

Description

Releases the specified readers-writer lock currently used by the reader task.

Prototype
voi d OS_RW.OCK_RdUnl ock(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Additional information
After OS_ RW.OCK_RdUnl ock() the lock can be used by another reader or the writer task.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

167: OS_ERR CPU_STATE_ | LLEGAL
257: OS_ERR _RW.OCK_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS RW.OCK Lock;

voi d Task(void) {
OS_RW.OCK_RdLockBIl ocked(&L.ock) ;
ReadSoneDat a() ;
OS_RW.OCK_RdUnl ock(&Lock) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

225

CHAPTER 9 API functions

9.2.7 OS_RWLOCK_WrLock()

Description

Claims the specified readers-writer lock and blocks it for writer and reader tasks.

Prototype
0S_BOOL OS_RW.OCK_W Lock(OS_RW.OCK* pLock) ;
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Return value

=0 Failed, writer lock could not be claimed.
=0 Success, writer lock was available.

Additional information
OS RW.OCK W Lock() returns at once in any case.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL
257: OS_ERR _RW.OCK_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS RW.OCK Lock;

voi d Task(void) {
OS BOOL r;

r = OS_RW.OCK_W Lock(&Lock);
if (r 1'=0) {
Wit eSoneDat a() ;
OS_RW.OCK_W Unl ock(&Lock) ;

}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

226

CHAPTER 9 API functions

9.2.8 0S_RWLOCK_WrLockBlocked()

Description

Claims the specified readers-writer lock and blocks it for writer and reader tasks.

Prototype
voi d OS_RW.OCK_W LockBl ocked(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Additional information

It requires all readers to relinquish their locks before the writer lock can be acquired. CS_R-
WLOCK_W LockBl ocked() suspends the current task and returns once the write lock is avail-
able.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL
226: OS_ERR | LLEGAL_| N_MAI N
257: OS_ERR _RW.OCK_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS RW.OCK Lock;

voi d Task(void) {
OS_RW.OCK_W LockBIl ocked(&L.ock) ;
Wit eSoneDat a() ;
OS_RW.OCK_W Unl ock(&Lock) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

227

CHAPTER 9 API functions

9.2.9 OS RWLOCK_WrLockTimed()

Description

Claims the specified readers-writer lock if the lock is available within the specified timeout
and blocks it for writer and reader tasks.

Prototype

0S_BOOL OS_RW.OCK_W LockTi ned(OS_RW.OCK* pLock,
CS_TI ME Ti meout) ;

Parameters

Parameter Description

pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Maximum time in system ticks until the lock must be avail-
able. The data type OS_TI ME is defined as an integer, there-
Ti meout fore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tinmeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Failed, lock could not be claimed.
=0 Success, lock was available.

Additional information

It requires all readers to relinquish their locks before the writer lock can be acquired. GOS8 _R-
WL.OCK_W LockTi med() suspends the current task and returns once the writer lock is avail-
able or the timeout has expired.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N
257: OS_ERR RW.OCK_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_RW.OCK Lock;

voi d Task(void) {
OS_BOCL r;

r = OS_RW.OCK_W LockTi ned(&.ock, 100);
if (r '=0) {
W iteSoneDat a();
OS_RW.OCK_W Unl ock(&Lock) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

228 CHAPTER 9 API functions

9.2.10 OS_RWLOCK_WrUnlock()

Description

Releases the specified readers-writer lock currently used by the writer task.

Prototype
voi d OS_RW.OCK_W Unl ock(OS_RW.OCK* pLock);
Parameters
Parameter Description
pLock Pointer to a readers-writer lock object of type OS_RW.OCK.

Additional information
After OS_ RWLOCK_W Unl ock() the lock is available for other reader and writer tasks.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL
257: OS_ERR _RW.OCK_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS RW.OCK Lock;

voi d Task(void) {
OS_RW.OCK_W LockBIl ocked(&L.ock) ;
Wit eSoneDat a() ;
OS_RW.OCK_W Unl ock(&Lock) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 10

Mailbox

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

230 CHAPTER 10 Introduction

10.1 Introduction

In the preceding chapters, task synchronization by the use of semaphores was described.
Unfortunately, semaphores cannot transfer data from one task to another. If we need to
transfer data between tasks for example via a buffer, we could use a mutex every time we
accessed the buffer. But doing so would make the program less efficient. Another major
disadvantage would be that we could not access the buffer from an interrupt handler,
because the interrupt handler is not allowed to wait for the mutex.

One solution would be the usage of global variables. In this case we would need to disable
interrupts each time and in each place that we accessed these variables. This is possible,
but it is a path full of pitfalls. It is also not easy for a task to wait for a character to be
placed in a buffer without polling the global variable that contains the number of characters
in the buffer. Again, there is solution -- the task could be notified by an event signaled to
the task each time a character is placed in the buffer. This is why there is an easier way to
do this with a real-time OS: The use of mailboxes.

A mailbox is a buffer that is managed by the RTOS. The buffer behaves like a normal buffer;
you can deposit something (called a message) and retrieve it later. Mailboxes usually work
as FIFO: first in, first out. So a message that is deposited first will usually be retrieved first.
“Message” might sound abstract, but very simply it means “item of data”. It will become
clearer in the typical applications explained in the following section.

Limitations:

Both the number of mailboxes and buffers are limited only by the amount of available
memory. However, the number of messages per mailbox, the message size per mailbox,
and the buffer size per mailbox are limited by software design. The buffer must be big
enough to hold the given number of messages of the specified size: Message size * Number
of messages in bytes.

8 or 16-bit CPUs 32-bit CPUs
Maximum number of messages 32,767 2,147,483,647
Maximum message size 32,767 bytes 32,767 bytes
Maximum buffer size 65,535 bytes 4,294,967,295 bytes

These limitations have been placed on mailboxes to guarantee efficient coding and also to
ensure efficient management. These limitations are typically not a problem.

A mailbox can be used by more than one producer, but typically is used by one consumer
only. This is because applications need to ensure that each consumer retrieves mails that
are intended for it only, which is easily accomplished by using distinct mailboxes for each
individual consumer. Furthermore, with multiple tasks waiting for a mail in one specific
mailbox, all of these tasks are resumed when a new mail arrives. Since only one task may
retrieve that mail, however, all other tasks would execute only to find that the mail was
consumed already, wasting computation time in the process.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

231 CHAPTER 10 Introduction

10.1.1 Single-byte mailbox functions

In many (if not the most) situations, mailboxes are used simply to hold and transfer sin-
gle-byte messages. This is the case, for example, with a mailbox that takes the character
received or sent via serial interface, or typically with a mailbox used as a keyboard buffer.
In some of these cases, time is very critical, especially if a lot of data is transferred in short
periods of time.

To minimize the overhead caused by the mailbox management of embQOS, variations
on some mailbox functions are available for single-byte mailboxes. The general func-
tions OS_MAI LBOX_Put Bl ocked(), OS_MAI LBOX Put (), OS_MAI LBOX Get Bl ocked(), and
OS_MAI LBOX_Get () can transfer messages of sizes between 1 and 32,767 bytes each.

Their single-byte equivalents GS_MAI LBOX_Put Bl ocked1(), OS_MAI LBOX Put 1(), CS_MAI L-
BOX_Get Bl ocked1(), and OS_MAI LBOX_Get 1() work the same way with the exception that
they execute much faster because management is simpler. It is recommended to use the
single-byte versions if you transfer a lot of single-byte data via mailboxes.

The routines OS_MAI LBOX_Put Bl ocked1(), OS_MAILBOX Putl1(), OS_MAILBOX_ Get-
Bl ocked1(), and OS_MAI LBOX_ Get 1() work exactly the same way as their universal equiv-
alents. The only difference is that they must only be used for single-byte mailboxes.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

232 CHAPTER 10 Introduction

Example

#define MAX MSG SIZE (9) // Max. nunber of bytes per nessage
#define MAX_ MSG NUM (2) // Max. nunber of messages per Mail box

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

static OS _TASK TCBHP, TCBLP; // Task control bl ocks
static OS_MAI LBOX MyMai | box;
static char MyMai | boxBuf f er [MAX_MSG_SI ZE * MAX_MSG_NUM ;

static void HPTask(void) {
char abDat a] MAX_MSG_SI ZE] ;

while (1) {
OS_MAI LBOX_Get Bl ocked(&WMai | box, (void *)aData);
OS_COM SendStri ng(abat a) ;

}
}
static void LPTask(void) {
while (1) {
OS_MAI LBOX_Put Bl ocked(&WMai | box, "Hello\0 ");
OS_MAI LBOX_Put Bl ocked(&WMai | box, "Wbrld !'\n");
}
}
int main(void) {
CS Init(); /'l Initialize enbOS
Cs InitHW); /1 Initialize required hardware
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
CS_MAI LBOX_Cr eat e(&WMai | box, MAX_MsSG_SI ZE, MAX_MSG NUM &MW Mai | boxBuffer);
OS_COM SendString("enbOS OS_Mai | box exampl e");
OS_COM SendString("\n\nDenonstrating nessage passing\n");
CS Start(); /1 Start enmbCS
return O;
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

CHAPTER 10 API functions
10.2 API functions
Routine Description o |4 (< (;’U’ =
58 ; 3
~ |0 D
~

OS_MAI LBOX _d ear ()

Clears all messages in the specified
mailbox.

OS_MAI LBOX Creat e()

Creates a mailbox.

OS_MAI LBOX_Del et e()

Deletes the specified mailbox.

OS_MAI LBOX_Get ()

Retrieves a new message of a prede-
fined size from the specified mailbox if
a message is available.

OS_MAI LBOX_Get 1()

Retrieves a new message of size 1
from the specified mailbox, if a mes-
sage is available.

OS_MAI LBOX Cet Bl ocked()

Retrieves a new message of a prede-
fined size from the specified mailbox.

OS_MAI LBOX_Get Bl ocked1()

Retrieves a new message of size 1
from the specified mailbox.

OS_MAI LBOX_CGet MessageCnt ()

Returns the number of messages cur-
rently available in the specified mail-
box.

OS_MAI LBOX_Get Ti med()

Retrieves a new message of a prede-
fined size from the specified mailbox if
a message is available within a given
time.

OS_MAI LBOX_Get Ti med1()

Retrieves a new message of size 1
from the specified mailbox if a mes-
sage is available within a given time.

OS_MAI LBOX_Get Pt r ()

Retrieves a pointer to a new message
of a predefined size from the specified
mailbox if a message is available.

OS_MAI LBOX_Cet Pt r Bl ocked()

Retrieves a pointer to a new message
of a predefined size from the specified
mailbox.

OS_MAI LBOX_I sl nUse()

Returns whether the specified mailbox
is currently in use.

OS_NAI LBOX_Peek()

Peeks a message from the specified
mailbox without removing the mes-
sage.

OS_MAI LBOX_Pur ge()

Deletes the last retrieved message in
the specified mailbox.

OS_MAI LBOX_Put ()

Stores a new message of a prede-
fined size in the specified mailbox if
the mailbox is able to accept one more
message.

OS_MAI LBOX_Put 1()

Stores a new message of size 1 in the
specified mailbox if the mailbox is able
to accept one more message.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

234

CHAPTER 10

API functions

Routine

Description

urew
)se] Alld
ysel Audun

ds|
JBWIL MS

OS_NAI LBOX_Put Bl ocked()

Stores a new message of a predefined
size in the specified mailbox.

OS_NAI LBOX_Put Bl ocked1()

Stores a new message of size 1 in the
specified mailbox.

OS_MAI LBOX_Put Front ()

Stores a new message of a predefined
size into the specified mailbox in front
of all other messages if the mailbox is
able to accept one more message.

OS_MAI LBOX _Put Front 1()

Stores a new message of size 1 in-
to the specified mailbox in front of all
other messages if the mailbox is able
to accept one more message.

OS_MAI LBOX_Put Front -
Bl ocked()

Stores a new message of a predefined
size at the beginning of the specified
mailbox in front of all other messages.

OS_MAI LBOX_Put Front -
Bl ockedl()

Stores a new message of size 1 at the
beginning of the specified mailbox in
front of all other messages.

OS_MAI LBOX_Put Ti med()

Stores a new message of a prede-
fined size in the specified mailbox if
the mailbox is able to accept one more
message within a given time.

OS_MAI LBOX_Put Ti med1()

Stores a new message of size 1 in the
specified mailbox if the mailbox is able
to accept one more message within a
given time.

OS_AI LBOX_Wai t Bl ocked()

Waits until a message is available, but
does not retrieve the message from
the specified mailbox.

OS_MAI LBOX_ Wi t Ti med()

Waits until a message is available or
the timeout has expired, but does not
retrieve the message from the speci-
fied mailbox.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

235

CHAPTER 10 API functions

10.2.1 OS_MAILBOX_Clear()

Description

Clears all messages in the specified mailbox.

Prototype
voi d OS_MAI LBOX_Cl ear (OS_MAI LBOX* pMai | box) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.

Additional information

A mailbox must not be cleared when it is in use. In use means the application currently
holds a pointer to a message in the mailbox. 08§ _MAI LBOX_d ear () may cause a task switch.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX

147: OS_ERR_MAI LBOX_| NUSE
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBKey;

voi d C ear KeyBuf fer(void) ({
OS_MAI LBOX_dl ear (& _MBKey) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

236 CHAPTER 10 API functions

10.2.2 OS_MAILBOX_Create()

Description

Creates a mailbox.

Prototype

voi d OS_MAI LBOX_Cr eat e(OS_MAI LBOX* pMai | box,
Os_U16 si zeof Msg,
OS_UI NT maxnof Msg,
voi d* pBuffer);

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
si zeof Msg Size of a message in bytes. Valid values are

1 < sizeof Msg < 32,767.

Maximum number of messages. Valid values are
maxnof Msg 1 < Maxnof Msg < 32,767 on 8 or 16-bit CPUs, or
1 < Maxnof Msg < 2,147,483,647 on 32-bit CPUs.

Pointer to a memory area used as buffer. The buffer must
be big enough to hold the given humber of messages of
the specified size: si zeof Msg * maxnoMsg bytes. For 8/16-
bit CPUs the total buffer size for one mailbox is limited to
65,536 bytes. For 32-bit CPUs the total buffer size for one
mailbox is limited to 4,294,967,295 bytes.

pBuf f er

Additional information

Mailboxes created with OS_MAI LBOX_Cr eat e() resume a waiting task for every new mes-
sage.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

106: OS_ERR_MB_BUFFER S| ZE
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
165: OS_ERR | NI T_NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL
172: OS_ERR 2USE_MAI LBOX

For details, refer to the chapter Runtime application errors on page 458.

Example

Mailbox used as keyboard buffer:

static OS_MAI LBOX _MBKey;
char _MBKeyBuffer[6];

voi d I nitKeyMan(void) {
Il
/1 Create mail box, functioning as type ahead buffer
Il
OS_MAI LBOX _Create(& MBKey, 1, sizeof(_MBKeyBuffer), & MBKeyBuffer);

}

Mailbox used for transferring complex commands from one task to another:

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

237 CHAPTER 10 API functions

I
/'l Exanpl e of nmilbox used for transferring conmands to a task
/1 that controls a notor
I
typedef struct {
char Cnd;
i nt Speed[2];
int Position[2];
} MOTORCMD;

OS_MAI LBOX MBMWbt or
#def i ne NUM_MOTORCMDS 4
char BufferMtor[sizeof (MOTORCMD) * NUM MOTORCMDS] ;
voi d MOTOR I nit(void) {
/1l Create nmil box that holds commands nessages

OS_MAI LBOX_Cr eat e(&VBMot or, si zeof (MOTORCMD), NUM _MOTORCMDS, &Buffer Motor);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

238 CHAPTER 10 API functions

10.2.3 OS_MAILBOX_Delete()

Description

Deletes the specified mailbox.

Prototype
voi d OS_MAI LBOX_Del et e(OS_MAI LBOX* pMai | box) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.

Additional information

A mailbox must not be deleted when it is in use or a task is waiting for it. In use means
the application currently holds a pointer to a message in the mailbox.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX

136: OS_ERR_MAI LBOX_DELETE
147: OS_ERR_MAI LBOX_| NUSE
160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_MAI LBOX _MBSerln;

voi d C eanup(void) {
OS_MAI LBOX_Del et e(& _MBSer 1 n);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

239 CHAPTER 10 API functions

10.2.4 OS_MAILBOX_Get()

Description
Retrieves a new message of a predefined size from the specified mailbox if a message is
available.
Prototype
char OS_MAI LBOX_Get (OS_MAI LBOX* pMai | box,
voi d* pMessage) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
MESsage stored at. Make sure that there is sufficient space for an en-
P g tire message. The message size was defined when the mail-
box was created.

Return value

=0 Success; message retrieved.
0 Message could not be retrieved (mailbox is empty); destination remains un-
changed.

Additional information

If the mailbox is empty, no message is retrieved and the memory area where pMessage
points to remains unchanged, but the program execution continues. This function never
suspends the calling task. It may therefore also be called from an interrupt routine.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
147: OS_ERR_MAI LBOX_| NUSE

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

#defi ne MESSAGE _SIZE 4

static OS_MAI LBOX _MBDat a;
static char _Buf f er[MESSACGE_SI ZF] ;

char GetData(void) {
return OS_MAI LBOX Get (& MBData, & Buffer);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

240 CHAPTER 10 API functions

10.2.5 OS_MAILBOX_Get1()

Description

Retrieves a new message of size 1 from the specified mailbox, if a message is available.

Prototype
char OS_MAI LBOX_Get 1(OS_MAI LBOX* pMai | box,
char* pMessage) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
MESsage stored at. Make sure that there is sufficient space for an en-
P 9 tire message. The message size was defined when the mail-
box was created.

Return value

=0 Success; message retrieved.
0 Message could not be retrieved (mailbox is empty); destination remains un-
changed.

Additional information

If the mailbox is empty, no message is retrieved and the memory area where pMessage
points to remains unchanged, but the program execution continues. This function never
suspends the calling task. It may therefore also be called from an interrupt routine.

See Single-byte mailbox functions on page 231 for differences between OS_MAI LBOX_Get ()
and OS_MAI LBOX_Get 1() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
135: OS_ERR_MAI LBOX_NOT1

147: OS_ERR_MAI LBOX_| NUSE

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_MAI LBOX _MBKey;

/1
/1 |If a key has been pressed, it is taken out of the nail box
// and returned to caller. OGtherw se zero is returned.
/1
char GetKey(void) {
char ¢ = 0;

OS_MAI LBOX_Get 1(& MBKey, &c);
return c;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

241 CHAPTER 10 API functions

10.2.6 OS_MAILBOX_GetBlocked()

Description

Retrieves a new message of a predefined size from the specified mailbox.

Prototype
voi d OS_MAI LBOX_Get Bl ocked(OS_MAI LBOX* pMai | box,
voi d* pMessage) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
MESsage stored at. Make sure that there is sufficient space for an en-
P g tire message. The message size was defined when the mail-
box was created.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAI LBOX Get () /OS_MAI LBOX _Get 1() instead if you need to retrieve data
from a mailbox from within an interrupt routine.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
147: OS_ERR_MAI LBOX_| NUSE
160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

#defi ne MESSAGE_SI ZE 4

static OS_MAI LBOX _MBDat a;
static char _Buf f er[MESSACGE_SI ZF] ;

char WaitData(void) {
return OS_MAI LBOX_ Get Bl ocked(& MBData, & Buffer);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

CHAPTER 10 API functions

10.2.7 OS_MAILBOX_GetBlocked1()

Description

Retrieves a new message of size 1 from the specified mailbox.

Prototype
voi d OS_MAI LBOX_Get Bl ocked1(OS_MAI LBOX* pMai | box,
char* pMessage) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
pMessage stored at. Make sure that there is sufficient space for an en-
tire one byte message.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAI LBOX Get () /OS_MAI LBOX _Get 1() instead if you need to retrieve data
from a mailbox from within an interrupt routine.

See Single-byte mailbox functions on page 231 for differences between OS_MAI LBOX Get -
Bl ocked() and OS_MAI LBOX_Get Bl ocked1() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
135: OS_ERR_MAI LBOX_NOT1

147: OS_ERR_MAI LBOX_| NUSE
160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBKey;

char WaitKey(void) {
char c;

OS_MAI LBOX_Get Bl ocked1(& MBKey, &c);
return c;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

243 CHAPTER 10 API functions

10.2.8 OS MAILBOX GetMessageCnt()

Description

Returns the number of messages currently available in the specified mailbox.

Prototype
OS_UI NT OS_MAI LBOX_Get MessageCnt (OS_CONST_PTR OS_MAI LBOX *pMai | box) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.

Return value

The number of messages currently available in the mailbox.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBDat a;

voi d PrintAvail abl eMessages() {
OS_U NT Nunmf Msgs;

NumOf Msgs = OS_MAI LBOX_Get MessageCnt (& MBDat a) ;

printf("Milbox contains % nessages.\n", NumOf Msgs);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

244 CHAPTER 10 API functions

10.2.9 OS_MAILBOX_GetTimed()

Description

Retrieves a new message of a predefined size from the specified mailbox if a message is
available within a given time.

Prototype
char OS_MAI LBOX_Get Ti med(OS_MAI LBOX* pMai | box,
voi d* pMessage,
oS _TI ME Ti meout) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
pMessage and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Maximum time in system ticks until the requested message
must be available. The data type OGS _TI ME is defined as an
Ti meout integer, therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Success; message retrieved.
=0 Message could not be retrieved (mailbox is empty); destination remains un-
changed.

Additional information

If the mailbox is empty, no message is retrieved and the task is suspended for the given
timeout. The task continues execution according to the rules of the scheduler as soon as
a message is available within the given timeout, or after the timeout value has expired.
If the timeout has expired and no message was available within the timeout the memory
area where pMessage points to remains unchanged.

When the calling task is blocked by higher priority tasks for a period longer than the time-
out value, it may happen that message becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because the
message was not available within the requested time. In this case, no message is retrieved
from the mailbox.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX
147: OS_ERR_MAI LBOX_| NUSE
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL I N_MAI N

For details, refer to the chapter Runtime application errors on page 458.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

245 CHAPTER 10 API functions

Example

#defi ne MESSAGE_SI ZE 4

static OS_MAI LBOX _MBDat a;
static char _Buf f er [MESSAGE_SI ZE] ;

char WaitData(void) {
I
/1 Wait for up to 10 systemticks
I
return OS_MAlI LBOX_Get Ti med(& MBData, & Buffer, 10);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

246 CHAPTER 10 API functions

10.2.10 OS_MAILBOX_GetTimed1()

Description

Retrieves a new message of size 1 from the specified mailbox if a message is available
within a given time.

Prototype
char OS_MAI LBOX_Get Ti med1(OS_MAI LBOX* pMai | box,
char* pMessage,
CS_TI ME Ti meout) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that the message should be
stored at. Make sure that it points to a valid memory area
pMessage and that there is sufficient space for an entire message. The
message size (in bytes) was defined when the mailbox was
Created.

Maximum time in system ticks until the requested message
must be available. The data type OGS _TI ME is defined as an
Ti meout integer, therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Success; message retrieved.
=0 Message could not be retrieved (mailbox is empty); destination remains un-
changed.

Additional information

If the mailbox is empty, no message is retrieved and the task is suspended for the given
timeout. The task continues execution according to the rules of the scheduler as soon as
a message is available within the given timeout, or after the timeout value has expired.
If the timeout has expired and no message was available within the timeout the memory
area where pMessage points to remains unchanged.

When the calling task is blocked by higher priority tasks for a period longer than the time-
out value, it may happen that message becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because the
message was not available within the requested time. In this case, no message is retrieved
from the mailbox.

See Single-byte mailbox functions on page 231 for differences between OS_MAI LBOX Get -
Ti med() and OS_MAI LBOX_Get Ti ned1() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX
135: OS_ERR MAI LBOX_NOT1

147: OS_ERR_MAI LBOX_| NUSE
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL I N_MAI N

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

CHAPTER 10 API functions

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_MAI LBOX _MBKey;

I

/1l 1f a key has been pressed, it is taken out of the nail box

/1 and returned to caller. OQherwi se zero is returned.

I

char GetKey(void) {
char ¢ = 0;
OS_MAI LBOX_Get Ti ned1(& MBKey, &c, 10); // Wait for 10 systemticks
return c;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

248 CHAPTER 10 API functions

10.2.11 OS_MAILBOX_GetPtr()

Description

Retrieves a pointer to a new message of a predefined size from the specified mailbox if
a message is available.

Prototype
char OS_MAI LBOX_Get Pt r (OS_MAI LBOX* pMai | box,
voi d** ppMessage) ;
Parameters
Parameter Description

pMai | box Pointer to a mailbox object of type OS_MAI LBOX.

Address of the pointer which will be set to the address of the
ppMessage

message.
Return value
=0 Success; message retrieved.
0 Message could not be retrieved (mailbox is empty); destination remains un-

changed.

Additional information

If the mailbox is empty, no message is retrieved and ppMessage remains unchanged, but
the program execution continues. This function never suspends the calling task. It may
therefore also be called from an interrupt routine or software timer.

The retrieved message is not removed from the mailbox, this must be done by a call
of OS_MAI LBOX Purge() after the message was processed. Only one message can be
processed at a time. As long as the message is not removed from the mailbox, the mail-
box is marked “in use”. Following calls of OS_MAI LBOX_Cl ear (), OS_MAI LBOX Del ete(),
OS_MAI LBOX_Get Bl ocked*() and OS_MAI LBOX_Get Pt r Bl ocked*() functions are not allowed
until GS_MAI LBOX_Pur ge() is called.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
147: OS_ERR_MAI LBOX_| NUSE

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_MAI LBOX _MBKey;

void PrintMessage(void) {
char* p;
char r;

r = OS_MAI LBOX_Get Ptr (& MBKey, (void**)&p);
if (r ==0) {
printf("%\n", *p);
OS_MAI LBOX_Pur ge(& MBKey) ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

249 CHAPTER 10 API functions

10.2.12 OS_MAILBOX_GetPtrBlocked()

Description

Retrieves a pointer to a new message of a predefined size from the specified mailbox.

Prototype
voi d OS_MAI LBOX_Get Pt r Bl ocked(OS_MAI LBOX* pMai | box,
voi d** ppMessage) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
Pointer to the memory area that a pointer to the message
ppMessage should be stored at. The message size (in bytes) was defined
when the mailbox was created.

Additional information

If the mailbox is empty, the task is suspended until the mailbox receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine. Use OS_MAI LBOX Get Ptr () instead if you need to retrieve data from a mailbox
from within an interrupt routine.

The retrieved message is not removed from the mailbox, this must be done by a call
of OS_MAI LBOX Purge() after the message was processed. Only one message can be
processed at a time. As long as the message is not removed from the mailbox, the mail-
box is marked “in use”. Following calls of OS_MAI LBOX_Cl ear (), OS_MAI LBOX Del ete(),
OS_MAI LBOX_Get Bl ocked*() and OS_MAI LBOX_Get Pt r Bl ocked*() functions are not allowed
until GS_MAI LBOX_Pur ge() is called.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
147: OS_ERR_MAI LBOX_| NUSE
160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBKey;

voi d PrintMessage(void) {
char* p;

OS_MAI LBOX_Get Pt r Bl ocked(& MBKey, (voi d**)&p);
printf("%\n", *p);
OS_MAI LBOX_Pur ge(& MBKey) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

250 CHAPTER 10 API functions

10.2.13 OS_MAILBOX_lIsInUse()

Description

Returns whether the specified mailbox is currently in use.

Prototype
0S_BOOL OS_MAI LBOX_I sl nUse(OS_CONST_PTR OS_MAI LBOX *pMai | box) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.

Return value

=0 Mailbox is not in use.
=0 Mailbox is in use and may not be deleted or cleared.

Additional information

A mailbox must not be cleared or deleted when it is in use. In use means a task or function
currently holds a pointer to a message in the mailbox.

OS_MAI LBOX | sl nUse() can be used to examine the state of the mailbox before it can be
cleared or deleted, as these functions must not be performed as long as the mailbox is used.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_MAI LBOX _MBKey;

voi d Print Message(void) {
OS BOCL |sl nUse;

I sl nUse = OS_MAI LBOX | sl nUse(& MBKey) ;

if (IslnUse == 0u) {
printf("Milbox is not in use.\n");
OS_MAI LBOX_dl ear (& _MBKey) ;

} else {
printf("Miilbox is in use.\n");

}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

251 CHAPTER 10 API functions

10.2.14 OS_MAILBOX_Peek()

Description

Peeks a message from the specified mailbox without removing the message. The message
is copied to *pMessage if one was available.

Prototype
char OS_MAI LBOX_Peek(0S_CONST_PTR OS_MAI LBOX *pMai | box,
voi d* pMessage) ;

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to a buffer that should receive the message.
Return value
=0 Success, message was available and is copied to *pMessage.
0 Mail could not be retrieved (mailbox is empty).

Additional information

This function is non-blocking and never suspends the calling task. It may therefore be called
from an interrupt routine. If no message was available the memory area where pMessage
points to remains unchanged.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

#defi ne MESSAGE_SI ZE 4

static OS_MAI LBOX _MBDat a;
static char _Buf f er[MESSACGE_SI ZF] ;

char PeekData(void) {
return OS_MAI LBOX Peek(& MBData, & Buffer);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

252 CHAPTER 10 API functions

10.2.15 OS_MAILBOX_Purge()

Description

Deletes the last retrieved message in the specified mailbox.

Prototype
voi d OS_MAI LBOX_Pur ge(OS_NMAI LBOX* pMai | box) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.

Additional information

This routine should be called by the task that retrieved the last message from the mailbox,
after the message is processed.

Once a message was retrieved by a call of CS_MAI LBOX Get Ptr Bl ocked() or OS_MAI L-
BOX Get Ptr (), the message must be removed from the mailbox by a call of OS_MAI L-
BOX Purge() before a following message can be retrieved from the mailbox. Follow-
ing calls of OS_MAI LBOX_Cl ear (), OS_MAI LBOX_Del et e(), OS_MAI LBOX_Get Bl ocked*() and
OS_MAI LBOX_Get Pt r Bl ocked*() functions are not allowed until GS_MAI LBOX Purge() is
called. You must call OS_MAI LBOX_Pur ge() only once after retrieving a message from the
mailbox.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX

148: OS_ERR_MAI LBOX_NOT_| NUSE

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBKey;

voi d PrintMessage(void) {
char* p;

OS_MAI LBOX_Get Pt r Bl ocked(& MBKey, (void**)&p);
printf("%l\n", *p);
OS_MAI LBOX_Pur ge(& MBKey) ;

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

253 CHAPTER 10 API functions

10.2.16 OS_MAILBOX_Put()

Description

Stores a new message of a predefined size in the specified mailbox if the mailbox is able
to accept one more message.

Prototype

char OS_MAI LBOX_Put (OS_MAI LBOX* pMai | box,
OS_CONST_PTR voi d *pMessage) ;

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to the message to store.

Return value

=0 Success; message stored.
0 Message could not be stored (mailbox is full).

Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBDat a;

voi d AddMessage(struct Data* pData) {
char Result;

Result = OS_MAI LBOX Put (& MBDat a, pData);

if (Result '=0) {
printf("Was not able to add the nmessage to the mail box.\n");
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

254 CHAPTER 10 API functions

10.2.17 OS_MAILBOX_Put1()

Description

Stores a new message of size 1 in the specified mailbox if the mailbox is able to accept
one more message.

Prototype

char OS_MAI LBOX_Put 1(OS_MAI LBOX* pMai | box,
OS_CONST_PTR char *pMessage) ;

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to the message to store.

Return value

=0 Success; message stored.
0 Message could not be stored (mailbox is full).
Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine.

See Single-byte mailbox functions on page 231 for differences between OS_MAI LBOX_Put ()
and OS_MAI LBOX_Put 1() .
Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
135: OS_ERR_MAI LBOX_NOT1

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBKey;
static char _MBKeyBuffer[6];

char KEYMAN_St or eCond(char k) {
return OS_MAI LBOX Put 1(& MBKey, &k); /* Store key if space in buffer */

}

This example can be used with the sample program shown earlier to handle a mailbox as
keyboard buffer.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

255 CHAPTER 10 API functions

10.2.18 OS_MAILBOX_PutBlocked()

Description

Stores a new message of a predefined size in the specified mailbox.

Prototype

voi d OS_MAI LBOX_Put Bl ocked(OS_MAI LBOX* pMai | box,
OS_CONST_PTR voi d *pMessage) ;

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a sus-
pension, it must not be called from an interrupt routine. Use OS_MAI LBOX_Put () /OS_MAI L-
BOX_Put 1() instead if you need to store data in a mailbox from within an interrupt routine.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_MAI LBOX _MBDat a;

voi d AddMessage(struct Data* pData) {
OS_MAI LBOX_Put Bl ocked(& MBDat a, pDat a);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

256 CHAPTER 10 API functions

10.2.19 OS_MAILBOX_PutBlocked1()

Description

Stores a new message of size 1 in the specified mailbox.

Prototype

voi d OS_MAI LBOX_Put Bl ocked1(OS_MAI LBOX* pMai | box,
OS_CONST_PTR char *pMessage);

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a sus-
pension, it must not be called from an interrupt routine. Use OS_MAI LBOX_Put () /OS_MAI L-
BOX_Put 1() instead if you need to store data in a mailbox from within an interrupt routine.

See Single-byte mailbox functions on page 231 for differences between OS_MAI LBOX Put -
Bl ocked() and OS_MAI LBOX Put Bl ocked1() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
135: OS_ERR_MAI LBOX_NOT1

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example
Single-byte mailbox as keyboard buffer:

static OS_MAI LBOX _MBKey;
static char _MBKeyBuffer[6];

voi d KEYMAN_St or eKey(char k) {

OS_MAI LBOX_Put Bl ocked1(& MBKey, &k); /* Store key, wait if no space in buffer
*/
}

voi d KEYMAN I ni t (void) {
/* Create muail box functioning as type ahead buffer */
OS_MAI LBOX_Creat e(& MBKey, 1, sizeof(_MBKeyBuffer), & MBKeyBuffer);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

257 CHAPTER 10 API functions

10.2.20 OS_MAILBOX_PutFront()

Description

Stores a new message of a predefined size into the specified mailbox in front of all other
messages if the mailbox is able to accept one more message. The new message will be
retrieved first.

Prototype

char OS_MAI LBOX_Put Front (OS_MAI LBOX* pMai | box,
OS_CONST_PTR voi d *pMessage) ;

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to the message to store.

Return value

=0 Success; message stored.
0 Message could not be stored (mailbox is full).
Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine. This function is useful to store
“emergency” messages into a mailbox which must be handled quickly. It may also be used
in general instead of OS_MAI LBOX Put () to change the FIFO structure of a mailbox into a
LIFO structure.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBDat a;

voi d AddMessage(struct Data* pData) {
char Result;

Result = OS_MAI LBOX_Put Front (& MBDat a, pData);

if (Result '=0) {
printf("Was not able to add the nmessage to the mail box.\n");
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

258 CHAPTER 10 API functions

10.2.21 OS_MAILBOX_PutFront1()

Description

Stores a new message of size 1 into the specified mailbox in front of all other messages if
the mailbox is able to accept one more message. The new message will be retrieved first.

Prototype

char OS_MAI LBOX_Put Front 1(OS_MAI LBOX* pMai | box,
OS_CONST_PTR char *pMessage);

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to the message to store.

Return value

=0 Success; message stored.
0 Message could not be stored (mailbox is full).
Additional information

If the mailbox is full, the message is not stored. This function never suspends the calling
task. It may therefore be called from an interrupt routine. This function is useful to store
“emergency” messages into a mailbox which must be handled quickly. It may also be used
in general instead of OS_MAI LBOX Put () to change the FIFO structure of a mailbox into a
LIFO structure.

See Single-byte mailbox functions on page 231 for differences between OS_MAI LBOX Put -
Front () and OS_MAI LBOX Put Front 1().
Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
135: OS_ERR_MAI LBOX_NOT1

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBDat a;

voi d AddMessage(char c) {
char Result;

Result = OS_MAI LBOX_Put Front 1(& MBDat a, &c);

if (Result '=0) {
printf("Was not able to add the nmessage to the mail box.\n");
}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

259 CHAPTER 10 API functions

10.2.22 OS_MAILBOX_PutFrontBlocked()

Description

Stores a new message of a predefined size at the beginning of the specified mailbox in front
of all other messages. This new message will be retrieved first.

Prototype

voi d OS_MAI LBOX_Put Fr ont Bl ocked(OS_MAI LBOX* pMai | box,
OS_CONST_PTR voi d *pMessage) ;

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a
suspension, it must not be called from an interrupt routine. Use OS_MAI LBOX_Put Front () /
OS_MAI LBOX _Put Front 1() instead if you need to store data in a mailbox from within an
interrupt routine.

This function is useful to store “emergency” messages into a mailbox which must be handled
quickly. It may also be used in general instead of OS_MAI LBOX Put Bl ocked() to change
the FIFO structure of a mailbox into a LIFO structure.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_MAI LBOX _MBDat a;

voi d AddMessage(struct Data* pData) {
OS_MAI LBOX_Put Fr ont Bl ocked(& MBDat a, pData);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

260 CHAPTER 10 API functions

10.2.23 OS_MAILBOX_PutFrontBlocked1()

Description

Stores a new message of size 1 at the beginning of the specified mailbox in front of all
other messages. This hew message will be retrieved first.

Prototype

voi d OS_MAI LBOX_Put Fr ont Bl ocked1(OS_MAI LBOX* pMai | box,
OS_CONST_PTR char *pMessage) ;

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to the message to store.

Additional information

If the mailbox is full, the calling task is suspended. Because this routine might require a
suspension, it must not be called from an interrupt routine. Use OS_MAI LBOX_Put Front () /
OS_MAI LBOX _Put Front 1() instead if you need to store data in a mailbox from within an
interrupt routine.

This function is useful to store “emergency” messages into a mailbox which must be handled
quickly. It may also be used in general instead of OS_MAI LBOX Put Bl ocked() to change
the FIFO structure of a mailbox into a LIFO structure.

See Single-byte mailbox functions on page 231 for differences between OS_MAI LBOX Put -
Front Bl ocked() and OS_MAI LBOX_Put Fr ont Bl ockedl() .

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
135: OS_ERR_MAI LBOX_NOT1

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example
Single-byte mailbox as keyboard buffer which will follow the LIFO pattern:

static OS_MAI LBOX _MvBCnd;
static char _MBCndBuf fer[6];

voi d KEYMAN_St or eCommand(char k) {
OS_MAI LBOX_Put Fr ont Bl ocked1(& MBCnd, &k);
/1l Store command, wait if no space in buffer

}

voi d KEYMAN I ni t (void) {
/* Create mail box for command buffer */
OS_MAI LBOX_Create(& MBCnd, 1, sizeof (_MBCndBuffer), & MBChrdBuffer);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

261 CHAPTER 10 API functions

10.2.24 OS_MAILBOX_PutTimed()

Description

Stores a new message of a predefined size in the specified mailbox if the mailbox is able
to accept one more message within a given time. Returns when a new message has been
stored in the mailbox (mailbox not full) or a timeout occurred.

Prototype

CS_BOOL OS_MAI LBOX_Put Ti med(OS_MAI LBOX* pMai | box,
OS_CONST_PTR voi d *pMessage,

CS_TI ME Ti meout) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to the message to store.

Maximum time in embOS system ticks until the given mes-
sage must be stored. The data type OS_TI ME is defined as an
Ti meout integer, therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Ti meout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Success; message stored.
+0 Message could not be stored within the given timeout (mailbox is full). destina-
tion remains unchanged.

Additional information

If the mailbox is full, no message is stored and the task is suspended for the given timeout.
The task continues execution according to the rules of the scheduler as soon as a new
message is accepted within the given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the mailbox accepts new messages after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout, because
the mailbox was not available within the requested time. In this case, no message is stored
in the mailbox.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL I N_MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_MAI LBOX _MBDat a;

voi d AddMessage(char* pData) {
OS_MAI LBOX_Put Ti ned(& MBDat a, pData, 10); // Wit maxi num 10 system ticks

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

262 CHAPTER 10 API functions

10.2.25 0OS_MAILBOX_PutTimed1()

Description

Stores a new message of size 1 in the specified mailbox if the mailbox is able to accept one
more message within a given time. Returns when a new message has been stored in the
mailbox (mailbox not full) or a timeout occurred.

Prototype

OS_BOOL OS_MAI LBOX_Put Ti med1(OS_MAI LBOX* pMai | box,
OS_CONST_PTR char *pMessage,

oS _TI ME Ti meout) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
pMessage Pointer to the message to store.

Maximum time in embOS system ticks until the given mes-
sage must be stored. The data type OS_TI ME is defined as an
Ti meout integer, therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Ti meout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Success; message stored.
+0 Message could not be stored within the given timeout (mailbox is full). destina-
tion remains unchanged.

Additional information

If the mailbox is full, no message is stored and the task is suspended for the given timeout.
The task continues execution according to the rules of the scheduler as soon as a new
message is accepted within the given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that the mailbox accepts new messages after the timeout expired,
but before the calling task is resumed. Anyhow, the function returns with timeout, because
the mailbox was not available within the requested time. In this case, no message is stored
in the mailbox.

See Single-byte mailbox functions on page 231 for differences between OS_MAI LBOX Put -
Ti med() and OS_MAI LBOX_Put Ti med1() .
Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX
135: OS_ERR MAI LBOX_NOT1

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL I N_MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBKey;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

263 CHAPTER 10 API functions

voi d SetKey(char c¢) {
OS_MAI LBOX_Put Ti ned1(& MBKey, &c, 10); // Wait maxi mnum 10 systemticks

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

264 CHAPTER 10 API functions

10.2.26 OS_MAILBOX_WaitBlocked ()

Description

Waits until a message is available, but does not retrieve the message from the specified
mailbox.

Prototype

voi d OS_MAI LBOX_Wai t Bl ocked(GS_MAI LBOX* pMai | box) ;

Parameters

Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.

Additional information

If the mailbox is empty, the task is suspended until a message is available, otherwise the
task continues. The task continues execution according to the rules of the scheduler as
soon as a message is available, but the message is not retrieved from the mailbox.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX

160: OS_ERR | LLEGAL_ I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE_ | LLEGAL
226: OS_ERR | LLEGAL_| N_MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_MAI LBOX _MBDat a;

voi d Task(void) {
while (1) {
OS_MAI LBOX_ Wi t Bl ocked(& MBDat a) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

265 CHAPTER 10 API functions

10.2.27 OS_MAILBOX_WaitTimed()

Description

Waits until a message is available or the timeout has expired, but does not retrieve the
message from the specified mailbox.

Prototype
char OS_MAI LBOX_Wai t Ti med(OS_MAI LBOX* pMai | box,
CS_TI ME Ti meout) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.

Maximum time in embQOS system ticks until the requested
message must be available. The data type OS_TI ME is de-
Ti meout fined as an integer, therefore valid values are:

1 < Tinmeout < 215 -1 = Ox7FFF for 8/16-bit CPUs.

1 < Tinmeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Success; message available.
0 Ti nreout ; no message available within the given timeout time.

Additional information

If the mailbox is empty, the task is suspended for the given timeout. The task continues
execution according to the rules of the scheduler as soon as a message is available within
the given timeout, or after the timeout value has expired.

When the calling task is blocked by higher priority tasks for a period longer than the time-
out value, it may happen that message becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because the
message was not available within the requested time.

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

130: OS_ERR | NV_MAI LBOX

160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_MAI LBOX _MBDat a;

voi d Task(void) {
char Result;

Result = OS_MAI LBOX_Wi t Ti med(& MBDat a, 10);
if (Result == 0) {

/' Conpute nmessage
} else {

/'l Ti meout

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

266 CHAPTER 10 API functions

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 11

Queue

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

268 CHAPTER 11 Introduction

11.1 Introduction

In the preceding chapter, inter-task communication using mailboxes was described. Mail-
boxes can handle small messages with fixed data size only. Queues enable inter-task com-
munication with larger messages or with messages of differing lengths.

A queue consists of a data buffer and a control structure that is managed by the real-time
operating system. The queue behaves like a normal buffer; you can deposit something
(called a message) in the queue and retrieve it later. Queues work as FIFO: first in, first out.
So a message that is deposited first will be retrieved first. There are three major differences
between queues and mailboxes:

1. Queues accept messages of differing lengths. When depositing a message into a queue,
the message size is passed as a parameter.

2. Retrieving a message from the queue does not copy the message, but returns a pointer
to the message and its size. This enhances performance because the data is copied only
when the message is written into the queue.

3. The retrieving function must delete every message after processing it.

4. A new message can only be retrieved from the queue when the previous message was
deleted from the queue.

The queue data buffer contains the messages and some additional management infor-
mation. Each message has a message header containing the message size. The define
OS_Q SI ZECF_HEADER defines the size of the message header. Additionally, the queue buffer
will be aligned for those CPUs which need data alignment. Therefore the queue data buffer
size must be bigger than the sum of all messages.

Limitations:

Both the number of queues and buffers are limited only by the amount of available memory.
However, the individual message size and the buffer size per queue are limited by software

design.

8 or 16-bit CPUs 32-bit CPUs
Maximum message size 32,767 bytes 2,147,483,647 bytes
Maximum buffer size 65,535 bytes 4,294,967,295 bytes

These limitations have been placed on queues to guarantee efficient coding and also to
ensure efficient management. These limitations are typically not a problem.

Similar to mailboxes, queues can be used by more than one producer, but typically are used
by one consumer only. This is because applications need to ensure that each consumer
retrieves messages that are intended for it only, which is easily accomplished by using
distinct queues for each individual consumer. Furthermore, with multiple tasks waiting for a
message in one specific queue, all of these tasks are resumed when a new message arrives.
Since only one task may retrieve that message, however, all other tasks would execute only
to find that the message was consumed already, wasting computation time in the process.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

269
Example

#def i ne MESSAGE_ALI GNVENT (4u)
#define MESSAGES_SI ZE HELLO (7u +
#defi ne MESSAGES_SI ZE WORLD (9u +
#defi ne QUEUE_SI ZE
static OS_STACKPTR int StackHP[128],
static OS_TASK TCBHP, TCBLP;
static OS_QUEUE My Queue;
static char
static void HPTask(void) {

char* pDat a;

while (1) {

OS_QUEUE_GCet Pt r Bl ocked(&W Queue,

OS_COM SendStri ng(pbat a) ;
OS_QUEUE_Pur ge(&WQueue) ;

CHAPTER 11

Introduction

/| Depends on core/conpiler
OS_Q Sl ZEOF_HEADER + MESSAGE_AL| GNIVENT)
OS_Q Sl ZEOF_HEADER + MESSAGE_AL| GNIVENT)

(MESSAGES_SI ZE HELLO + MESSAGES_ S| ZE_ WORLD)

/'l Task stacks
/| Task-control -bl ocks

St ackLP[128] ;

My QBuf f er [QUEUE_SI ZE] ;

(voi d**) &pDat a) ;

}
}
static void LPTask(void) {
while (1) {
OS_QUEUE_Put (&WQueue, "\nHello\0", 7);
OS_QUEUE_Put (&WQueue, "\nWorld '\ 0", 9);
OS_TASK_Del ay(500) ;
}
}
int main(void) {
CS Init(); /'l Initialize enbOS
Cs InitHW); /1 Initialize required hardware
OS_TASK_CREATE(&TCBHP, "HP Task", 100, HPTask, StackHP);
OS_TASK_CREATE(&TCBLP, "LP Task", 50, LPTask, StackLP);
OS_QUEUE_Cr eat e(&WQueue, &WQBuUffer, sizeof (MQBuffer));
OS_COM SendString("enbOS OS_Queue exanpl e");
OS_COM SendString("\n\nDenonstrating nessage passing\n");
CS Start(); /1 Start enmbOS
return O;
}

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

CHAPTER 11 API functions
11.2 API functions
Routine Description o |4 (< (;’U’ =
58 ; 3
~ |0 D
~

OS QUEUE _d ear ()

Clears all messages in the specified
message queue.

OS QUEUE Create()

Creates a message queue.

OS_QUEUE_Del et e()

Deletes the specified message queue.

OS_QUEUE_GCet MessageCnt ()

Returns the number of messages that
are currently stored in the specified
message queue.

OS_QUEUE_ Get MessageSi ze()

Returns the size of the first message in
the specified message queue.

OS_QUEUE_Get Pt r ()

Retrieves a pointer to a message from
the specified message queue if avail-
able.

OS_QUEUE_Get Pt r Bl ocked()

Retrieves a pointer to a message from
the specified message queue.

OS_QUEUE_Get Pt r Ti med()

Retrieves a pointer to a message from
the specified message queue if avail-
able within the specified time.

OS_QUEUE_HasFr eeSpace()

Returns whether the message of size
Size fits in the queue buffer.

OS _QUEUE I sl nUse()

Delivers information whether the speci-
fied message queue is currently in use.

OS_QUEUE PeekPtr ()

Retrieve the pointer to a message from
the specified message queue.

OS_QUEUE_Pur ge()

Deletes the last retrieved message in
the specified message queue.

0OS_QUEUE_Put ()

Stores a new message of given size in
the specified message queue.

OS_QUEUE_Put Ex()

Stores a new message, of which the
distinct parts are distributed in mem-
ory as indicated by a OS_QUEUE_SR-
CLI ST structure, in the specified mes-
sage queue.

OS_QUEUE_Put Bl ocked()

Stores a new message of given size in
the specified message queue.

OS_QUEUE_Put Bl ockedEx()

Stores a new message, of which the
distinct parts are distributed in mem-
ory as indicated by a OS_QUEUE_SR-
CLI ST structure, in the specified mes-
sage queue.

OS_QUEUE_Put Ti med()

Stores a new message of given size in
the specified message queue if space is
available within a given time.

OS_QUEUE_Put Ti medEx()

UMO01001 User Guide & Reference Manual for embOS

Stores a new message, of which the
distinct parts are distributed in mem-
ory as indicated by a OS_QUEUE_SR-

© 1995-2025 SEGGER Microcontroller GmbH

271

API functions

CHAPTER 11
ol5| |e
323 |-|%
Routine Description S
> % — 3
=~ |& e
il

CLI ST structure, in the specified mes-

sage queue.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

272 CHAPTER 11 API functions

11.2.1 OS_QUEUE_Clear()

Description

Clears all messages in the specified message queue.

Prototype
voi d OS_QUEUE_d ear (OS_QUEUE* pQ;
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.

Additional information

A queue must not be cleared when it is in use. In use means the application currently holds
a pointer to a message in the queue. OS_ QUEUE C ear () may cause a task switch.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

145: OS_ERR QUEUE_| NVALI D

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

143: OS_ERR_QUEUE_| NUSE

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS QUEUE _Queue;

voi d C ear Queue() {
OS_QUEUE_d ear (& Queue);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

273 CHAPTER 11 API functions

11.2.2 0OS QUEUE_ Create()

Description

Creates a message queue.

Prototype

voi d OS_QUEUE_Creat e(OS_QUEUE* pQ
voi d* pBuf f er,
OS_UNT Size);

Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.
pBuf f er Pointer to a memory area used as data buffer for the queue.
Si ze Si ze in bytes of the data buffer.

Additional information

The define OS_Q SI ZEOF_HEADER can be used to calculate the additional management in-
formation bytes needed for each message in the queue data buffer. But it does not account
for the additional space needed for data alignment. Thus the number of messages that can
actually be stored in the queue buffer depends on the message sizes. The message size
will be round up to the next multiple of the size of an integer.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
165: OS_ERR | NI T_NOT_CALLED

167: OS_ERR_CPU_STATE | LLEGAL
177: OS_ERR 2USE_QUEUE

For details, refer to the chapter Runtime application errors on page 458.

Example

#def i ne MESSAGE_CNT 100
#def i ne MESSAGE_SI ZE 100
#def i ne MEMORY_QSI ZE (MESSAGE_CNT * (MESSAGE_SI ZE + 0S_Q SI ZEOF_HEADER))

static OS_QUEUE _MenoryQ
static char _acMenmBuf f er [MEMORY_QSI ZE] ;

voi d MEMORY_I nit(void) {

OS_QUEUE Create(& MenoryQ & acMemBuffer, sizeof (_acMemBuffer));
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

274 CHAPTER 11 API functions

11.2.3 OS_QUEUE_Delete()

Description

Deletes the specified message queue.

Prototype
voi d OS_QUEUE_Del et e(OS_QUEUE* pQ);
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.

Additional information

A queue must not be deleted when it is in use or a task is waiting for it. In use means the
application currently holds a pointer to a message in the mailbox.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

143: OS_ERR_QUEUE_| NUSE

145: OS_ERR _QUEUE_| NVALI D

146: OS_ERR QUEUE_DELETE

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS QUEUE _QSerln;

voi d C eanup(void) {
OS_QUEUE Del ete(& Serln);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

275 CHAPTER 11 API functions

11.2.4 0OS QUEUE GetMessageCnt()

Description

Returns the number of messages that are currently stored in the specified message queue.

Prototype
int OS_QUEUE_Get MessageCnt (OS_CONST_PTR OS_QUEUE *pQ);
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.

Return value

The number of messages in the queue.

Additional information
If OS_ QUEUE Get MessageCnt () returns zero the message queue is empty.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

145: OS_ERR_QUEUE_| NVALI D
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_QUEUE _Queue;

voi d Print Nunber O Messages() {
int Cnt;

Cnt = OS_QUEUE_Get MessageCnt (& Queue);

printf("% nmessages available.\n", Cnt);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

276 CHAPTER 11 API functions

11.2.5 OS QUEUE_ GetMessageSize()

Description

Returns the size of the first message in the specified message queue.

Prototype
int OS_QUEUE_GCet MessageSi ze(OS_CONST_PTR OS_QUEUE *pQ);
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.

Return value

=0 No data available.
>0 Size of message in bytes.

Additional information

If the queue is empty OS_QUEUE Get MessageSi ze() returns zero. If a message is avail-
able S _QUEUE Get MessageSi ze() returns the size of that message. The message is not
retrieved from the queue.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

145: OS_ERR _QUEUE_| NVALI D
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_QUEUE _MenoryQ

static void _MenoryTask(void) ({
int Len;

while (1) {
Len = OS_QUEUE_Get MessageSi ze(& MenoryQ; // Get nessage |ength
if (Len > 0) {
printf("Message with size %l retrieved\n", Len);
OS_QUEUE_Pur ge(& MenoryQ) ; /'l Del ete message
}
OS_TASK_Del ay(10);
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

277 CHAPTER 11 API functions

11.2.6 OS_QUEUE_GetPtr()

Description

Retrieves a pointer to a message from the specified message queue if available.

Prototype

int OS_QUEUE_Get Pt r (OS_QUEUE* pQ
voi d** ppMessage) ;

Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.
Address of the pointer which will be set to the address of the
ppMessage
message.
Return value
=0 No message available in queue (queue is empty).
>0 Size of the message that was retrieved from the queue.

Additional information

If the queue is empty, OS QUEUE Get Ptr() returns zero and ppMessage remains un-
changed. This function never suspends the calling task. It may therefore be called from an
interrupt routine or software timer.

The retrieved message is not removed from the queue, this must be done by a call of
OS_QUEUE_Pur ge() after the message was processed. Only one message can be processed
at a time. As long as the message is not removed from the queue, the queue is marked
“in use”. Following calls of OS QUEUE Cl ear (), OS_ QUEUE Del ete(), OS QUEUE GetPtr (),
OS QUEUE_ Get Ptr Bl ocked() and OS_QUEUE_Get Pt r Ti ned() functions are not allowed until
OS_QUEUE_Pur ge() is called.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

143: OS_ERR_QUEUE_| NUSE
145: OS_ERR _QUEUE_| NVALI D

164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_QUEUE _MenoryQ

static void _MenoryTask(void) {

i nt Len;
voi d* pDat a;
while (1) {

Len = OS_ QUEUE GetPtr (& MenoryQ @&pData); // Check nessage
if (Len > 0) {
Menory_Wit ePacket (*(U32*) pData, Len); /| Process nessage
OS_QUEUE_Pur ge(& MenoryQ; /'l Del ete nmessage
} else {
DoSonret hi ngEl se() ;
}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

278 CHAPTER 11 API functions

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

279 CHAPTER 11 API functions

11.2.7 OS _QUEUE_ GetPtrBlocked()

Description

Retrieves a pointer to a message from the specified message queue.

Prototype

int OS_QUEUE_Get Pt r Bl ocked(OS_QUEUE* pQ,
voi d** ppMessage) ;

Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.
VEssage Address of the pointer which will be set to the address of the
PP g message.

Return value

Size of the message in bytes.

Additional information

If the queue is empty, the calling task is suspended until the queue receives a new message.
Because this routine might require a suspension, it must not be called from an interrupt
routine or timer. Use OS_QUEUE Get Pt r () instead. The retrieved message is not removed
from the queue, this must be done by a call of OS_QUEUE Pur ge() after the message was
processed. Only one message can be processed at a time. As long as the message is not
removed from the queue, the queue is marked “in use”.

Following «calls of OS QUEUE Clear(), OS QUEUE Delete(), OS QUEUE GetPtr(),
OS_QUEUE_Get Pt r Bl ocked() and OS5 _QUEUE_Get Pt r Ti med() functions are not allowed until
OS_QUEUE_Pur ge() is called.

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

143: OS_ERR_QUEUE_| NUSE
145: OS_ERR_QUEUE_| NVALI D
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N_MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_QUEUE _MenoryQ@

static void _MenoryTask(void) ({

i nt Len;

voi d* pDat a;

while (1) {
Len = OS_QUEUE_Get PtrBl ocked(& MenoryQ &pData); // Cet nessage
Menmory Wit ePacket (*(U32*) pData, Len); /'l Process nessage
OS_QUEUE_Pur ge(& MenoryQ) ; /'l Del ete nmessage

}

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

280 CHAPTER 11 API functions

11.2.8 OS_QUEUE_GetPtrTimed()

Description

Retrieves a pointer to a message from the specified message queue if available within the
specified time.

Prototype

int OS_QUEUE_Get Pt r Ti ned(OS_QUEUE* pQ,
voi d** ppMessage,
OS_TIME Tineout);

Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.
Address of the pointer which will be set to the address of the
ppMessage
message.

Maximum time in system ticks until the requested message
must be available. The data type OGS _TI ME is defined as an
Ti meout integer, therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 No message available in queue.
>0 Size of the message that was retrieved from the queue.

Sets the pointer ppMessage to the message that should be retrieved.

Additional information

If the queue is empty no message is retrieved, the task is suspended for the given timeout.
The task continues execution according to the rules of the scheduler as soon as a message
is available within the given timeout, or after the timeout value has expired. If no message
is retrieved within the timeout ppMessage will not be set.

When the calling task is blocked by higher priority tasks for a period longer than the timeout
value, it may happen that a message becomes available after the timeout expired, but
before the calling task is resumed. Anyhow, the function returns with timeout, because the
message was not available within the requested time. In this case the state of the queue is
not modified by OS_QUEUE_Cet Pt r Ti med() and a pointer to the message is not delivered.
As long as a message was retrieved and the message is not removed from the queue, the
queue is marked “in use”.

Following «calls of OS QUEUE Clear(), OS QUEUE Delete(), OS QUEUE GetPtr(),
OS_QUEUE_Get Pt r Bl ocked() and OS_QUEUE_Get Pt r Ti med() functions are not allowed until
OS_QUEUE_Pur ge() is called.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

143: OS_ERR_QUEUE_| NUSE

145: OS_ERR _QUEUE_| NVALI D
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

281 CHAPTER 11

Example

static OS_QUEUE _MenoryQ
static void _MenoryTask(void) ({
i nt Len;
voi d* pDat a;

while (1) {

API functions

Len = OS_ QUEUE Get PtrTi med(& MenoryQ &pData, 10); // Check nessage

if (Len > 0) {

Mermory_ Wit ePacket (*(U32*) pDat a,

OS_QUEUE_Purge(& MenoryQ;
} else {
DoSomet hi ngEl se() ;
}
}
}

UMO01001 User Guide & Reference Manual for embOS

/'l Process nessage
/' Del ete nessage
/' Ti meout

© 1995-2025 SEGGER Microcontroller GmbH

282 CHAPTER 11 API functions

11.2.9 OS QUEUE HasFreeSpace()

Description

Returns whether the message of size Si ze fits in the queue buffer.

Prototype
0S_BOOL OS_QUEUE_HasFr eeSpace(0S_CONST_PTR OS_QUEUE *pQ
CS_UINT Si ze);
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.
Si ze Message size.

Additional information

OS_QUEUE_HasFreeSpace() does not store any message in the queue.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

143: OS_ERR_QUEUE_| NUSE
145: OS_ERR _QUEUE_| NVALI D

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Task(O0S_QUEUE* pQ {
oS _BOOL r;

OS_INT_IncDI ();
r = OS_QUEUE_HasFreeSpace(pQ 42)
if (r == 1u) {

OS_QUEUE_Put (pQ pMessage, 42);

}
OS_INT_DecRI () ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

283 CHAPTER 11 API functions

11.2.10 OS_QUEUE_IsInUse()

Description

Delivers information whether the specified message queue is currently in use.

Prototype
0S_BOOL OS_QUEUE_I sl nUse(OS_CONST_PTR OS_QUEUE *pQ);
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.

Return value

=0 Queue is not in use.
=0 Queue is in use and may not be deleted or cleared.

Additional information

A queue must not be cleared or deleted when it is in use. In use means a task or function
currently accesses the queue and holds a pointer to a message in the queue.

OS_QUEUE | sl nUse() can be used to examine the state of the queue before it can be cleared
or deleted, as these functions must not be performed as long as the queue is used.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

145: OS_ERR _QUEUE_| NVALI D
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

voi d Del eteQ OS_QUEUE* pQ {
OS_INT_IncDi(); // Avoid state change of the queue by task or interrupt
Il
/1 Wait until queue is not used
Il
while (OS_QUEUE |slnUse(pQ !=0) {
OS_TASK Del ay(1);
}
OS_QUEUE_Del ete(pQ;
CS_| NT_DecRI () ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

284 CHAPTER 11 API functions

11.2.11 OS_QUEUE_PeekPtr()

Description

Retrieve the pointer to a message from the specified message queue. The message must
not be purged.

Prototype
int OS_QUEUE_PeekPt r (OS_CONST_PTR OS_QUEUE *pQ
voi d** ppMessage) ;
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.
Address of the pointer which will be set to the address of the
ppMessage
message.
Return value
=0 No message available.
0 Size of message in bytes.

Additional information

Sets the pointer ppMessage to the message that should be retrieved. If no message is
available ppMessage will not be set.

Note

Ensure the queue’s state is not altered while a message is processed. That is the
reason for calling OS I NT | ncDI () in the sample. Ensure no cooperative task switch
is performed, as this may also alter the queue state and buffer.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

145: OS_ERR_QUEUE_| NVALI D
164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_QUEUE _MenoryQ
static void _MenoryTask(void) {

i nt Len;
voi d* pDat a;
while (1) {

/1 Avoid state changes of the queue by task or interrupt
CS_INT_I ncDi();
Len = OS_QUEUE_PeekPtr (& MenmoryQ &pData); // Get nessage
if (Len > 0) {
Mermory Wit ePacket (*(U32*) pData, Len); /'l Process nessage

}
OS_| NT_DecRI () ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

285 CHAPTER 11 API functions

11.2.12 OS_QUEUE_Purge()

Description

Deletes the last retrieved message in the specified message queue.

Prototype
voi d OS_QUEUE_Pur ge(OS_QUEUE* pQ;
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.

Additional information

This routine should be called by the task that retrieved the last message from the queue,
after the message is processed.

Once a message was retrieved by a call of OS_ QUEUE Get Pt r Bl ocked(), OS_QUEUE_Get P-
tr() or OS_ QUEUE Get PtrTi ned(), the message must be removed from the queue by a
call of OS_QUEUE_Pur ge() before a following message can be retrieved from the queue.

Consecutive calls of OGS _ QUEUE Pur ge() or calling OS_QUEUE Pur ge() without having re-
trieved a message from the queue are not allowed.
Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

143: OS_ERR QUEUE_| NUSE

145: OS_ERR _QUEUE_| NVALI D

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE_ I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

Example

static OS_QUEUE _MenoryQ

static void _MenoryTask(void) ({

i nt Len;

voi d* pDat a;

while (1) {
Len = OS_QUEUE_Get PtrBl ocked(& MenmoryQ &pData); // Get nessage
Memory_ Wit ePacket (*(U32*) pData, Len); /'l Process nessage
OS_QUEUE_Pur ge(& MenoryQ) ; /| Del ete nmessage

}
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

286 CHAPTER 11 API functions

11.2.13 OS_QUEUE_Put()

Description

Stores a new message of given size in the specified message queue.

Prototype

i nt OS_QUEUE_Put (0OS_QUEUE* pPQ
OS_CONST_PTR voi d *pMessage,

OS_UI NT Si ze);
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.
pMessage Pointer to the message to store.

Si ze of the message to store. Valid values are:
Si ze 1 < Size < 215 -1 = Ox7FFF for 8/16-bit CPUs.
1 < Size < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Success, message stored.
+0 Message could not be stored (queue is full).

Additional information

This routine never suspends the calling task and may therefore be called from an interrupt
routine.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer to the data. Therefore the message content is protected and
remains valid until it is retrieved and subsequently deleted from the queue by a task calling
OS_QUEUE_Pur ge.

Note

The message is stored in the queue buffer with an additional message header. Addi-
tionally the message size will be round up to the next multiple of the size of an integer.

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

145: OS_ERR _QUEUE_| NVALI D

149: OS_ERR MESSAGE_SI ZE_ZERO

164: OS_ERR OS_| NT_ENTER NOT_CALLED
167: OS_ERR CPU_STATE | LLEGAL

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_QUEUE _MenoryQ

int MEMORY_Wite(const void* pData, OS_U NT Len) {
return OS_QUEUE Put (& MenoryQ pData, Len);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

287 CHAPTER 11 API functions

11.2.14 OS_QUEUE_PutEXx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indicated
by a OS QUEUE_SRCLI ST structure, in the specified message queue.

Prototype
i nt OS_QUEUE_Put Ex(OS_QUEUE* pPQ

OS_CONST_PTR OS_QUEUE_SRCLI ST *pMessageli st
OS_UI NT Numvessages) ;

Parameters

Parameter Description

pQ Pointer to a queue object of type OS_QUEUE.

Pointer to an array of OS5 _QUEUE_SRCLI ST structures which
contain pointers to the data to store.

NumVessages Number of OS_QUEUE_SRCLI ST structures at pMessageli st .

pMessageli st

Return value

=0 Success, message stored.
*0 Message could not be stored (queue is full).

Additional information

This routine never suspends the calling task and may therefore be called from main(), an
interrupt routine or a software timer.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and subsequently deleted from the queue by a task calling
OS_QUEUE_Pur ge.

The O5_QUEUE_SRCLI ST structure consists of two elements:

Parameter Description

pSrc Pointer to a part of the message to store.

Size of the part of the message. Valid values are:
Si ze 1 < Size < 215 -1 = Ox7FFF for 8/16-bit CPUs.
1 < Size < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

Note

The total size of all parts of the message must not exceed 0x7FFF on 8/16-bit CPUs, or
0x7FFFFFFF on 32-bit CPUs, respectively. The message is stored in the queue buffer
with an additional message header. Additionally the message size will be round up to
the next multiple of the size of an integer.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

145: OS_ERR_QUEUE_| NVALI D
149: OS_ERR_MESSAGE_SI ZE_ZERO
164: OS_ERR_OS_| NT_ENTER NOT_CALLED
167: OS_ERR_CPU_STATE_I LLEGAL

For details, refer to the chapter Runtime application errors on page 458.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

288 CHAPTER 11 API functions

Example

OS_CONST_PTR OS_QUEUE_SRCLI ST aDataList[] = { {"Hello ", 6},

OS_QUEUE_Put Ex(& MenmoryQ, abDat ali st, 2);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

289 CHAPTER 11 API functions

11.2.15 OS_QUEUE_PutBlocked()

Description

Stores a new message of given size in the specified message queue.

Prototype

voi d OS_QUEUE_Put Bl ocked(OS_QUEUE* pQ
OS_CONST_PTR voi d *pMessage,

OS_UI NT Si ze);
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.
pMessage Pointer to the message to store.

Si ze of the message to store. Valid values are:
Si ze 1 < Size < 215 -1 = Ox7FFF for 8/16-bit CPUs.
1 < Size < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

Additional information

If the queue is full, the calling task is suspended.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and subsequently deleted from the queue by a task calling
OS_QUEUE_Pur ge.

Note

The message is stored in the queue buffer with an additional message header. Addi-
tionally the message size will be round up to the next multiple of the size of an integer.

Error codes

With embOS debug checks enabled erroneous calls to this function result in GS_Error ()
being called with one of the following application error IDs:

145: OS_ERR_QUEUE_| NVALI D
149: OS_ERR MESSAGE_SI ZE_ZERO
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

static OS_QUEUE _MenoryQ

voi d StoreMessage(const void* pData, OS_U NT Len)
OS_QUEUE_Put Bl ocked(& MenoryQ pData, Len);
}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

290 CHAPTER 11 API functions

11.2.16 OS_QUEUE_PutBlockedEx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indicated
by a OS QUEUE_SRCLI ST structure, in the specified message queue. Blocks the calling task
when queue is full.

Prototype

voi d OS_QUEUE_Put Bl ockedEx(OS_QUEUE* pQ
OS_CONST_PTR OS_QUEUE_SRCLI ST *pMessageli st

OS_UI NT Numvessages) ;
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.

Pointer to an array of OS5 _QUEUE_SRCLI ST structures which
contain pointers to the data to store.

NumVessages Number of OS_QUEUE_SRCLI ST structures at pMessageli st .

pMessageli st

Additional information

If the queue is full, the calling task is suspended.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and subsequently deleted from the queue by a task calling
OS_QUEUE_Pur ge.

The O5_QUEUE_SRCLI ST structure consists of two elements:

Parameter Description
pSrc Pointer to a part of the message to store.
Size of the part of the message. Valid values are:
Size 1 < Size <215 -1 = 0x7FFF for 8/16-bit CPUs.
1 < Size < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

Note

The total size of all parts of the message must not exceed 0x7FFF on 8/16-bit CPUs, or
0x7FFFFFFF on 32-bit CPUs, respectively. The message is stored in the queue buffer
with an additional message header. Additionally the message size will be round up to
the next multiple of the size of an integer.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

145: OS_ERR_QUEUE_| NVALI D
149: OS_ERR_MESSAGE_SI ZE_ZERO
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_|I N_TI MER
167: OS_ERR_CPU_STATE_I LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

291 CHAPTER 11 API functions

Example

OS_CONST_PTR OS_QUEUE_SRCLI ST aDataList[] = { {"Hello ", 6},

OS_QUEUE_Put Ex(& MenmoryQ, abDat ali st, 2);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

292 CHAPTER 11 API functions

11.2.17 OS_QUEUE_PutTimed()

Description

Stores a new message of given size in the specified message queue if space is available
within a given time.

Prototype

char OS_QUEUE_Put Ti med(OS_QUEUE* pPQ
OS_CONST_PTR voi d *pMessage,

OS_UI NT Si ze,
S _TI ME Ti meout) ;
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.
pMessage Pointer to the message to store.

Si ze of the message to store. Valid values are:
Si ze 1 < Size < 215 -1 = Ox7FFF for 8/16-bit CPUs.
1 < Size < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

Maximum time in system ticks until the given message must
be stored. The data type OS_TI ME is defined as an integer,
Ti meout therefore valid values are:

1 < Ti neout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Tineout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

Return value

=0 Success, message stored.
+#0 Message could not be stored within the specified time (insufficient space).

Additional information

If the queue holds insufficient space, the calling task is suspended until space for the mes-
sage is available, or the specified timeout time has expired. If the message could be de-
posited into the queue within the specified time, the function returns zero.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and subsequently deleted from the queue by a task calling
OS_QUEUE_Pur ge.

Note

The message is stored in the queue buffer with an additional message header. Addi-
tionally the message size will be round up to the next multiple of the size of an integer.

Error codes

With embQOS debug checks enabled erroneous calls to this function result in GS _Error ()
being called with one of the following application error IDs:

145: OS_ERR_QUEUE_| NVALI D
149: OS_ERR_MESSAGE_SI ZE_ZERO
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

293 CHAPTER 11 API functions

Example

static OS_QUEUE _MenoryQ

int MEMORY_WiteTined(const void* pData, OS_U NT Len, OS_TIME Tineout) ({
return OS_QUEUE Put Ti ned(& MenmoryQ pData, Len, Tineout);

}

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

294 CHAPTER 11 API functions

11.2.18 OS_QUEUE_PutTimedEx()

Description

Stores a new message, of which the distinct parts are distributed in memory as indicated
by a OS_QUEUE_SRCLI ST structure, in the specified message queue. Suspends the calling
task for a given timeout when the queue is full.

Prototype

char OS_QUEUE_Put Ti nedEx(OS_QUEUE* pQ
OS_CONST_PTR OS_QUEUE_SRCLI ST *pMessageli st

OS_UI NT NumVessages,
oS _TI ME Ti meout) ;
Parameters
Parameter Description
pQ Pointer to a queue object of type OS_QUEUE.

Pointer to an array of OS5 _QUEUE_SRCLI ST structures which
contain pointers to the data to store.

NumVessages Number of OS_QUEUE_SRCLI ST structures at pMessageli st .

Maximum time in system ticks until the given message must
be stored. The data type OS_TI ME is defined as an integer,
Ti meout therefore valid values are:

1 < Ti meout < 215 -1 = 0x7FFF for 8/16-bit CPUs.

1 < Timeout < 231 -1 = Ox7FFFFFFF for 32-bit CPUs.

pMessageli st

Return value

=0 Success, message stored.
*0 Message could not be stored within the specified time (insufficient space).

Additional information

If the queue holds insufficient space, the calling task is suspended until space for the mes-
sage is available or the specified timeout time has expired. If the message could be de-
posited into the queue within the specified time, the function returns zero.

When the message is deposited into the queue, the entire message is copied into the queue
buffer, not only the pointer(s) to the data. Therefore the message content is protected and
remains valid until it is retrieved and subsequently deleted from the queue by a task calling
OS_QUEUE_Pur ge.

The O5_QUEUE_SRCLI ST structure consists of two elements:

Parameter Description
pSrc Pointer to a part of the message to store.
Size of the part of the message. Valid values are:
Si ze 1 < Size <215 -1 = 0x7FFF for 8/16-bit CPUs.
1 < Size < 231 - 1 = Ox7FFFFFFF for 32-bit CPUs.

Note

The total size of all parts of the message must not exceed 0x7FFF on 8/16-bit CPUs, or
0x7FFFFFFF on 32-bit CPUs, respectively. The message is stored in the queue buffer
with an additional message header. Additionally the message size will be round up to
the next multiple of the size of an integer.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

295 CHAPTER 11 API functions

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

145: OS_ERR_QUEUE_| NVALI D
149: OS_ERR_MESSAGE_SI ZE_ZERO
160: OS_ERR | LLEGAL_I N_I SR
161: OS_ERR | LLEGAL_I N_TI MER
167: OS_ERR CPU_STATE | LLEGAL
226: OS_ERR | LLEGAL_I N MAI N

For details, refer to the chapter Runtime application errors on page 458.
Example

OS_CONST_PTR OS_QUEUE_SRCLI ST aDataList[] = { {"Hello ", 6},

OS_QUEUE_Put Ex(&\VenoryQ abDatalList, 2, 100);

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

Chapter 12
Multi Object Walit

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

CHAPTER 12 Introduction

12.1 Introduction

In the preceding chapter, inter-task communication and synchronization with RTOS objects
were described. With the described API a task can block for one specific RTOS object and
condition only.

However, there could be the requirement to concurrently wait for multiple conditions to be
fulfilled. For example, a task could need to wait at the same time for new data in a queue
and an event to get signaled.

The Multi Object Wait feature allows to wait concurrently for one or more conditions to be
fulfilled. The Multi Object Wait API returns as soon as one of the conditions it is waiting for is
fulfilled. It is possible for more than one condition to be fulfilled when the Multi Object Wait
API returns. The caller must look at the state of all RTOS objects to figure out which ones
were fulfilled and what actions to take. The Multi Object Wait API does not e.g. retrieve
data from the queue. That must be done subsequently by the application.

For each RTOS object and condition, an embOS condition routine can be defined.

Multi Object Wait can be used with:

Event object

Semaphore

Mailbox

Queue

Fixed Block Size Memory Pool

Example
#i ncl ude "RTCS. h"
#define OS_COUNT_OF(a) (sizeof(a) / sizeof(a[0]))

static OS_STACKPTR int StackHP[128], StackLP[128]; // Task stacks

static OS_TASK TCBHP, TCBLP; /1 Task control bl ocks
static OS_QUEUE My Queue; /'l Queue control bl ock
static char MyQ@Buf f er [30] ; /'l Queue buffer

static OS_EVENT MyEvent ; /1 Event control bl ock

Il
/1 List of RTOS objects to sinultaneously wait for
Il
static const OS_MJULTI OBJ_COND aMyMul ti Obj Cond[] = {
{ &WQueue, OS_MJILTI OBJ_I| sMessagel nQueue, (void*)2 },
{ &WEvent, OS_MJLTI OBJ_I| sEvent Signal ed, (void*)NULL },
)5
Il
/1 Miltiple object control blocks
Il
static OS_MIULTI OB aMyMul ti Obj [OS_COUNT_OF(aMyMul ti Cbj Cond)] ;

static void HPTask(void) {
CS_INT | ndex;
char* pDat a;
i nt MessageCnt ;
OCS_BOOL Si gnal ed;

while (1) {
I ndex = OS_MJULTI OBJ_Wai t Bl ocked(aMyMul ti Obj ,
aMyMul t i Cbj Cond,
OS_COUNT_OF(aMyMul ti Obj Cond)) ;
switch (Index) {
case 0:
MessageCnt = OS_QUEUE_Get MessageCnt (&M Queue) ;
if (MessageCnt == 2) {
OS_QUEUE_Get Pt r (&WQueue, (voi d**) &pDat a) ;
OS_COM SendsStri ng(pbata);
OS_QUEUE_Pur ge(&WQueue) ;

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

298 CHAPTER 12

OS_QUEUE_Get Pt r (&WQueue,
CS_COM SendStri ng(pbata);
OS_QUEUE_Pur ge(&WQueue) ;
}
br eak;
case 1:
Si gnal ed = OS_EVENT_Get (&WEvent);
if (Signaled !'= 0u) {
OS_COM SendString("\nEvent
OS_EVENT_Reset (&WEvent) ;

received.");

}
br eak;
}
}
}
static void LPTask(void) {
while (1) {
CS_QUEUE_Put (&WQueue, "\nHel lo\0", 7);
CS_QUEUE_Put (&WQueue, "\nWorld !\0", 9);
OS_EVENT_Set (&WEvent);
OS_TASK Del ay(2);
}
}
int main(void) {
CS Init(); /[l Initialize enbCS
OS InitHW); // Initialize required hardware
OS_TASK_CREATE(&TCBHP, "HP Task",
OS_TASK_CREATE(&TCBLP, "LP Task", 50,

OS_QUEUE_Creat e(&WQueue, MyQBuffer,
OS_EVENT_Cr eat eEx(&WEvent,
oS Start(); /1 Start embOS
return O;

UMO01001 User Guide & Reference Manual for embOS

(voi d**) &pDat a) ;

Introduction

100, HPTask, StackHP);
LPTask, StackLP);

si zeof (MyQBuffer));
OS_EVENT_RESET_MODE_MANUAL) ;

© 1995-2025 SEGGER Microcontroller GmbH

299 CHAPTER 12

12.2 Condition routines

The Multi Object Wait API routines expect an array of OS_MJLTI OBJ_COND entries. A
OS_MULTI OBJ_COND structure contains the RTOS object address, the condition routine ad-
dress and an optional parameter that is passed to the condition routine.

The application can choose for each RTOS object a different condition routine. The same
condition routine can be used with different parameters. A condition routine returns true
or false. If NULL is passed as the condition routine address, the return value is false.

Prototype

static OS BOOL _|sCondition(OS CONST_PTR voi d* pObj, void* pParam

Example

static const OS_MJULTI OBJ_COND aMyMul ti Gbj Cond[] = {
{ &WQueue, OS_MJILTI OBJ_I| sMessagel nQueue, (void*)2 1,

}i

12.2.1 API functions

{ &WEvent, OS_MJLTI OBJ_I sEvent Si gnal ed, (void*)NULL},

Routine

Description

OS_MULTI OBJ_I sEvent Si gnal ed()

Returns whether the requested event object is
in signaled state.

OS_MULTI OBJ_I sTokenl nSema()

Returns whether the requested semaphore
contains available tokens.

OS_MULTI OBJ_I sMessagel nMai | box()

Returns whether the requested mailbox con-
tains available messages.

OS_MULTI OBJ_I sSpacel nMai | box()

Returns whether the requested mailbox has
free space for additional messages.

OS_MULTI OBJ_I sMessagel nQueue()

Returns whether the requested queue contains
available messages.

OS_MULTI OBJ_I sSpacel nQueue()

Returns whether there is space for a message
of size Size.

OS_MULTI OBJ_I sBl ockl nMenPool ()

Returns whether the requested Memory Pool
contains available memory blocks.

UMO01001 User Guide & Reference Manual for embOS

© 1995-2025 SEGGER Microcontroller GmbH

Condition routines

300 CHAPTER 12 Condition routines

12.2.1.1 OS _MULTIOBJ IsEventSignaled()

Description

Returns whether the requested event object is in signaled state.

Prototype
OS_BOOL OS_MULTI OBJ_I sEvent Si ghal ed(CS_CONST_PTR voi d *pEvent,
voi d* pMask) ;
Parameters
Parameter Description
pEvent Pointer to an event object of type OS_EVENT.

If pMask equals NULL, the function evaluates the entire event
object bits. Therefore, it behaves like OS5 EVENT _Get (),
OS_EVENT_Get Bl ocked() and OS_EVENT_Get Ti ned() with-
pMask out an event mask and must be used with none mask event
object API only. Otherwise, the bit mask indicates the event
bits that shall be evaluated and must be used with mask
event object API like OS_EVENT_Set Mask() only.

Return value

=0 Event object is not set to requested signal state.
0 Event object is set to requested signal state.

Additional information

The event bits are not consumed.

Note

OS_MULTI OBJ | sEvent Si gnal ed() must be used with event object reset mode
OS_EVENT_RESET_MODE_MANUAL only.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

213: OS_ERR _EVENTOBJ_ RESETMODE
220: OS_ERR_EVENT_| NVALI D

For details, refer to the chapter Runtime application errors on page 458.

Example

Please refer to the example at the start of this sub-chapter.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

301

CHAPTER 12 Condition routines

12.2.1.2 OS_MULTIOBJ IsTokenInSema()

Description

Returns whether the requested semaphore contains available tokens.

Prototype
OS_BOOL OS_MULTI OBJ_I sTokenl nSena(OS_CONST_PTR voi d *pSenaphor e,
voi d* pNunirokens) ;
Parameters
Parameter Description
pSemaphor e Pointer to a semaphore object of type OS_SEMAPHORE.

If pNuniTokens equals NULL, the function returns whether any
pNunirokens token is available. Otherwise, the function returns whether
the given amount of tokens is available.

Return value

=0 Requested amount of semaphore tokens is not available.
0 Requested amount of semaphore tokens is available.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

132: OS_ERR_| NV_SEMAPHORE

For details, refer to the chapter Runtime application errors on page 458.

Example

Please refer to the example at the start of this sub-chapter.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

302 CHAPTER 12 Condition routines

12.2.1.3 OS_MULTIOBJ IsMessagelnMailbox()

Description

Returns whether the requested mailbox contains available messages.

Prototype
0S_BOOL OS_MULTI OBJ_| sMessagel nMai | box(OS_CONST_PTR voi d *pMai | box,
voi d* pNumvessages) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
If pNumVessages equals NULL, the function returns whether
pNum\Vessages any message is available. Otherwise, the function returns
whether the given number of messages is available.

Return value

=0 Requested number of messages is not available.
0 Requested number of messages is available.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
147: OS_ERR_MAI LBOX_| NUSE

For details, refer to the chapter Runtime application errors on page 458.

Example

Please refer to the example at the start of this sub-chapter.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

303 CHAPTER 12 Condition routines

12.2.1.4 OS_MULTIOBJ_IsSpacelnMailbox()

Description

Returns whether the requested mailbox has free space for additional messages.

Prototype
0S_BOOL OS_MULTI OBJ_| sSpacel nMai | box(OS_CONST_PTR voi d *pMai | box,
voi d* pNumvessages) ;
Parameters
Parameter Description
pMai | box Pointer to a mailbox object of type OS_MAI LBOX.
If pNumVessages equals NULL, the function returns whether
NUTVBS S ades the mailbox has sufficient space for any message. Other-
P 9 wise, the function returns whether the mailbox has sufficient
space for the given number of messages.

Return value

=0 Sufficient space for the requested number of messages is not available.
0 Sufficient space for the requested number of messages is available.

Error codes

With embOS debug checks enabled erroneous calls to this function result in OS_Error ()
being called with one of the following application error IDs:

130: OS_ERR_| NV_MAI LBOX
147: OS_ERR_MAI LBOX_| NUSE

For details, refer to the chapter Runtime application errors on page 458.

Example

Please refer to the example at the start of this sub-chapter.

UMO01001 User Guide & Reference Manual for embOS © 1995-2025 SEGGER Microcontroller GmbH

304 CHAPTER 12 Condition routines

12.2.1.5 OS _MULTIOB